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Abstract

Pictures or patterns have been formally specified by different methods such as grammars.
An alternative approach is based on Tiling Systems (TS), whereby the picture is obtained
by first covering it with a specified set of two by two tiles, then by performing a pixel by
pixel mapping. TS are a powerful technique: the corresponding pictures can be recognized
by non-deterministic cellular automata, which orderly scan the diagonals, and are more
powerful then the four ways automata. The difficulty to writesuch specifications for non
elementary pictures, and the NP-complete computational complexity of TS picture recog-
nition have so far blocked any attempt to application. We have implemented a recognizer
and generator for TS pictures in a very attractive, unconventional way, by transforming the
tiling problem into a SAT one, then using an efficient off-the-shelf SAT-solver. The proto-
type is fast enough to experiment on reasonably sized samples, and has the bonus of being
able to complete or extrapolate a partial or noisy picture. The tool is invaluable to assist in
writing picture specification. A series of examples shows how to specify patterns using TS.

Key words: Syntactic pattern recognition, Picture languages, Two dimensional grammars
and languages, Picture/Image Generation and Interpolation, SAT-solvers

1 Introduction

Syntactic methods (see for instance [1],[2]) have been often considered for per-
forming pattern analysis and recognition, by formally specifying the class of pic-
tures of interest. Pictures or patterns can be specified by different methods, such as
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grammars or automata. A sample of approaches can be found in [3], including for
instance [4], where isometric array grammars are considered for efficient syntactic
pattern recognition and picture generation. An alternative, theoretically sound, yet
practically unexplored, approach is to use tiling: in the crudest form a specified set
of small, say two by two, tiles is listed, which can cover the intended class of pic-
tures. A picture is recognized if, and only if, it can be covered with tiles from the
listed set. To overcome the limitations of such rudimentarymethod, a more flexible
formalism, calledTiling Systems(TS) has been studied by theoreticians (see e.g.
[5], [6], [7]). Wang Tiles[8] are an equivalent variant of the formalism, which uses
a more traditional concept of tiling where tiles are placed side by side. A recent
variant of TS/Wang Tiles is presented in [9].

Our work is concerned with a practical experimentation of TSin conjunction with a
new approach for performing pattern recognition and image generation or comple-
tion, based on powerful logical tools, the SAT-solvers, whose task is to find Boolean
values which make a propositional formula true.

With TS the picture is obtained by first covering it with tilesdrawn from a listed
set of two by two tiles, then by performing a pixel by pixel mapping. Tiling Sys-
tems are a powerful technique: the corresponding pictures can be recognized by
non-deterministic cellular automata, which orderly scan the diagonals [10]. Such
abstract machines are more powerful then the four ways automata of [11]. How-
ever TS definitions are hard to write and error-prone for non elementary pictures.
Moreover the NP-complete computational complexity of picture recognition has
until now blocked any attempt to realistic experimentationand application of TS,
in spite of a large amount of theoretical work.

We have implemented a recognizer/generator for TS defined pictures in a very at-
tractive, unconventional way, by transforming the tiling problem into a Boolean
satisfiability one, then using an efficient off-the-shelf SAT-solver. The prototype is
fast enough to experiment on reasonably sized samples, and has the bonus of be-
ing able to complete a partial picture, by assigning to unknown pixels some values
which satisfy the picture specification.

The tool is invaluable to assist in writing picture specification. Several examples
are provided, such as the set of geographical maps which can be colored with three
colors, and various classes of nested patterns and connected paths. The tool can
be also applied to image reconstruction or noise elimination, by parsing a picture
where some pixels are tagged as unknown. Availability of thetools should ease
experimentation of tiling based methods for classificationand recognition of certain
types of pictures, in isolation or combined with more consolidated methods.

The presentation is organized as follows. Section 2 briefly presents formal picture
languages and Tiling Systems. Section 3 describes how to encode the TS picture
recognition problem into the SAT problem. Section 4 presents a gallery of patterns
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and sketches a methodology for their specification by TS. It reports experiments
with the tool and performances. Section 5 mentions future research and concludes.

2 Picture Languages and Tiling Systems

We provide a gentle introduction to Tiling Systems. The reader may consult [5]
for more detailed and formal definitions. Picture languagescan be viewed as a
generalization of textual languages from one to two dimensions.

The set of pixel values is named theterminal alphabetof the picture, denotedΣ.
For example we may chooseΣ = {0, 1} to define black and white pictures, but we
allow alphabets of any finite cardinality.

A picturep is a two-dimensional rectangular array of elements of the terminal al-
phabet. Thesize|p| of a picturep is specified by the pair(|p|row, |p|col) of its number
of rows and columns. Apixelp(i, j), 1 ≤ i ≤ |p|row, 1 ≤ j ≤ |p|col, is the element
at position(i, j) in the arrayp. Conventionally the indices grow from top to bottom
for the rows and from left to right for the columns:

p =

p(1, 1) . . . p(1, |p|col)
...

. . .
...

p(|p|row, 1) . . . p(|p|row, |p|col)

A picture languageis a (usually infinite or at least very large) set of pictures over the
given alphabet. It is useful to introduce the notationΣ∗,∗ for the set of all possible
picture of any size, over the same alphabetΣ.

For convenience we usually consider thebordered versionof picturep, obtained by
surrounding the picture with the specialboundary symbol#, which is assumed not
to be in the alphabet:

# # . . . # #

# p(1, 1) . . . p(1, |p|col) #
...

...
. . .

...
...

