A SAT-based parser and completer for pictures
specified by tiling!

Matteo Pradell&™ Stefano Crespi Reghizzp

ACNR IEIT-MI, Via Ponzio 34/5, 20133 Milano, Italy
bpolitecnico di Milano, P.zza L. da Vinci, 32, 20133 Milantaly

Abstract

Pictures or patterns have been formally specified by difteneethods such as grammars.
An alternative approach is based on Tiling Systems (TS)r@ldyethe picture is obtained
by first covering it with a specified set of two by two tiles, thigy performing a pixel by
pixel mapping. TS are a powerful technique: the correspangictures can be recognized
by non-deterministic cellular automata, which orderlyrstiae diagonals, and are more
powerful then the four ways automata. The difficulty to wstech specifications for non
elementary pictures, and the NP-complete computatiormaptexity of TS picture recog-
nition have so far blocked any attempt to application. Weehiawlemented a recognizer
and generator for TS pictures in a very attractive, uncoteal way, by transforming the
tiling problem into a SAT one, then using an efficient off-steelf SAT-solver. The proto-
type is fast enough to experiment on reasonably sized sapgid has the bonus of being
able to complete or extrapolate a partial or noisy pictutee ol is invaluable to assist in
writing picture specification. A series of examples shows tmspecify patterns using TS.

Key words: Syntactic pattern recognition, Picture languages, Tweedisional grammars
and languages, Picture/Image Generation and Interpo)e®iAT-solvers

1 Introduction

Syntactic methods (see for instance [1],[2]) have beemattnsidered for per-
forming pattern analysis and recognition, by formally sfy&g the class of pic-
tures of interest. Pictures or patterns can be specifiedffgreit methods, such as

* Corresponding author. Tel.: +39 0223993495; fax: +39 09339%1.
Email addressespr adel | a@l et . polim . it (Matteo Pradella),
crespi @l et.polim.it (Stefano Crespi Reghizzi).
1 Work partially supported by MUR, Progetto “Automi e LinguagFormali: aspetti
matematici e applicativi.”

Preprint submitted to Pattern Recognition 20 March 2007

grammars or automata. A sample of approaches can be fous§l in¢luding for
instance [4], where isometric array grammars are congideresfficient syntactic
pattern recognition and picture generation. An altereatireoretically sound, yet
practically unexplored, approach is to use tiling: in thedast form a specified set
of small, say two by two, tiles is listed, which can cover theended class of pic-
tures. A picture is recognized if, and only if, it can be c@cwith tiles from the
listed set. To overcome the limitations of such rudimentaeghod, a more flexible
formalism, calledTiling SystemgTS) has been studied by theoreticians (see e.g.
[5], [6], [7]). Wang Tiled8] are an equivalent variant of the formalism, which uses
a more traditional concept of tiling where tiles are placekte oy side. A recent
variant of TS/Wang Tiles is presented in [9].

Our work is concerned with a practical experimentation ofif &njunction with a
new approach for performing pattern recognition and imagesgation or comple-
tion, based on powerful logical tools, the SAT-solvers, sdtask is to find Boolean
values which make a propositional formula true.

With TS the picture is obtained by first covering it with tildeawn from a listed
set of two by two tiles, then by performing a pixel by pixel rpam. Tiling Sys-
tems are a powerful technique: the corresponding pictusesbe recognized by
non-deterministic cellular automata, which orderly sdaa diagonals [10]. Such
abstract machines are more powerful then the four ways attoof [11]. How-
ever TS definitions are hard to write and error-prone for nementary pictures.
Moreover the NP-complete computational complexity of ynetrecognition has
until now blocked any attempt to realistic experimentatma application of TS,
in spite of a large amount of theoretical work.

We have implemented a recognizer/generator for TS defingdrps in a very at-
tractive, unconventional way, by transforming the tilingplplem into a Boolean
satisfiability one, then using an efficient off-the-shelfTSgolver. The prototype is
fast enough to experiment on reasonably sized samples,amnthé bonus of be-
ing able to complete a partial picture, by assigning to umkmpixels some values
which satisfy the picture specification.

The tool is invaluable to assist in writing picture specifica. Several examples
are provided, such as the set of geographical maps whichecaolbred with three
colors, and various classes of nested patterns and codngaties. The tool can
be also applied to image reconstruction or noise elimimatxy parsing a picture
where some pixels are tagged as unknown. Availability oftdas should ease
experimentation of tiling based methods for classificatind recognition of certain
types of pictures, in isolation or combined with more cortaiked methods.

The presentation is organized as follows. Section 2 brigfgents formal picture
languages and Tiling Systems. Section 3 describes how wdenibe TS picture
recognition problem into the SAT problem. Section 4 presargallery of patterns

and sketches a methodology for their specification by TSepbrts experiments
with the tool and performances. Section 5 mentions futwsearch and concludes.

2 Picture Languages and Tiling Systems

We provide a gentle introduction to Tiling Systems. The egatiay consult [5]
for more detailed and formal definitions. Picture languagas be viewed as a
generalization of textual languages from one to two dinmrsi

The set of pixel values is named tterminal alphabebdf the picture, denoted.
For example we may choo&e= {0, 1} to define black and white pictures, but we
allow alphabets of any finite cardinality.

