
A

Bounded Satisfiability Checking of Metric Temporal Logic
Specifications

MATTEO PRADELLA, ANGELO MORZENTI and PIERLUIGI SAN PIETRO
DEI, Politecnico di Milano

We introduce Bounded Satisfiability Checking, a verification technique that extends Bounded Model Check-

ing by allowing also the analysis of a descriptive model, consisting of temporal logic formulae, instead of
the more customary operational model, consisting of a state-transition system. We define techniques for

encoding temporal logic formulae into Boolean logic that support the use of bi-infinite time domain and

of metric time operators. In the framework of Bounded Satisfiability Checking, we show how a descriptive
model can be refined into an operational one, and how the correctness of such a refinement can be verified

for the bounded case, setting the stage for a stepwise system development method based on a bounded

model refinement. Finally, we show how the adoption of a modular approach can make the bounded refine-
ment process more manageable and efficient. All introduced concepts are extensively applied to a set of case

studies, and thoroughly experimented through Zot, our SAT solver-based verification toolset.

Categories and Subject Descriptors: D.2.1 [Software Engineering]: Requirements/Specifications—Languages; D.2.4 [Soft-
ware Engineering]: Software/Program Verification—Formal methods; Model Checking; Validation; F.3.1 [Logics and
meanings of programs]: Specifying and Verifying and Reasoning about Programs—Mechanical verification; Specification
Techniques

General Terms: Languages, Verification

Additional Key Words and Phrases: Formal Methods, Temporal Logic, Bounded Model Checking, Refinement, Bi-infinite
time

1. INTRODUCTION
Bounded model checking is a well established technique for modeling, analysis and verification of
reactive, time-critical systems. It shares its motivations and many features with traditional model
checking: the analyzed system is modeled as a state-transition structure; the property to be checked
is expressed in temporal logic; the result of the analysis is either the confirmation of the conjectured
property or its refutation, consisting of a counterexample, i.e., a possible behavior where the prop-
erty does not hold. In bounded model checking, one first decides a bound, i.e., a natural number
k > 0, and then both the state transition model and the conjectured property are encoded into a
Boolean logic formula and analyzed by means of a SAT solver. The resulting Boolean formula is
satisfiable if, and only if, the state transition system has a counterexample of length k to the con-
jectured property. Infinite, ultimately periodic behaviors of the analyzed systems are represented
by means of additional logical variables that encode loops in the underlying time domain. If the
Boolean formula is unsatisfiable, then there is no counterexample of length k to the property.

Our research group has a long lasting experience in the requirements specification and analysis of
critical embedded, real-time systems. Based on a detailed description of the systems requirements in

This work is a revised and extended version of papers presented at ESEC/FSE 2007, ICTAC 2008, ASE 2008, and FM 2009.
This research has been partially funded by the European Community’s IDEAS-ERC Programme, Project 227977 (SMSCom).
Authors’ addresses: Matteo Pradella, DEI, Politecnico di Milano, Milano, Italy. E-mail: pradella@elet.polimi.it.
Angelo Morzenti, DEI, Politecnico di Milano, Milano, Italy. E-mail: morzenti@elet.polimi.it.
Pierluigi San Pietro, DEI, Politecnico di Milano, Milano, Italy. E-mail: sanpietro@elet.polimi.it.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies show this notice on the
first page or initial screen of a display along with the full citation. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to
redistribute to lists, or to use any component of this work in other works requires prior specific permission and/or a fee.
Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701
USA, fax +1 (212) 869-0481, or permissions@acm.org.
c© YYYY ACM 1049-331X/YYYY/01-ARTA $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:2 Pradella, Morzenti, San Pietro

the TRIO temporal logic [Ghezzi et al. 1990], we defined methods and tools to carry out simulation
in the form of history checking [Felder and Morzenti 1994], functional test case generation [Man-
drioli et al. 1995], analysis of putative properties possibly ensured by the specified system under the
assumption that the stated requirements are met [Gargantini and Morzenti 2001].

The present work generalizes bounded model checking encoding techniques to the case of bi-
infinite time domains and metric extensions of LTL, allowing for for more compact and elegant
system models consisting of temporal logic formulas rather than transition systems. This paves the
way for a new approach to time-critical system analysis that we call bounded satisfiability checking,
to emphasize the fact that the verification tasks are encoded into suitable instances of the satisfia-
bility problem for quite large temporal logic formulae which encompass a model of the analyzed
system and, possibly, some conjectured property that the designer intends to investigate.

Bounded satisfiability checking offers an unprecedented degree of flexibility in the analysis of
the system under development. For instance, in its simplest form satisfiability checking can be used
for a sort of testing or a sanity check of the requirements specification [Morzenti et al. 2003; Rozier
and Vardi 2007]: if the requirements specification is inconsistent it obviously will not be satisfiable,
so no possible behavior can be generated from it; if the requirements are formalized in an incorrect
way the generated behaviors will exhibit unintended features. Bounded satisfiability checking also
supports model checking with reference to a model that is not a state transition system, but consists
of a temporal logic formula ϕ expressing the system assumed properties: a conjectured, (un)desired
property can then be stated as a further temporal logic formula ψ and then the formula ϕ → ψ is
checked.