# p(|p|row, 1) . . . p(|p|row, |p|col) #

# # . . . # #
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Fig. 1. The tiles (i.e.2× 2 subpictures) of a2× 4 picture.

We often need to refer to some parts of a picture. Asubpictureat position(i, j) of
a picturep is any rectangular array of pixels, contained inp and having the symbol
p(i, j) at its leftmost, topmost corner. From this we obtain the definition of a tile.

Consider a picturep. The set oftilesof p, denotedB2,2(p), is defined by:

B2,2(p) = {q : q is a subpicture ofp of size(2, 2)}.

An illustration is in Figure 1.

By listing the permitted tiles, one can specify a simple family of picture languages,
the so called family oflocal languages. For instance, with the alphabet{0, 1}, the
tile set

Θ1 =











0 1

1 0
,

1 0

0 1











defines the language, denoted

L1 = LOC(Θ1)

of rectangular checker boards, of any height and width.

For instance, the picture
1 0 1 0

0 1 0 1
is valid, since it can be tiled as shown in Figure

1.

It is important to stress that it is not requested that all listed tiles be present in a
picture. For example the tile set

Θ2 =











0 1

1 0
,

1 0

0 1
,

0 0

0 0











defines the language
L2 = LOC(Θ2)
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made by the union of two disjoint sets: the previous languageL1 of checkerboards
and the language of arrays with all pixels set to 0. Clearly there exists no picture
making use of all three tiles.

The use of the bordered version of pictures, instead of plainones, improves selec-
tivity, by allowing specification of the tiles occurring on the borders. To illustrate,
the language of square pictures having all pixels on the maindiagonal set to 1, and
all the remaining pixels set to 0, is defined by the following tile set:

Θ =











1 0

0 1
,

0 0

1 0
,

0 0

0 0
,

0 1

0 0











∪























































# #

# 1
,

# #

0 0
,

# #

0 #
,

0 #

0 #
,

1 #

# #
,

0 0

# #
,

# 0

# #
,

# 0

# 0























































where the first line lists the inner tiles and the second one lists the border tiles,
as they are found scanning a bordered picture clockwise, starting from (1,1). In
the following we always refer to bordered pictures. Later weuse more concise
descriptions of tile sets, by prototypes and predicates.

As the range of patterns, which can be characterized by the presence or absence of
certain tiles, is rather poor, a more refined form of picture specification by tiling
has been proposed by [12] (see also [5]) under the name of Tiling Systems. The
idea is to use a larger alphabet for the tiles, in order to obtain better control on how
they fit together. The tile alphabet is then mapped onto the terminal alphabet of the
pictures.2

A pixel by pixel operation, calledprojection, is used to map pixels from an alphabet
to another one. Letπ : Γ → Σ be a mapping from an alphabetΓ to an alphabetΣ.
An example is the transformation from colored to black and white pixels defined
by the mappingπ:

2 Actually, there is a deep analogy with the basic result of automata theory stating that
any finite-state language can be obtained from a local language, i.e. a language defined by
domino tiles, by a change of alphabet.
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Γ: Σ:

green

blue black

red

yellow white

white

Theprojectionπ(p) of a picturep of alphabetΓ is a picturep′ of alphabetΣ such
that the two pictures have the same size and, for each pair of corresponding pixels,
it holds

p′(i, j) = π(p(i, j)).

In the example the projection converts “dark” pixels to black, and “light” pixels to
white.

Definition 1. [5] A tiling system(TS)T consists of

(1) a terminal alphabetΣ;
(2) a tile alphabetΓ;
(3) a setΘ of tiles of alphabetΓ;
(4) a projectionπ : Γ→ Σ.

The picture languageL(T ) defined by a tiling systemT is

L(T ) = π(LOC(Θ)).

Recall thatLOC(Θ) is the local language defined by the tile set (using border
symbols).
To illustrate we show the TS of a picture language which is notlocal, that is it
cannot be defined using tiles over the terminal alphabet. This will serve as a running
example for later sections.

Example 1. Chinese boxes on a background

A picture represent rectangular frames or boxes, placed anywhere in the plane.
Frames may be nested one inside the other but they may not overlap, touch each
other, or touch the border. The perimeter pixels of a frame are encoded by� and
the background by blank pixels (denoted�) so that the terminal alphabet isΣ =
{�, �}. An example picture is shown in Figure 2, left.

Since in such pictures almost any combination of terminal elements may occur as
a tile, a definition based on terminal tiles would be too permissive.
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# # # # # # # # # # # #

# #

# � � � � � � � #

# � � #

# � � #

# � � � � � #

# � � � � #

# � � � � #

# � � � � � #

# � � #

# � � � � � � � #

# #

# � � � � � � � #

# � � #

# � � #

# � � � � � #

# � � � � #

# � � � � #

# � � � � � #

# � � #

# � � � � � � � #

# #

# # # # # # # # # # # #

# # # # # # # # # # # #

# #

# ր → → → → → ց #

# ↑ ↓ #

# ↑ ↓ #

# ↑ ր → ց ↓ #

# ↑ ↑ ↓ ↓ #

# ↑ ↑ ↓ ↓ #

# ↑ տ ← ւ ↓ #

# ↑ ↓ #

# տ ← ← ← ← ← ւ #

# #

# ր → → → → → ց #

# ↑ ↓ #

# ↑ ↓ #

# ↑ ր → ց ↓ #

# ↑ ↑ ↓ ↓ #

# ↑ ↑ ↓ ↓ #

# ↑ տ ← ւ ↓ #

# ↑ ↓ #

# տ ← ← ← ← ← ւ #

# #

# # # # # # # # # # # #

Fig. 2. A picture of the Chinese box’s language (left), and the corresponding picture with
the tile alphabet (right).