A picturep is a two-dimensional rectangular array of elements of thaiteal al-
phabet. Thaize|p| of a picturep is specified by the pailip|,ow, |P|c0r) Of its number
of rows and columns. Aixelp(i, j), 1 < i < |Plrow, 1 < J < |P|ears IS the element
at position(i, 7) in the arrayp. Conventionally the indices grow from top to bottom
for the rows and from left to right for the columns:

p(1,1) ... p(1,|plea)

p(|p|row7 1) cee p(|p|row7 |p|col)

A picture languagés a (usually infinite or at least very large) set of picturesrdhe
given alphabet. It is useful to introduce the notatior for the set of all possible
picture of any size, over the same alphabet

For convenience we usually consider tieedered versiomf picturep, obtained by
surrounding the picture with the spedmundary symboj, which is assumed not
to be in the alphabet:

#
p(171) p(lu‘p|col)

p([plrows 1) -+ p(Plrow, [Pleot)
#

1010 11010 101(10
0101 0101 01]01

Fig. 1. The tiles (i.e2 x 2 subpictures) of & x 4 picture.

We often need to refer to some parts of a picturesubipictureat position(z, j) of
a picturep is any rectangular array of pixels, containeghiand having the symbol
p(i, j) atits leftmost, topmost corner. From this we obtain the d&imof a tile.

Consider a picture. The set ofiles of p, denotedB, »(p), is defined by:
By 5(p) = {q : q is a subpicture op of size(2,2)}.
An illustration is in Figure 1.

By listing the permitted tiles, one can specify a simple fgraf picture languages,
the so called family ofocal languagesFor instance, with the alphabgt, 1}, the

tile set
01l |10
@1:)
{10 01}

defines the language, denoted

L, = LOC(6))

of rectangular checker boards, of any height and width.

. . 1010, R . : -
For instance, the picture is valid, since it can be tiled as shown in Figure

0101

1.

It is important to stress that it is not requested that aletistiles be present in a
picture. For example the tile set

01} (10] |00
@2:) ;
10 {01 |00

Ly = LOC(6,)

defines the language

made by the union of two disjoint sets: the previous languagef checkerboards
and the language of arrays with all pixels set to 0. Cleargratexists no picture
making use of all three tiles.

The use of the bordered version of pictures, instead of waes, improves selec-
tivity, by allowing specification of the tiles occurring onet borders. To illustrate,
the language of square pictures having all pixels on the whiagonal set to 1, and
all the remaining pixels set to 0, is defined by the followiig $et:

10 [00] [00] |01
0 = , U

01| 10/ ool oo

#* A || |F A |OF
1] |0 0] |0 #] |0#

1# [0o0] |#0]| |#0
#H#| |HAH| | HFH| H#O

where the first line lists the inner tiles and the second osts the border tiles,
as they are found scanning a bordered picture clockwisgjngtgrom (1,1). In
the following we always refer to bordered pictures. Later wge more concise
descriptions of tile sets, by prototypes and predicates.

As the range of patterns, which can be characterized by #sepce or absence of
certain tiles, is rather poor, a more refined form of pictyvecification by tiling
has been proposed by [12] (see also [5]) under the name oigT8ystems. The
ideais to use a larger alphabet for the tiles, in order toinltetter control on how
they fit together. The tile alphabet is then mapped onto tmeital alphabet of the
pictures?

A pixel by pixel operation, callegdrojection is used to map pixels from an alphabet
to another one. Let : I' — ¥ be a mapping from an alphabeto an alphabek.

An example is the transformation from colored to black andtevpixels defined
by the mappingr:

2 Actually, there is a deep analogy with the basic result obmatta theory stating that
any finite-state language can be obtained from a local lajgyua. a language defined by
domino tiles, by a change of alphabet.

I PIN
green
blue—— black
re
yellowm————=white
white

The projectionr(p) of a picturep of alphabef is a picturep’ of alphabet such
that the two pictures have the same size and, for each paaradsponding pixels,
it holds

p'(i,5) = =(p(i, 5)).
In the example the projection converts “dark” pixels to klaand “light” pixels to
white.

Definition 1. [5] A tiling system(TS) 7" consists of

(1) aterminal alphabet;

(2) atile alphabet;

(3) asetoO of tiles of alphabet;
(4) aprojectionr : I' — .

The picture languagé(7’) defined by a tiling systerft is
L(T) =rn(LOC(O)).

Recall thatLOC(©) is the local language defined by the tile set (using border
symbols).

To illustrate we show the TS of a picture language which islacal, that is it
cannot be defined using tiles over the terminal alphabes i serve as a running
example for later sections.

Example 1. Chinese boxes on a background

A picture represent rectangular frames or boxes, placew/zene in the plane.
Frames may be nested one inside the other but they may ndapyesuch each
other, or touch the border. The perimeter pixels of a franeeesmcoded byl and
the background by blank pixels (denoteql so that the terminal alphabets =
{l,O}. An example picture is shown in Figure 2, left.

Since in such pictures almost any combination of terminaingints may occur as
a tile, a definition based on terminal tiles would be too psgeine.

HHFHBHAFFHFAFHF|NFHHFHHFAFAFHFHHHRH
#||#
EEEEEER #||# P Y
A u #||# T !
N u #||# T 1
@ HEER NH #||# 1 S =N 1
@ ®H B BN #||# T T ! 1
@ ® 1 B #||# T T ! 1
@ ®HEER ©® #|# 1 AR 1
A u #||# T !
EEEEEER #||# N = — — «— «—)/
#||#
EEEEENER H#||# e
u B |# T 1
u B || # T !
HE EEE By # T S =N\ L
E B B B T T ! !
HE B B B O # T T ! 1
E EERE B % \# T NS I
u B |# T 1
EEEEEREE #||# N = — «—«—«—J/
#||#
HHAHHHFHHFAFH|FHHHFHFHAFHFHHFHFH

Fig. 2. A picture of the Chinese box’s language (left), arel ¢brresponding picture with
the tile alphabet (right).

For example, a subpicture containing the forbidden paﬁt.e:n. could be tiled.

The remedy is to use a larger tile alphabet, in order to avoidusion between
pixels of two adjacent frames. We use the tile alphabet:

F:{/‘7_>7\47~L7/7<_7\7T7D}

The perimeter of a frame is thus encoded by clockwise turarngws, as shown in
the right part of Figure 2.

Instead of listing the rather large tile set, it saves eftortl earns readability to
specify it by prototypes, that is by exhibiting one (or mop&tures of alphabet
I, such that all and only the permitted tiles are present. Quoh picture is the
following:

AT HF A

#

SN\
o_p,|[* ! L#
#01 L#
#
#
#

AR

#* A A A A A

The projectionr simply maps any arrow onto a black square, and a blank onto a
blank. Applying the projection to the right part of Figuredhe obtains the initial
picture.

Notice that the choice of the tile alphabet is not obvious smie guidelines and
practical criteria are needed for picture specification By T

3 Picture Recognition as SAT problem

Syntactic pattern recognition is another name for the wak$ormal language
problem ofsyntax analysigor parsing. For Tiling Systems, this corresponds to
the following question: given a TE and a picture, if p € £(T"), then how doe§’
generate? Quite naturally, having an efficient tool to solve this geob for Tiling
Systems would be a first and necessary step to use such fenmalpractice: one
could define a picture language by means of a TS, and then cseldhe pars-
ing algorithm torecognizea given input picture and its structure. Notice that the
“syntactical structure” of picture is essentially representable as a picty@ver
the tile alphabet’, such that the projection(q) equalsp. In fact, asl" is a richer
alphabet tharx, its patterns display a structure, which is to some exteagezt by
projectionz. To put it differently, the same pixel in different posit®may have
different “meanings”.

Unfortunately, we know from the theory that the problem afsoag Tiling Systems
is NP-complete (see [13] and [14), because some typical and well-known NP-
complete problems are easily translated into a TS parsioigjgm.

On the other hand, a number of useful problems, though NRst=ien(or worse),

3 In that paper Tiling Systems are calledmomorphisms of Local Lattice Languages

are tackled in practice, for example some classical vetifingoroblems such as
Model Checkind15]. Here we focus on thBoolean Satisfiability ProbleSAT
for short), one of the best known NP-complete problems. Ataimce of the prob-
lem is a propositional logic formula (i.e. a Boolean expi@s®n a set of proposi-
tional variables), and the question is: given the formwddhere some assignment
of true andfalsevalues to the variables that will make it true? CNF-SAT isase¢l
sical variant of the problem, in which the formula is@Qonjunctive Normal Form
(CNF), i.e. an AND of clauses, where a clause is an OR of simphegated propo-
sitional variables. In recent years, the availability oftgueffective tools to solve
the CNF-SAT (e.g. the recent MiniSat [16]), based on the sahiDavis-Putnam-
Logemann-Loveland (DPLL) algorithm [17], spurred the ti@waof many verifi-
cation tools, among which we cite the bounded model cheakimgponent of the
NuSMYV verifier [18].

Familiarity with SAT-solving tools gave us the idea to enedlde TS parsing prob-
lem into SAT.

3.1 The Encoding

Consider a Tiling Systerfi’ = (X,I",©, 7). Essentially, given an input picture
p € X%, l.e. a picture made of symbols taken frainthe parsing problem consists
in finding a picture; € I'**, having the same size assuch that:

(1) its projection coincides with, i.e.7(q) = p;
(2) itstiling is compatible witlD, i.e. By »(¢) C ©.

If both conditions are true, then, and only thenc £(7'). Notice thatg is not
necessarily unique.

Notice that this is an instance of typical inverse mathecahproblems, which are
often computationally challenging.

Now, to encode the problem into SAT, we represent the pixetbepictureq as
SAT’s propositional variables. In practice, this meang tha statemenj(i, j) = a
(i.e. pixel(i, j) of ¢ contains the symbal), becomes a propositional variable of the
SAT problem.

As an example, consider the Chinese boxes picture repsezsenthe left part of
Figure 2. If inp at position (2,2) there is a symbl, then necessarily the corre-
sponding pixel ing (i.e. before the projection) must be an arrow (but we do not
know which one). Once the encoding is complete, we may aslSA&lesolver to
“guess” such picture. If the SAT-solver succeeds, then the pictpris accepted
(andgq is returned); elsewise, ¢ L(T).

To fully exploit the SAT encoding, we also accept partialubpictures. This means
that some op’s pixels may be left unspecified (conventionally marked Bgaen’t
care” symbol ‘?’). With a slight abuse of notation, we sayt tha inverse projection
of a “don’t care” symbolirpisT, i.e.7=1(?) = I'. Informally, this means that we
do not know anything about that pixel, so any symbol of thediphabet could be
in ¢ at that position.

The encoding consists of expressing the afore mentionediG@ams 1) and 2), as
propositional logic formulas.

Condition 1) states thatmust be “compatible” withp, i.e. such thatr(q) = p: *

Vaer—1(p(i.5)) 400, 7) = a
F1 = /\ /\

(i,j)E[(l,l)'-Ip” Onlyone(q(l,]) — a/)
a’el

I} depends only op and on the projection. The first AND is used to span the
whole picture, while the inngdnlyOne operator is used to check that one and only
one value taken from the alphaliéts assigned tq at a given position.

Condition 2) considers the tile sét to acceptp, every tile used iy must be a
member ofo.

qi+h,j+k)

n= AV A -

(LA)El(LD).Ipl] €0 hkel0,1]
th+1,k+1)

As in the previous formula, the first AND spans the whole pietd’hen, the inner
OR states that one of the tileséhmust be present at a given position.