For example, a subpicture containing the forbidden pattern�

� � �
could be tiled.

The remedy is to use a larger tile alphabet, in order to avoid confusion between
pixels of two adjacent frames. We use the tile alphabet:

Γ = {ր,→,ց, ↓,ւ,←,տ, ↑, �}

The perimeter of a frame is thus encoded by clockwise turningarrows, as shown in
the right part of Figure 2.

Instead of listing the rather large tile set, it saves effortand earns readability to
specify it by prototypes, that is by exhibiting one (or more)pictures of alphabet
Γ, such that all and only the permitted tiles are present. One such picture is the
following:
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Θ = B2,2



















































# # # # # # # #

# #

# ր → → ց #

# ↑ ↓ #

# ↑ ↓ #

# տ ← ← ւ #

# #

# # # # # # # #



















































The projectionπ simply maps any arrow onto a black square, and a blank onto a
blank. Applying the projection to the right part of Figure 2,one obtains the initial
picture.

Notice that the choice of the tile alphabet is not obvious andsome guidelines and
practical criteria are needed for picture specification by TS.

3 Picture Recognition as SAT problem

Syntactic pattern recognition is another name for the classical formal language
problem ofsyntax analysis(or parsing). For Tiling Systems, this corresponds to
the following question: given a TST and a picturep, if p ∈ L(T ), then how doesT
generatep? Quite naturally, having an efficient tool to solve this problem for Tiling
Systems would be a first and necessary step to use such formalism in practice: one
could define a picture language by means of a TS, and then coulduse the pars-
ing algorithm torecognizea given input picture and its structure. Notice that the
“syntactical structure” of picturep is essentially representable as a pictureq over
the tile alphabetΓ, such that the projectionπ(q) equalsp. In fact, asΓ is a richer
alphabet thanΣ, its patterns display a structure, which is to some extent erased by
projectionπ. To put it differently, the same pixel in different positions may have
different “meanings”.

Unfortunately, we know from the theory that the problem of parsing Tiling Systems
is NP-complete (see [13] and [14]3 ), because some typical and well-known NP-
complete problems are easily translated into a TS parsing problem.

On the other hand, a number of useful problems, though NP-complete (or worse),

3 In that paper Tiling Systems are calledHomomorphisms of Local Lattice Languages.
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are tackled in practice, for example some classical verification problems such as
Model Checking[15]. Here we focus on theBoolean Satisfiability Problem(SAT
for short), one of the best known NP-complete problems. An instance of the prob-
lem is a propositional logic formula (i.e. a Boolean expression on a set of proposi-
tional variables), and the question is: given the formula, is there some assignment
of true andfalsevalues to the variables that will make it true? CNF-SAT is a clas-
sical variant of the problem, in which the formula is inConjunctive Normal Form
(CNF), i.e. an AND of clauses, where a clause is an OR of simpleor negated propo-
sitional variables. In recent years, the availability of quite effective tools to solve
the CNF-SAT (e.g. the recent MiniSat [16]), based on the seminal Davis-Putnam-
Logemann-Loveland (DPLL) algorithm [17], spurred the creation of many verifi-
cation tools, among which we cite the bounded model checkingcomponent of the
NuSMV verifier [18].

Familiarity with SAT-solving tools gave us the idea to encode the TS parsing prob-
lem into SAT.

3.1 The Encoding

Consider a Tiling SystemT = (Σ, Γ, Θ, π). Essentially, given an input picture
p ∈ Σ∗,∗, i.e. a picture made of symbols taken fromΣ, the parsing problem consists
in finding a pictureq ∈ Γ∗,∗, having the same size asp, such that:

(1) its projection coincides withp, i.e.π(q) = p;
(2) its tiling is compatible withΘ, i.e.B2,2(q) ⊆ Θ.

If both conditions are true, then, and only then,p ∈ L(T ). Notice thatq is not
necessarily unique.

Notice that this is an instance of typical inverse mathematical problems, which are
often computationally challenging.

Now, to encode the problem into SAT, we represent the pixels of the pictureq as
SAT’s propositional variables. In practice, this means that the statementq(i, j) = a

(i.e. pixel(i, j) of q contains the symbola), becomes a propositional variable of the
SAT problem.

As an example, consider the Chinese boxes picture represented in the left part of
Figure 2. If inp at position (2,2) there is a symbol�, then necessarily the corre-
sponding pixel inq (i.e. before the projection) must be an arrow (but we do not
know which one). Once the encoding is complete, we may ask theSAT-solver to
“guess” such pictureq. If the SAT-solver succeeds, then the picturep is accepted
(andq is returned); elsewise,p 6∈ L(T ).
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To fully exploit the SAT encoding, we also accept partial input pictures. This means
that some ofp’s pixels may be left unspecified (conventionally marked by a“don’t
care” symbol ‘?’). With a slight abuse of notation, we say that the inverse projection
of a “don’t care” symbol inp is Γ, i.e.π−1(?) = Γ. Informally, this means that we
do not know anything about that pixel, so any symbol of the tile alphabet could be
in q at that position.

The encoding consists of expressing the afore mentioned Conditions 1) and 2), as
propositional logic formulas.