The TS-recognition problem is then encoded as the propasitiormulary A Fs.

Example 2. Consider Figure 2, left side. For brevity, we consider jusirell part,
the one corresponding to the subpicture at positior) having sizg2, 3), as

4 For conciseness, we introduce thelyOne Boolean function, with any number of ar-
guments. InformallyOnlyOne is true if, and only if, exactly one of its arguments is true.
E.9.OnlyOne (A, B,C) <= (AA-BA-C)V(mAANBA-C)V(-mAN-BAC).

10

shown next;

The resultingF; formula, limited to the pixels of the previous subpictuse, i

S Aq(2,1) =0A
=,/Vq(2,2) =—V
—\Va(2,2) =TV

=/Vq(2,2) =V

q(2,2)
q(2,2)
q(2,2)

q(2,

OnlyOne

2)

q(2,

q(2,
q(2,
q(2,

=N\ Vq(2,2)

=l

2)
2)
2)
2)

=\ ¢(2,2)
:/7 q(27 2) =,
:\aq(2>

=/, Q(27 2) =
=1,

2) =l,

q(2,2) =0

q(2,3) =,/ Vvq(2,3) =
Va(2,3) =\, Vq(2,3) =T Vv
q(2,3) =/ Vq(2,3) ==V

q(2,3) \Vq(3) =l
q(2,3) =/,4q(2,3) =
q(2,):\7Q(,3) =T,
OnlyOne | ¢(2,3) =, ¢(2,3) =<,
q(2,3) =\, 4(2,3) =,

q(2,2) =

q(3,1) =
q(3,2) =, Vvq(3,2) =
Vq(3,2) =\, Vg(3,2) =T Vv
q(3,2) =/ Vq(3,2) =V
q(3,2) =\ Vvq(3,2) =|

11

q(3’ 2) =/, q(3, 2) =
Q<37 2) =\ Q<37 2) =T,

OnlyOne | ¢(3,2) =, ¢(3,2) =—,

Q(Sv 2) =\ Q(sv 2) =],
q(2,2) =0
q(3,3)=0A...

In the input picture at positio(2, 1) there is a blank, and(0) = 0O, therefore
q(2,1) must be a blank. At positio2, 2) there is a1, soq(2, 2) can be any of the
arrows. The other pixels are analogously translated.

Next consider thé, corresponding to the previous subpicture. For brevity we re
strict consideration to just a few of the tiles@) namely:

S =S

T

X
1=

We obtain the formuld:

a(2,1) =/ Nq(2,2) =— A
q(3,1) =T Nq(3,2) = DO
%
¢(2.1) =0Aq(2,2) =/ A
q(3,1) =0Aq(3,2) =1
%

q(2,1) =0AN¢q(2,2) = 0OA
q(3,1) =/ Nq(3,2) =—
%

q(2,1) =0ANq(2,2) =T A
q(3,1) =0Aq(3,2) =1
V...

A

12

(1)

0(2,2) =/ Nq(2,3) =— A
q(3,2) =1 Nq(3,3) = DO
V
0(2,2) =0ANq(2,3)=/A
q(3,2) =0 Aq(3,3) =7
Y A 2)
q(2,2) =0ANq(2,3) = OA
q(3,2) =/ Nq(3,3) =—
V
q(2,2) =0 Aq(2,3) =T A
q(3,2) =0 Aq(3,3) =1
V...

Subformula 1 considers a tile placed at positignl), so the examined pixels are
those at position&, 1), (2, 2), (3, 1), (3, 2). The first row of the formula represents
the first tile, the second row of the formula represents tlerse tile, and so on.
Analogously, Subformula 2 considers tiles placed at pmsit2, 2).

3.2 The Tool

The TS parsing tool accepts as its input a file containing a gegication’,

and a picturep (or just its size). As output, the tool offers a picture sulchttits
projection coincides withy, if p is in the language df’, nothing otherwise. When
the user provides just the picture size, the tool returnsctu@ having the same
size and such that its projection belongs to the languadé(tifis modality is also
calledpicture generatioh This is analogous of parsing a rectangle entirely made
of “don’t care” symbols, and is a useful test to see if the Ti®jleage contains any
picture having a fixed size.

Internally, the tool is composed of@@ore module, and a couple of utility modules:
Input, andBack-parser

The Core module accepts as input the TS description (i.etiltheet©, and the
projectionr, both expressed as lists), and the pictute be parsed. As anticipated,
the input picture may be completely defined, or contain “tdoare” symbols. As
output, the core module produces the formfalaA F; presented in the previous

13

section, iINCNF-DIMACSformat® .

The Input module provides convenient utilities to define siéts, such as usual set
operations (union, intersection, complement, differgnaed theB, » operation to
extract tiles from a given prototype.

After formula generation, the TS parsing tool calls the Salver, which supplies
as output either UNSAT (i.e. the formula contains a conttaain, hence is not in
the language of the given TS), or a suitable assignment foogitional variables.
Next the Back-parsing module is called after the SAT-sdlog@arse the assignment
to propositional variables, in order to obtain a pictyreuch thatr(q) = p. The
Back-parsing module finally generaigas aATpX table.

The tool is written in the Scheme programming language. Th@ce makes it
possible for the experimenter to use the logical constroic&heme to create tile
sets in a compact and easy way. We defer to the next sectiahigtiession on tile
sets definition.

4 Experiences
4.1 Practical tile specification

Next we present a short gallery of TS definitions of interegpicture languages.
As we proceed we state and illustrate the following techesgior specifying tile
sets.