Condition 1) states thatq must be “compatible” withp, i.e. such thatπ(q) = p: 4

F1 :=
∧

(i,j)∈[(1,1)..|p|]















∨

a∈π−1(p(i,j)) q(i, j) = a

∧

OnlyOne
a′∈Γ

(

q(i, j) = a′
)















F1 depends only onp and on the projectionπ. The first AND is used to span the
whole picture, while the innerOnlyOne operator is used to check that one and only
one value taken from the alphabetΓ is assigned toq at a given position.

Condition 2) considers the tile setΘ: to acceptp, every tile used inq must be a
member ofΘ.

F2 :=
∧

(i,j)∈[(1,1)..|p|]

∨

t∈Θ

∧

h,k∈[0,1]















q(i + h, j + k)

=

t(h + 1, k + 1)















As in the previous formula, the first AND spans the whole picture. Then, the inner
OR states that one of the tiles inΘ must be present at a given position.

The TS-recognition problem is then encoded as the propositional formulaF1 ∧ F2.

Example 2. Consider Figure 2, left side. For brevity, we consider just asmall part,
the one corresponding to the subpicture at position(2, 1) having size(2, 3), as

4 For conciseness, we introduce theOnlyOne Boolean function, with any number of ar-
guments. Informally,OnlyOne is true if, and only if, exactly one of its arguments is true.
E.g.OnlyOne (A,B,C) ⇐⇒ (A ∧ ¬B ∧ ¬C) ∨ (¬A ∧B ∧ ¬C) ∨ (¬A ∧ ¬B ∧ C).
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shown next: � �

�

The resultingF1 formula, limited to the pixels of the previous subpicture, is:

. . . ∧ q(2, 1) = �∧




















q(2, 2) =ր ∨q(2, 2) =→ ∨

q(2, 2) =ց ∨q(2, 2) =↑ ∨

q(2, 2) =ւ ∨q(2, 2) =← ∨

q(2, 2) =տ ∨q(2, 2) =↓





















∧

OnlyOne





























q(2, 2) =ր, q(2, 2) =→,

q(2, 2) =ց, q(2, 2) =↑,

q(2, 2) =ւ, q(2, 2) =←,

q(2, 2) =տ, q(2, 2) =↓,

q(2, 2) = �





























∧





















q(2, 3) =ր ∨q(2, 3) =→

∨q(2, 3) =ց ∨q(2, 3) =↑ ∨

q(2, 3) =ւ ∨q(2, 3) =← ∨

q(2, 3) =տ ∨q(2, 3) =↓





















∧

OnlyOne





























q(2, 3) =ր, q(2, 3) =→,

q(2, 3) =ց, q(2, 3) =↑,

q(2, 3) =ւ, q(2, 3) =←,

q(2, 3) =տ, q(2, 3) =↓,

q(2, 2) = �





























∧

q(3, 1) = �∧




















q(3, 2) =ր ∨q(3, 2) =→

∨q(3, 2) =ց ∨q(3, 2) =↑ ∨

q(3, 2) =ւ ∨q(3, 2) =← ∨

q(3, 2) =տ ∨q(3, 2) =↓





















∧
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OnlyOne





























q(3, 2) =ր, q(3, 2) =→,

q(3, 2) =ց, q(3, 2) =↑,

q(3, 2) =ւ, q(3, 2) =←,

q(3, 2) =տ, q(3, 2) =↓,

q(2, 2) = �





























∧

q(3, 3) = � ∧ . . .

In the input picture at position(2, 1) there is a blank, andπ(�) = �, therefore
q(2, 1) must be a blank. At position(2, 2) there is a�, soq(2, 2) can be any of the
arrows. The other pixels are analogously translated.

Next consider theF2 corresponding to the previous subpicture. For brevity we re-
strict consideration to just a few of the tiles inΘ, namely:











ր →

↑
,
ր

↑
,
ր →

,
↑

↑











We obtain the formulaF2:

. . . ∧















































































q(2, 1) =ր ∧q(2, 2) =→ ∧

q(3, 1) =↑ ∧q(3, 2) = �

∨

q(2, 1) = � ∧ q(2, 2) =ր ∧

q(3, 1) = � ∧ q(3, 2) =↑

∨

q(2, 1) = � ∧ q(2, 2) = �∧

q(3, 1) =ր ∧q(3, 2) =→

∨

q(2, 1) = � ∧ q(2, 2) =↑ ∧

q(3, 1) = � ∧ q(3, 2) =↑

∨ . . .















































































∧

(1)
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













































































q(2, 2) =ր ∧q(2, 3) =→ ∧

q(3, 2) =↑ ∧q(3, 3) = �

∨

q(2, 2) = � ∧ q(2, 3) =ր ∧

q(3, 2) = � ∧ q(3, 3) =↑

∨

q(2, 2) = � ∧ q(2, 3) = �∧

q(3, 2) =ր ∧q(3, 3) =→

∨

q(2, 2) = � ∧ q(2, 3) =↑ ∧

q(3, 2) = � ∧ q(3, 3) =↑

∨ . . .















































































∧ . . . (2)

Subformula 1 considers a tile placed at position(2, 1), so the examined pixels are
those at positions(2, 1), (2, 2), (3, 1), (3, 2). The first row of the formula represents
the first tile, the second row of the formula represents the second tile, and so on.
Analogously, Subformula 2 considers tiles placed at position (2, 2).