(1) Explicit: the first and most simple technique is the one used in [5], ichuile
sets are exhaustively listed. Usually, this technique dsfimnimaltile sets,
i.e. sets containing all the needed tiles, and only themnm#épr shortcoming
resides in its error proneness: an explicit tile set is harcead by humans,
because of its very size. It is easy to write a wrong tile imitt hard to spot
it. Moreover, modifications of the sets are for the same mreasod.

(2) By prototype:a natural way of expressing tile sets is by using a prototype
picture. In this case, we automatically derive the tile ggtlying the B, ,
operator to the prototype. It is used for instance to defieeGhinese boxes
TS (Figure 2). This technique represents tile sets in a \eagable and easily
modifiable way. Its main shortcoming is that for complexAgiSystems is not

> CNF-DIMACS is ade factostandard input format for SAT-solvers, and was defined
by the Center for Discrete Mathematics and Theoretical Computer®e a collabora-
tive project of Rutgers University, Princeton Universiff &T Labs, Bell Labs, Telcordia
Technologies, and NEC Labs.

14

trivial (and sometimes not possible at all) to find one smedineple picture
containing all the needed tiles.

(3) Set operationsbeing tile sets actual sets, it is straightforward to usemni
intersection, and complement on them. For instance, p&pessgs this tech-
nique together with exhaustive listing. Others [14] speaiiost examplegx
negativo they start from a small explicit tile set and consider a#l thes of
the same alphabet which anetin the given set. Sometimes the needed tile
set is so large that is more convenient to build it by givindpidden tiles. As
far as shortcomings are concerned, tile sets defined thrbigtechnique are
sometimes non-minimal, because contanproductivetiles. These are tiles
that cannot be used with the others. For instance, considentample of Fig-

ure 2. If we add the tili I to the tile set, its language is unchanged, because

this tile is unproductive.

Though not a major shortcoming, the presence of unprodudiies im-
pacts on the performance of the parser. Indeed, our tool constider all the
given tiles, hence the resulting propositional formulaagyér than needed.
Moreover, it may happen that the tiles intended as unprogutirn out the
other way, causing subtle changes to the intended pictwretd@l| helps to
reveal this kind of errors. Generating random pictures eflimguage works
as a test bench and can spot unwanted tiles.

(4) Logic expressionsanother classical way of expressing sets is by using logic
expressions to implicitly constrain their content (e.g ¥ell known notation
{z € N: 3y € N(z = 2y)} defines the set of all even natural numbers). The
same technique can be used for tile sets: logic constraamsoredicate on
relationship between pixels used in the tiles. This apgroawery compact
and expressive, but usually defines non-minimal tile setsHortcomings are
the same as the previous case.

Our tool supports all four techniques. In practice, the feahniques are often
combined together: sometimes it is convenient to start feoprototype picture,
and then to add further tiles by union with the tiles comingniranother kind of
expression, e.g. logic or explicit. We show some such coatlins in the next
examples.

4.2 Examples

In this section we present some example of tool usage, besaeighink they il-
lustrate both what kind of languages are definable by Tiligst&ns, and practical
techniques for expressing tiles. The examples are choseover all techniques.
Moreover, we show how we can exploit the tool capability ofmgpbeting partial
pictures.

15

o W W FH W FHHFHE KK

#HHH#HHH
/== N
1 /N1
1N L
1 /N1
1N L
#N -« #
/== N
1 /N1
1N L
#N - #
#HHHHH

#HHHFHAH
#N SN #
1T LN
1 L /N H#
#N T L #
/NN
#N SN H#
#N T L #
#1 L1 1 #
#1 L1 1 #
#N NS #
#HAHHFHAH

Fig. 3. A picture of the Chinese boxes (no b.g.) languagé)(l&$ parsing output (center),
and a picture with the same size completely generated bythéright).

Example 3. Chinese boxes (no background)

Figure 3 presents a variant of the Chinese boxes introdudeidjure 2. In this vari-
ant, we drop background symbols. This means that we defimeyadae consisting

of rectangles (also multiple ones) which either grg or contain other rectangles.

To make the actual rectangles more visible, we use diffesmbols to mark their
upper, lower £), left, and right () pixels, while we keep thll symbol for corners.

First, we introduce the tile set. It encodes the idea thapéneneter of a box corre-
sponds to a closed rectangular path: staring from e.g. fhefocorner, one may
either continue straight ahead (symbe), or choose to make a down turn (symbol
\)- Then, it is possible to continue in that directigy), (or to make a left turnf’).
And so on, going back to the top-left corner. This means ti@ptath is a rectangle.
We use Technique 4 to define its tile set: the constraint isRmfmplications.

ie{=/t=ie{=\}
%

— Je{N\t=1le{l./}
(]
0= : V
kl
le{—,/}=ke{=}
vV
ke{l,\}=i€e{Tl,}

Next, we have the projection, where the symbols used to encwds become black

16

T A T "
AEEE? 2?2 BE# (£ XAk hk*O b bMH
AEEEO? BEE# (# XAk KO MDMME
ARBOBMOMEEZ (XX 0O SO MMME
AROBEROBMO# [# KO ddOMNOH
#OMOMO? CMAE O MO SO K*O K#
AEEROBEEE# [#60000%K%kKk*#
#AAEREBEROEBEEH (0O kK k#
AEEEOBREEE# (#0000 %K%kKk*#
I o

Fig. 4. A picture of the Three colors language (left), anddbeesponding picture with the
tile alphabet (right).

squares, while oriented lines become simple lines.
m(x) =W itz e {7, NN T

m(x) =—,ifzx e {—,};

Jifx e {1,1}.

Figure 3, left side, shows a picture, consisting of a topigarbox containing two
smaller boxes, and a bottom box containing a single smatigr Bhe picture is
correctly recognized, and the central part of the figure mspine output of the
tool.

m(z) =

To offer a simple example of picture generation, we useddbElty entering only
the picture size(4, 10) in this case. The right part of Figure 3 contains the output
of the tool.

Example 4. Three colors map coloring

This example is a simple encoding of the well-known problémap three-coloring
As input, we give a monochromatic map in which states areoregfilled withll
and bordered by) (see Figure 4, left). Such a picture is s#idee-colorableif
every state can be assigned a color from theCedbrs = {#, %, &}, so that its
neighbors have different colors. If this is the case, thenttol should offer as
output a suitably colored map. We found the original vergbihis example in
[14].6

To make the tile set simpler, we assume boundaries run atgtBeeslopes (i.e. like
NE-SW, or NW-SE). Such boundaries are easily encodablengtediles, without

6 1t is worth to notice that [14]'s version contains some esravhich we easily detected
thanks to our tool. In fact, writing tile sets by hand is aroeprone task. Using a tool such
as the one presented here is a great aid for a TS specifier.

17

requiring a more complek' alphabet. The example in [14] usgsx 3 tiles, but
our tool only offers2 x 2 tiles, coherently with [5]. Theoretically, it is possible t
translate3 x 3 tiles into2 x 2 tiles on a richerl” alphabet, but this discussion is
outside the scope of the present paper.

Nonetheless, the tile set is quite large and it is easier sordee it as the comple-
ment of the union of three simpler tile se&:= 6, U ©, U O5 (i.e. by Technique
3).

The first tile set describes the erroneous situation of lgatria same color across a
border (this uses Technique 1):

O MO %[0 &
AO |k Ol |d O

©,

Ao % ol o
O a0 %[0 &

The second tile set encodes straight N-S or E-W borders hittttile set considers
the color used within a state. In both cases we are using T@ohd.

i=0=j
\%
— k=<=1
)
Oy = : V 3
k1
1==kK
\%
j=0=1

i,j € Colors A i # j
V

k,l € Colors A k # 1
V

i,k € Colors N i # k
V

i

O3 :
kl

j,1 € Colors A\ j #1

Notice that© is built upon the complement of the three auxiliary tile séence
they are expressed inregativeform (e.g.©, accepts only straight N-S or E-W
borders).

The projection is quite simple: colors become black squaregde the bordering
symbol<) remains the same:

7(c) = B for ¢ € Colors;

() = <.

It is worth mentioning that the actual tile set input to theltis expressed almost
exactly as above, the only difference being purely syntg@cheme uses a full-
parenthesized prefix notation, and tile sets are implerdeagdists).

Figure 4, left shows an example input picture. Some of thelpiare marked as
“don’t cares” (e.g. the one at positidf, 5)). “Don’t cares” stand for uncertainty
on the pixel values: for example this could represent a s@nan which some of

the bits of the pixel encoding contain a checksum to chec&ateectness. In this
case, if we receive a pixel with a wrong checksum, we marloitgent as “?”, since
we are not sure about it. Figure 4 (right) presents the rieguttutput of the parsing
tool: the input picture is correctly colored and completed(the pixel at position
(1,5) is marked as a boundary).

Example 5. Contour lines on a topographic map

The last example is that of Contour lines. Consider a togggcamap in which
only the contour lines are shown. The pixels belonging tordauar line are marked
asl symbols, while the other symbols are blanks (see Figurdt}, le

As tile symbols, we use the four arrows, N\, , ./, and ideally we consider a
kind of “flux” entering and exiting at each corner of a givengdi Intuitively, the
reader may think it like a water stream which follows the esgpgoing in or out of
a given tile. For example, a pixel containing~arepresents a flux coming from its

19

HHEHAFHHFAHFRFHFAHHSE FHFAHEHFHHHHHAHHS

#
#
7NN
#
#
#
EEEEER
#
#
#
#
#
#

#

#

#

Ve / #

7 AN #
NSNS S #

SN NON #

E B HEBNR #
EEEN #
L #
#

#

#

N S
NN S
N

oW o o FHFHFHEFEHEHEHE K FH

#HAH AR FHEHFA #H A HH A HFHHS

Fig. 5. A picture of the Contour lines language (left), and tlorresponding picture with
the tile alphabet (right).

upper-left corner and going to its lower-right corner.

The tile set considers each path as a flux, and takes care bathece between
the flux “entering” the center of a tile (i.e. the lower-rigtdrner of its upper-left
pixel) and that “exiting” it. The first part of the union codsr such balance: if a
flux enters the center of the tile, then it must leave it; if x fleaves, then it must
be coming from somewhere. The second part of the union cerssttie cases in
which the entering fluxes are two (obviously they cannot beentiban that), and
fluxes which avoid the central point (the last two tiles).

1=\, =
OnlyOne(j =,k =,,1 =\))
vV
— ==
0= . OnlyOne(j =,k =,",1=\)
vV
J=s=
OnlyOne(i =N,k =/,1 =)
V...

20

#AHHHHHHHHHHH
SN ININSNH#
SN S
#N SN NN N #
SN S S
NN NN YN\
/NN S
#7 /NN NSO NN #
#N NSNS S#
./ NSNS N
#N NSNS NS #
#AHHHHEHHEHHEHHH

Fig. 6. A generated tile alphabet picture of the Contourdil@mguage.

NN N S
ANIVZANIZAN

NZIVZANIPAN
7NN AN

The tile set is defined through a combination of Techniqués and 4.

The projection is the usual, mapping arrows to back squarddeaving blanks
alone.

m(z) =W ifre {7, NN, /)
©(O) = 0.