3.2 The Tool

The TS parsing tool accepts as its input a file containing a TS specificationT ,
and a picturep (or just its size). As output, the tool offers a picture such that its
projection coincides withp, if p is in the language ofT , nothing otherwise. When
the user provides just the picture size, the tool returns a picture having the same
size and such that its projection belongs to the language ofT (this modality is also
calledpicture generation). This is analogous of parsing a rectangle entirely made
of “don’t care” symbols, and is a useful test to see if the TS language contains any
picture having a fixed size.

Internally, the tool is composed of aCoremodule, and a couple of utility modules:
Input, andBack-parser.

The Core module accepts as input the TS description (i.e. thetile setΘ, and the
projectionπ, both expressed as lists), and the picturep to be parsed. As anticipated,
the input picture may be completely defined, or contain “don’t care” symbols. As
output, the core module produces the formulaF1 ∧ F2 presented in the previous
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section, inCNF-DIMACSformat5 .

The Input module provides convenient utilities to define tile sets, such as usual set
operations (union, intersection, complement, difference), and theB2,2 operation to
extract tiles from a given prototype.

After formula generation, the TS parsing tool calls the SAT-solver, which supplies
as output either UNSAT (i.e. the formula contains a contradiction, hencep is not in
the language of the given TS), or a suitable assignment to propositional variables.
Next the Back-parsing module is called after the SAT-solverto parse the assignment
to propositional variables, in order to obtain a pictureq such thatπ(q) = p. The
Back-parsing module finally generatesq as a LATEX table.

The tool is written in the Scheme programming language. Thischoice makes it
possible for the experimenter to use the logical constructsof Scheme to create tile
sets in a compact and easy way. We defer to the next section thediscussion on tile
sets definition.

4 Experiences

4.1 Practical tile specification

Next we present a short gallery of TS definitions of interesting picture languages.
As we proceed we state and illustrate the following techniques for specifying tile
sets.

(1) Explicit: the first and most simple technique is the one used in [5], in which tile
sets are exhaustively listed. Usually, this technique definesminimal tile sets,
i.e. sets containing all the needed tiles, and only them. Itsmajor shortcoming
resides in its error proneness: an explicit tile set is hard to read by humans,
because of its very size. It is easy to write a wrong tile in it,but hard to spot
it. Moreover, modifications of the sets are for the same reason hard.

(2) By prototype:a natural way of expressing tile sets is by using a prototype
picture. In this case, we automatically derive the tile set applying theB2,2

operator to the prototype. It is used for instance to define the Chinese boxes
TS (Figure 2). This technique represents tile sets in a very readable and easily
modifiable way. Its main shortcoming is that for complex Tiling Systems is not

5 CNF-DIMACS is ade factostandard input format for SAT-solvers, and was defined
by theCenter for Discrete Mathematics and Theoretical Computer Science, a collabora-
tive project of Rutgers University, Princeton University,AT&T Labs, Bell Labs, Telcordia
Technologies, and NEC Labs.
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trivial (and sometimes not possible at all) to find one small example picture
containing all the needed tiles.

(3) Set operations:being tile sets actual sets, it is straightforward to use union,
intersection, and complement on them. For instance, paper [5] uses this tech-
nique together with exhaustive listing. Others [14] specify most examplesex
negativo: they start from a small explicit tile set and consider all the tiles of
the same alphabet which arenot in the given set. Sometimes the needed tile
set is so large that is more convenient to build it by giving forbidden tiles. As
far as shortcomings are concerned, tile sets defined throughthis technique are
sometimes non-minimal, because containunproductivetiles. These are tiles
that cannot be used with the others. For instance, consider the example of Fig-

ure 2. If we add the tile# ↑
# ↓

to the tile set, its language is unchanged, because

this tile is unproductive.
Though not a major shortcoming, the presence of unproductive tiles im-

pacts on the performance of the parser. Indeed, our tool mustconsider all the
given tiles, hence the resulting propositional formula is larger than needed.
Moreover, it may happen that the tiles intended as unproductive turn out the
other way, causing subtle changes to the intended picture. Our tool helps to
reveal this kind of errors. Generating random pictures of the language works
as a test bench and can spot unwanted tiles.

(4) Logic expressions:another classical way of expressing sets is by using logic
expressions to implicitly constrain their content (e.g. the well known notation
{x ∈ N : ∃y ∈ N(x = 2y)} defines the set of all even natural numbers). The
same technique can be used for tile sets: logic constraints can predicate on
relationship between pixels used in the tiles. This approach is very compact
and expressive, but usually defines non-minimal tile sets. Its shortcomings are
the same as the previous case.

Our tool supports all four techniques. In practice, the fourtechniques are often
combined together: sometimes it is convenient to start froma prototype picture,
and then to add further tiles by union with the tiles coming from another kind of
expression, e.g. logic or explicit. We show some such combinations in the next
examples.

4.2 Examples

In this section we present some example of tool usage, because we think they il-
lustrate both what kind of languages are definable by Tiling Systems, and practical
techniques for expressing tiles. The examples are chosen tocover all techniques.
Moreover, we show how we can exploit the tool capability of completing partial
pictures.
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# # # # # #

# � − − � #

# | � � | #

# | � � | #

# | � � | #

# | � � | #

# � − − � #

# � − − � #

# | � � | #

# | � � | #

# � − − � #

# # # # # #

# # # # # #

# ր → → ց #

# ↑ ր ց ↓ #

# ↑ տ ւ ↓ #

# ↑ ր ց ↓ #

# ↑ տ ւ ↓ #

# տ ← ← ւ #

# ր → → ց #

# ↑ ր ց ↓ #

# ↑ տ ւ ↓ #

# տ ← ← ւ #

# # # # # #

# # # # # #

# ր ց ր ց #

# ↑ ↓ տ ւ #

# ↑ ↓ ր ց #

# տ ւ ↑ ↓ #

# ր ց տ ւ #

# տ ւ ր ց #

# ր ց ↑ ↓ #

# ↑ ↓ ↑ ↓ #

# ↑ ↓ ↑ ↓ #

# տ ւ տ ւ #

# # # # # #

Fig. 3. A picture of the Chinese boxes (no b.g.) language (left), its parsing output (center),
and a picture with the same size completely generated by the tool (right).

Example 3. Chinese boxes (no background)

Figure 3 presents a variant of the Chinese boxes introduced in Figure 2. In this vari-
ant, we drop background symbols. This means that we define a language consisting

of rectangles (also multiple ones) which either are� �

� �
or contain other rectangles.

To make the actual rectangles more visible, we use differentsymbols to mark their
upper, lower (−), left, and right (|) pixels, while we keep the� symbol for corners.

First, we introduce the tile set. It encodes the idea that theperimeter of a box corre-
sponds to a closed rectangular path: staring from e.g. the top-left corner, one may
either continue straight ahead (symbol→), or choose to make a down turn (symbol
ց). Then, it is possible to continue in that direction (↓), or to make a left turn (ւ).
And so on, going back to the top-left corner. This means that the path is a rectangle.
We use Technique 4 to define its tile set: the constraint is an OR of implications.

Θ =



















































































i j

k l
:

i ∈ {→,ր} ⇒ j ∈ {→,ց}

∨

j ∈ {↓,ց} ⇒ l ∈ {↓,ւ}

∨

l ∈ {←,ւ} ⇒ k ∈ {←,տ}

∨

k ∈ {↑,տ} ⇒ i ∈ {↑,ր}



















































































Next, we have the projection, where the symbols used to encode turns become black
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# # # # # # # # # #

# � � � ? ? ? � � #

# � � � ♦ ? � � � #

# � � ♦ � ♦ � � � #

# � ♦ � � � ♦ � ♦ #

# ♦ � ♦ � ♦ ? ♦ � #

# � � � ♦ � � � � #

# � � � � ♦ � � � #

# � � � ♦ � � � � #

# # # # # # # # # #

# # # # # # # # # #

# ⋆ ⋆ ⋆ ⋆ ♦ ♠ ♠ ♠ #

# ⋆ ⋆ ⋆ ♦ ♠ ♠ ♠ ♠ #

# ⋆ ⋆ ♦ ♣ ♦ ♠ ♠ ♠ #

# ⋆ ♦ ♣ ♣ ♣ ♦ ♠ ♦ #

# ♦ ♠ ♦ ♣ ♦ ⋆ ♦ ⋆ #

# ♠ ♠ ♠ ♦ ⋆ ⋆ ⋆ ⋆ #

# ♠ ♠ ♠ ♠ ♦ ⋆ ⋆ ⋆ #

# ♠ ♠ ♠ ♦ ⋆ ⋆ ⋆ ⋆ #

# # # # # # # # # #

Fig. 4. A picture of the Three colors language (left), and thecorresponding picture with the
tile alphabet (right).

squares, while oriented lines become simple lines.

π(x) = �, if x ∈ {ր,ց,տ,ւ};

π(x) = −, if x ∈ {→,←};

π(x) = |, if x ∈ {↑, ↓}.

Figure 3, left side, shows a picture, consisting of a top vertical box containing two
smaller boxes, and a bottom box containing a single smaller box. The picture is
correctly recognized, and the central part of the figure reports the output of the
tool.

To offer a simple example of picture generation, we used the tool by entering only
the picture size,(4, 10) in this case. The right part of Figure 3 contains the output
of the tool.

Example 4. Three colors map coloring

This example is a simple encoding of the well-known problem of map three-coloring.
As input, we give a monochromatic map in which states are regions filled with�

and bordered by♦ (see Figure 4, left). Such a picture is saidthree-colorableif
every state can be assigned a color from the setColors = {♠, ⋆,♣}, so that its
neighbors have different colors. If this is the case, then the tool should offer as
output a suitably colored map. We found the original versionof this example in
[14]. 6

To make the tile set simpler, we assume boundaries run at 45 degrees slopes (i.e. like
NE-SW, or NW-SE). Such boundaries are easily encodable as single tiles, without

6 It is worth to notice that [14]’s version contains some errors, which we easily detected
thanks to our tool. In fact, writing tile sets by hand is an error prone task. Using a tool such
as the one presented here is a great aid for a TS specifier.
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requiring a more complexΓ alphabet. The example in [14] uses3 × 3 tiles, but
our tool only offers2 × 2 tiles, coherently with [5]. Theoretically, it is possible to
translate3 × 3 tiles into2 × 2 tiles on a richerΓ alphabet, but this discussion is
outside the scope of the present paper.

Nonetheless, the tile set is quite large and it is easier to describe it as the comple-
ment of the union of three simpler tile sets:Θ = Θ1 ∪Θ2 ∪Θ3 (i.e. by Technique
3).

The first tile set describes the erroneous situation of having the same color across a
border (this uses Technique 1):

Θ1 =























































♦ ♠

♠ ♦
,
♦ ⋆

⋆ ♦
,
♦ ♣

♣ ♦
,

♠ ♦

♦ ♠
,
⋆ ♦

♦ ⋆

,
♣ ♦

♦ ♣























































The second tile set encodes straight N-S or E-W borders. The third tile set considers
the color used within a state. In both cases we are using Technique 4.