An example picture is presented in Figure 5, left. The toet®gnizes it and its
output, given as non-intersecting fluxes, is presented enigit side.

Last, Figure 6 shows the output of the generation tf & 10 picture.

4.3 Experimental results and performance

In this section we consider the current implementation ef phototype tool, its
performance, and how to improve it.

The main steps the tool performs are the following:

21

(1) Formula generationthe tool reads its input and generates the correspond-
ing propositional formulac = F; A F, as presented in Section 3. As far as
computation complexity is concerned, the execution timhisfstep (and the
resulting formula size) is linear with respect to the inpiatyre size (i.e. the
number of its pixels).

(2) CNF translation:F' is then translated into conjunctive normal form using an
external simplification tool (SAT2CNF, part of the Alloy Alyaer”). Its out-
putis a CNF-DIMACS formuld”. Time complexity: polynomial with respect
to the input picture sizé.

(3) SAT-solverthe SAT-solver MiniSat [16] is called on inpit’. The output of
the SAT-solver is then read by the Back-parsing module tdyre the output
picture. Time complexity: NP-complete.

The second step is provisional in the prototype and notyaacessary, being
the encoding for Tiling Systems always the same. This mdeatsaie could write
formulas equivalent té¢; and F; as presented in Section 3, directly in conjunctive
normal form. We have opted for ease of implementation, aftdhis optimization
for future consideration.

The three steps communicate by using text files (in DIMAC$nfat) that can be
quite large. This impact especially on the speed of stepsiRan

The chosen implementation language, Scheme, is not verySakeme is good
for rapid prototyping, but we would obtain better perforroarior the first step by
using a lower-level language, such as C.

Surprisingly, in spite of the above limitations, the ovepsrformance of the tool
is acceptable, and allowed us to experiment with reasorsbdd pictures. First,
we report in Figure 7 a table with the execution time of thd toothe examples
presented in this papér.

Notice that the dispensable CNF translation step is quppersive, while the SAT-
solver step, despite theoretically being the most expensvin many cases the
least.

Moreover, notice that the case of Figure 3 is dominant, despe input picture
being quite small, compared to the others. The main reasttisobehavior is the
expression of the tile set. In fact, the implemented tiles sgipears simple, and
works correctly, but is much bigger than needed. In paricuhe formulas used
to constraint the content of the tile set consider only tweefsi of a given tile, and
leave unspecified the other two. For this reason, this tile®etains a big number

7 http://alloy.mit.edu

8 We do not know the details of algorithm used by SAT2CNF.

9 We ran the experiments on a PC equipped with AMD Athlon 64 XQ046 2 Gb RAM,
Linux OS; SAT-solver: Minisat, v. 2.0 beta.

22

Execution time (s)

Input picture| Formula generation CNF translation SAT-solver
Figure 2, left 0.78 0.86 0.11
Figure 3, left 4.67 3.62 7.70
Figure 4, left 0.60 0.39 0.18
Figure 5, left 1.40 1.51 0.36
Figure 6 1.40 1.24 2.10

Fig. 7. Parsing times of the example pictures.

60

H SAT-solver
[l CNF conversion
Formula generation

time (s)

40

20

2500 3600 4900 6400 8100 10000 12100 14400
n. of pixels

Fig. 8. Parsing times of square pictures, TS of Figure 2

of tiles (2866), many of which unproductive, suchTasT . An equivalent, but more

compact and efficient for the tool, tile set could be writtgrusing a more complex
set expression in which only the usable tiles are taken ictownt.

Next, we report the use of the tiling systems of Figures 2 attdrécognize bigger
square pictures having sizes fraith x 50 to 120 x 120. All the input pictures con-
sidered are homogeneously made of a single symbolfifer Figure 2 andll for

Figure 4). The measurements are reported in Figures 8 ams@ctively. Figure
10 summarizes the memory consumption of the SAT-solver. &erb, they are

23

160

140 |

120 —] —

100

80

H SAT-solver
M CNF conversion
Formula generation

time (s)

60

40

20

2500 3600 4900 6400 8100 10000 12100 14400
n. of pixels

Fig. 9. Parsing times of square pictures, TS of Figure 4

SAT-solver: memory occupation (Mb)

n. of pixels| TS of Figure 2 TS of Figure 4
2500 29.9 38.0
3600 43.0 53.5
4900 59.8 74.2
6400 77.0 97.4
8100 95.2 1221
10000 125.3 154.3
12100 142.0 182.2
14400 172.2 218.3

Fig. 10. Memory consumption of the SAT-solver

quite encouraging, as the most expensive step is the displenSNF-translation.
The SAT-solving step for th&20 x 120 picture is in both cases less than 20 seconds.

To conclude, experimental evidence is that the step thatnigiple should be dom-
inant, SAT-solver is in reality almost negligible, with pest to the other two steps.
In future developments, one of them, CNF translation cannieety suppressed,

24

while the other, Formula generation, which has linear-toomplexity, has much
opportunity for optimization. This step is also easily pateable: different pro-
cessors could be allocated to the generation of sub-fosradaresponding to dif-
ferent parts of the input picture. Of course experimentsoger and more complex
pictures will be needed.

5 Conclusions

In our opinion this work offers two interesting contribut®to research on syntactic
pattern recognition.

First we gave evidence that Tiling Systems can be used intipeato specify
non-trivial classes of pictures. We argued that differestations and combination
thereof are convenient for defining the tiles to be used.

Second, we showed how to encode the pattern recognitiorcturgiparsing prob-
lem as a SAT solving one, and designed a practical 'tqotapitalizing on the
mature algorithmic know-how of off-the-shelf SAT solvers.