Θ2 =



















































































i j

k l
:

i = ♦ = j

∨

k = ♦ = l

∨

i = ♦ = k

∨

j = ♦ = l



















































































;
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Θ3 =



















































































i j

k l
:

i, j ∈ Colors ∧ i 6= j

∨

k, l ∈ Colors ∧ k 6= l

∨

i, k ∈ Colors ∧ i 6= k

∨

j, l ∈ Colors ∧ j 6= l



















































































Notice thatΘ is built upon the complement of the three auxiliary tile sets, hence
they are expressed in anegativeform (e.g.Θ2 accepts only straight N-S or E-W
borders).

The projection is quite simple: colors become black squares, while the bordering
symbol♦ remains the same:

π(c) = � for c ∈ Colors;

π(♦) = ♦.

It is worth mentioning that the actual tile set input to the tool is expressed almost
exactly as above, the only difference being purely syntactic (Scheme uses a full-
parenthesized prefix notation, and tile sets are implemented as lists).

Figure 4, left shows an example input picture. Some of the pixels are marked as
“don’t cares” (e.g. the one at position(2, 5)). “Don’t cares” stand for uncertainty
on the pixel values: for example this could represent a situation in which some of
the bits of the pixel encoding contain a checksum to check itscorrectness. In this
case, if we receive a pixel with a wrong checksum, we mark its content as “?”, since
we are not sure about it. Figure 4 (right) presents the resulting output of the parsing
tool: the input picture is correctly colored and completed (e.g. the pixel at position
(1, 5) is marked as a boundary).

Example 5. Contour lines on a topographic map

The last example is that of Contour lines. Consider a topographic map in which
only the contour lines are shown. The pixels belonging to a contour line are marked
as� symbols, while the other symbols are blanks (see Figure 5, left).

As tile symbols, we use the four arrowsր,ց,տ,ւ, and ideally we consider a
kind of “flux” entering and exiting at each corner of a given pixel. Intuitively, the
reader may think it like a water stream which follows the arrows, going in or out of
a given tile. For example, a pixel containing aց represents a flux coming from its
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# # # # # # # # # # # #

# #

# #

# � � � � #

# � � #

# � � � � #

# � � � � � � #

# � � � � � � #

# � � � � #

# � � � � #

# � � #

# #

# #

# # # # # # # # # # # #

# # # # # # # # # # # #

# #

# #

# ւ տ ւ տ #

# ւ ր #

# ւ ր ր ց #

# ց ր ց ր ր ւ #

# ր ց ր ւ տ ց #

# տ ւ ր ւ #

# տ ց ր ւ #

# տ ւ #

# #

# #

# # # # # # # # # # # #

Fig. 5. A picture of the Contour lines language (left), and the corresponding picture with
the tile alphabet (right).

upper-left corner and going to its lower-right corner.

The tile set considers each path as a flux, and takes care of thebalance between
the flux “entering” the center of a tile (i.e. the lower-rightcorner of its upper-left
pixel) and that “exiting” it. The first part of the union consider such balance: if a
flux enters the center of the tile, then it must leave it; if a flux leaves, then it must
be coming from somewhere. The second part of the union considers the cases in
which the entering fluxes are two (obviously they cannot be more than that), and
fluxes which avoid the central point (the last two tiles).

Θ =















































































































i j

k l
:

i =ց⇒

OnlyOne(j =ր, k =ւ, l =ց)

∨

i =տ⇒

OnlyOne(j =ւ, k =ր, l =տ)

∨

j =ւ⇒

OnlyOne(i =տ, k =ւ, l =ց)

∨ . . .












































































































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# # # # # # # # # # # #

# ւ տ ւ տ ւ տ ւ տ #

# ւ ր ւ ւ տ ւ տ ր #

# ց ր ւ ւ ւ տ ւ տ տ տ #

# ւ ւ ւ ր ց ր ր ր #

# ց ց ց տ ւ տ տ տ #

# ւ ց ց ր ր ր #

# ւ ր ց ց ց ր տ տ #

# ց տ ւ ւ ր ց ր ր #

# ւ ց ր ր ց տ #

# ց ր ց ր ց ր ց ր #

# # # # # # # # # # # #

Fig. 6. A generated tile alphabet picture of the Contour lines language.
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The tile set is defined through a combination of Techniques 1,3, and 4.

The projection is the usual, mapping arrows to back squares and leaving blanks
alone.

π(x) = �, if x ∈ {ր,ց,տ,ւ};

π(�) = �.

An example picture is presented in Figure 5, left. The tools recognizes it and its
output, given as non-intersecting fluxes, is presented on the right side.

Last, Figure 6 shows the output of the generation of a10× 10 picture.

4.3 Experimental results and performance

In this section we consider the current implementation of the prototype tool, its
performance, and how to improve it.

The main steps the tool performs are the following:
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(1) Formula generation:the tool reads its input and generates the correspond-
ing propositional formulaF = F1 ∧ F2 as presented in Section 3. As far as
computation complexity is concerned, the execution time ofthis step (and the
resulting formula size) is linear with respect to the input picture size (i.e. the
number of its pixels).

(2) CNF translation:F is then translated into conjunctive normal form using an
external simplification tool (SAT2CNF, part of the Alloy Analyzer7 ). Its out-
put is a CNF-DIMACS formulaF ′. Time complexity: polynomial with respect
to the input picture size.8

(3) SAT-solver:the SAT-solver MiniSat [16] is called on inputF ′. The output of
the SAT-solver is then read by the Back-parsing module to produce the output
picture. Time complexity: NP-complete.

The second step is provisional in the prototype and not really necessary, being
the encoding for Tiling Systems always the same. This means that we could write
formulas equivalent toF1 andF2 as presented in Section 3, directly in conjunctive
normal form. We have opted for ease of implementation, and left this optimization
for future consideration.

The three steps communicate by using text files (in DIMACS format) that can be
quite large. This impact especially on the speed of steps 1 and 2.

The chosen implementation language, Scheme, is not very fast. Scheme is good
for rapid prototyping, but we would obtain better performance for the first step by
using a lower-level language, such as C.

Surprisingly, in spite of the above limitations, the overall performance of the tool
is acceptable, and allowed us to experiment with reasonablysized pictures. First,
we report in Figure 7 a table with the execution time of the tool on the examples
presented in this paper.9

Notice that the dispensable CNF translation step is quite expensive, while the SAT-
solver step, despite theoretically being the most expensive, is in many cases the
least.

Moreover, notice that the case of Figure 3 is dominant, despite the input picture
being quite small, compared to the others. The main reason ofthis behavior is the
expression of the tile set. In fact, the implemented tile sets appears simple, and
works correctly, but is much bigger than needed. In particular, the formulas used
to constraint the content of the tile set consider only two pixels of a given tile, and
leave unspecified the other two. For this reason, this tile set contains a big number

7 http://alloy.mit.edu
8 We do not know the details of algorithm used by SAT2CNF.
9 We ran the experiments on a PC equipped with AMD Athlon 64 X2 4600+, 2 Gb RAM,
Linux OS; SAT-solver: Minisat, v. 2.0 beta.
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Execution time (s)

Input picture Formula generation CNF translation SAT-solver

Figure 2, left 0.78 0.86 0.11

Figure 3, left 4.67 3.62 7.70

Figure 4, left 0.60 0.39 0.18

Figure 5, left 1.40 1.51 0.36

Figure 6 1.40 1.24 2.10

Fig. 7. Parsing times of the example pictures.

Fig. 8. Parsing times of square pictures, TS of Figure 2

of tiles (2866), many of which unproductive, such as← ←
↓ ↓

. An equivalent, but more

compact and efficient for the tool, tile set could be written by using a more complex
set expression in which only the usable tiles are taken into account.

Next, we report the use of the tiling systems of Figures 2 and 4to recognize bigger
square pictures having sizes from50× 50 to 120× 120. All the input pictures con-
sidered are homogeneously made of a single symbol (i.e.� for Figure 2 and� for
Figure 4). The measurements are reported in Figures 8 and 9, respectively. Figure
10 summarizes the memory consumption of the SAT-solver. As before, they are
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Fig. 9. Parsing times of square pictures, TS of Figure 4

SAT-solver: memory occupation (Mb)

n. of pixels TS of Figure 2 TS of Figure 4

2500 29.9 38.0

3600 43.0 53.5

4900 59.8 74.2

6400 77.0 97.4

8100 95.2 122.1

10000 125.3 154.3

12100 142.0 182.2

14400 172.2 218.3

Fig. 10. Memory consumption of the SAT-solver

quite encouraging, as the most expensive step is the dispensable CNF-translation.
The SAT-solving step for the120×120 picture is in both cases less than 20 seconds.

To conclude, experimental evidence is that the step that in principle should be dom-
inant, SAT-solver is in reality almost negligible, with respect to the other two steps.
In future developments, one of them, CNF translation can be entirely suppressed,
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while the other, Formula generation, which has linear-timecomplexity, has much
opportunity for optimization. This step is also easily parallelizable: different pro-
cessors could be allocated to the generation of sub-formulas corresponding to dif-
ferent parts of the input picture. Of course experiments on larger and more complex
pictures will be needed.

5 Conclusions

In our opinion this work offers two interesting contributions to research on syntactic
pattern recognition.

First we gave evidence that Tiling Systems can be used in practice to specify
non-trivial classes of pictures. We argued that different notations and combination
thereof are convenient for defining the tiles to be used.

Second, we showed how to encode the pattern recognition or picture parsing prob-
lem as a SAT solving one, and designed a practical tool10 , capitalizing on the
mature algorithmic know-how of off-the-shelf SAT solvers.

An attractive, unusual feature of our pattern recognizer isthe ability to generate a
picture or to complete a partial one. This can be exploited for interpolation, or to
perform error corrections on missing pixels. At the extreme, this ability allows the
user to generate pictures of prescribed size, in order to test the correctness of the
pattern family definition.

We intend to experiment with the tool for picture interpolation or inpainting. More-
over, we envision the possibility of using the tool to recognize pictures in which
pixels or block of pixels are encoded together with checksumbits. In this case, the
tool could be used to recognize a picture that contain transmission errors: wrong
checksums are treated as “don’t cares”.

As far as tool developments, we intend to improve the performance of our tool, as
explained before, in order to process larger pictures and more complex patterns.
Moreover comparative experiments using other existing SAT-solvers may reveal
better heuristics for tiling problems.

Finally we hope that by making it practical to experiment with syntactic definitions
based on tiling systems, the validity of this approach will be assessed, possibly in
combination with methods based on other approaches, such asgrammars or statis-
tics.

10 Available from the first author.
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