An attractive, unusual feature of our pattern recognizénésability to generate a
picture or to complete a partial one. This can be exploitedrterpolation, or to
perform error corrections on missing pixels. At the extrethis ability allows the
user to generate pictures of prescribed size, in order tahescorrectness of the
pattern family definition.

We intend to experiment with the tool for picture interpa@ator inpainting. More-

over, we envision the possibility of using the tool to recagnpictures in which

pixels or block of pixels are encoded together with checkbitm In this case, the
tool could be used to recognize a picture that contain tr&ssam errors: wrong
checksums are treated as “don’t cares”.

As far as tool developments, we intend to improve the perémee of our tool, as
explained before, in order to process larger pictures ange mmomplex patterns.
Moreover comparative experiments using other existing-S#Vers may reveal
better heuristics for tiling problems.

Finally we hope that by making it practical to experimenthwayntactic definitions
based on tiling systems, the validity of this approach walldssessed, possibly in

combination with methods based on other approaches, sugiam@snars or statis-
tics.

10 Available from the first author.

25

Acknowledgments

We thank Philippe Salembier for the comments and applicaimgestion.

References

[1] E. Tanaka, Theoretical aspects of syntactic patterogeition, Pattern Recognition
28 (7) (1995) 1053-1061.

[2] K. S. Fu, Syntactic Pattern Recognition and ApplicasioRrentice-Hall, Englewoods
Cliffs, 1982.

[3] N. G. Bourbakis, Special issue on languages for imagecqgssing and pattern
recognition, Pattern Recognition 32 (2) (1999) 253.

[4] K. Morita, K. Imai, Uniquely parsable array grammars fgenerating and parsing
connected patterns, Pattern Recognition 32 (2) (1999) Z282—

[5] D. Giammarresi, A. Restivo, Two-Dimensional Languagés: A. Salomaa,
G. Rozenberg (Eds.), Handbook of Formal Languages, Vol. &/0Bd Words,
Springer-Verlag, Berlin, 1997, pp. 215-267.

[6] R. Siromoney, K. Subramanian, V. Dare, D. Thomas, Sonwmilt® on picture
languages, Pattern Recognition 32 (2) (1999) 295-304.

[7] A.Cherubini, S. Crespi Reghizzi, M. Pradella, P. SariBidPicture Languages: Tiling
Systems versus Tile Rewriting Grammars, Theoretical Cdarpgicience 356 (1-2)
(2006) 90-103.

[8] C. Allauzen, B. Durand, Tiling problems, in: E. Borger, &radel (Eds.), The classical
decision problem, Springer-Verlag, 1997.

[9] K. S. Dersanambika, K. Krithivasan, C. Martin-Vide, IG. Subramanian, Local
and recognizable hexagonal picture languages., IntemadtiJournal of Pattern
Recognition and Artificial Intelligence 19 (7) (2005) 85343

[10] K. Inoue, A. Nakamura, Some properties of two-dimenaloon-line tessellation
acceptors, Information Sciences 13 (1977) 95-121.

[11] M. Blum, C. Hewitt, Automata on a two-dimensional tajre, IEEE Symposium on
Switching and Automata Theory, 1967, pp. 155-160.

[12] D. Giammarresi, A. Restivo, Recognizable picture laemges, International Journal
Pattern Recognition and Atrtificial Intelligence 6 (2-3) 929 241-256, special Issue
on Parallel Image Processing

[13] H. Lewis, Complexity of solvable cases of the decisioolgbem for predicate calculus,
in: Proc. 19th Symposium on Foundations of Computer Sciet®e8, pp. 35-47.

26

[14] K. Lindgren, C. Moore, M. Nordahl, Complexity of twosdiensional patterns, Journal
of Statistical Physics 91 (5-6) (1998) 909-951.

[15] E. Clarke, O. Grumberg, D. Peled, Model Checking, MI'E$%, 1999.

[16] N. Eén, N. Sorensson, An extensible SAT-solver, iIATR003: Sixth International
Conference on Theory and Applications of Satisfiabilitytifeg 2003.

[17] M. Davis, G. Logemann, D. Loveland, A machine program tleeorem proving,
Communications of the ACM 5 (7) (1962) 394-397.

[18] A. Biere, A. Cimatti, E. Clarke, Y. Zhu, Symbolic modehecking without BDDs,
Lecture Notes in Computer Science 1579 (1999) 193-207.

27

About the Author — MATTEO PRADELLA is aresearcher at the IEIITs{ituto di
Elettronica e di Ingegneria dell'Informazione e delle T@enunicazioniof the Ital-
ian National Research Council (CNR) since December 200%ekkaved his Ph.D.
in January 2001 from Politecnico di Milano. In 2000, 2001d 2002 he was first
visiting Ph.D. student, then visiting reasearcher at theéaBoe Engineering group
(code 5546) of the Naval Research Laboratory, Washingt@h,Hls research in-
terests are mainly in formal languages and automata thegictyre languages, and
formal methods for safety-critical and real time systems.

About the Author — STEFANO CRESPI REGHIZZI is a professor in the Dept. of
Electronics and Information of Politecnico di Milano. Hisreent research interests
are centered on formal languages, picture grammars, angdiledion for parallel
architectures. His commitment is to advance the applitgtaf formal language
and automata theory, by theoretical and experimental iigagn. He chairs the
Ph.D. programme in Information Technology of Politecnicd/dano. He gradu-
ated in Electronics Engineering at Politecnico di Milarm®r received the Ph.D. in
Computer Science from UCLA. In previous years he was a psofegt Universita

di Pisa.

28