This novel extension of model checking allows for concise, intuitive representation of the sys-
tem’s modeled features, because the formula ϕ that stands for the model is written in a temporal
logic language that has the least possible restrictions concerning the adopted temporal operators and
the underlying time domain, and facilitates the statement of quantitative time properties, which are
most important for reactive time critical systems. To this end we defined original encoding tech-
niques for various types of temporal logic languages, that support the translation into Boolean logic
formulae of features such as infinite time domain in both future and past, past time operators, and
metric time (i.e., use of numeric constants in formulae representing time distances among events and
length of time intervals). The encodings we defined allow for the presence of any of the above fea-
tures in a completely orthogonal way, so that the designer can choose the combination of constructs
that she finds most appropriate for modeling and analyzing the system at hand.

In the above described approach to model checking the ϕ formula can be viewed both as a specifi-
cation of the assumed system properties and also as a generalization of the notion of model adopted
in traditional model checking. We therefore introduce the notion of a descriptive model, to indicate
our view of a model, in which its salient features are provided by means of a descriptive formal-
ism like temporal logic, as opposed to the abstract machine adopted in traditional model checking,
which by contrast we call an operational model.

Of course, for a given (sub)system of interest, one can provide both a descriptive model and an
operational one. In most cases the descriptive model would consist of a first, initial formalization of
the system requirements, stated in an abstract style on the visible, external specification items, with
no reference to internal, implementation-oriented features. The operational model, to be typically
provided after the descriptive one, will be expressed in a state-transition based notation, and will
possibly incorporate additional elements such as, for instance, counter variables or any memory
necessary to store the current system state, and any mechanism to obtain the features defined in
the descriptive model. The operational model can thus be viewed as a refinement of the descriptive
model in a development process where the designer can go from requirements to implementation
through a series of refinements steps that preserve the desired properties. In the present paper we will
formalize in a temporal logic setting such a notion of property preserving refinement step among
descriptive and operational models.

Embedded, reactive systems that are encountered in industrial applications exhibit a rich and
complex behavior, often include several devices that cooperate to reach a common goal, and in-

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Bounded Satisfiability Checking of Metric Temporal Logic Specifications A:3

teract with the environment through interfaces such as sensors and actuators. For all these reasons
the design and even the specification of such complex systems exploit modularity [Morasca et al.
2000], which makes the development process more manageable by means of compositional tech-
niques [de Roever 1997]. We show that in our temporal logic setting the descriptive and operational
models can be smoothly combined, and composed with modules that include desired properties that
the designer intends to analyze. We illustrate on a case study how the refinement process can be
applied in a partial, incremental way, focusing on the modules that represent the components to
be actually development and implemented, leaving the other components (those corresponding to
the environment or to other existing subsystems) unchanged, thus obtaining substantial gains in the
computational effort needed for the automatic check of correct refinement.

The paper is structured as follows. In Section 2 we provide general background material on
bounded model- and satisfiability-checking, on temporal logic and its encoding, on the setup (hard-
ware and software platform) and the test cases adopted for the experiments. Sections 3 and 4 il-
lustrate the encoding techniques, and the relative experimental results, for bounded satisfiability
checking of metric past linear temporal logic, concerning mono-infinite time structures (where time
is unbound only towards the future) and bi-infinite ones. While these two sections are more techni-
cal in nature, dealing with logic and complexity features of the encodings, the subsequent sections
are more methodological. Section 5 compares the performance of bounded model- and bounded
satisfiability-checking, discussing the notion of operational vs. descriptive models and the correct
refinement relation among them. Section 5.5 shows how the adoption of a modular approach can
make much more manageable the process of model refinement, and much more efficient the verifi-
cation of its correctness.

We exemplify and validate the encoding procedures and the system modeling and analysis meth-
ods by means of a very wide and rich set of case studies, taken from the literature on time critical
system verification and specifically on (bounded) model checking.

We point out that some of these case studies include temporal logic formulae of quite significant
size: this is due to the fact that those formulae not only represent the properties to be analyzed, but
also constitute the actual model on which the analysis is conducted.

2. BACKGROUND AND EXPERIMENTAL SETUP
2.1. Bounded Satisfiability Checking vs. Bounded Model Checking
In Model Checking, a system S is characterized by a finite-state model MS , where each state is
associated with an assignment of a set of Boolean variables. The designer can prove a property ψ
that is conjectured to hold for MS and in general carry out various kinds of analysis (simulation in
the form of trace generation, generation of functional test cases). We call operational a model such
as MS , provided in terms of a state-transition system, because it is more oriented to the definition
of internal features and mechanisms that permit to ensure its properties, by means of a machine
providing the set of transitions from a state to the next one.

Satisfiability Checking shares its goals with model checking but the model of the system S is itself
a set of properties ΦS , that are assumed to hold for the modeled system, in the same logic language
as property ψ. To prove ψ for ΦS it is enough to show that ΦS → ψ is valid, i.e., ¬(ΦS → ψ) is
not satisfiable: the result is then valid for every system that satisfies ΦS . We call a model such as
ΦS descriptive because it provides a description of the system behavior by means of (e.g., PLTL)
formulae over the abstract interface items, with no reference to the internal mechanisms needed for
implementing its assumed properties. Hence, a descriptive model provides an artifact on which to
carry out the analysis of the system, at a higher level of abstraction than an operational model. This
is an alternative to the view of model checking where the artifact used to analyze the system (i.e.,
its model) is a state-transition system. The size of the descriptive model is typically smaller than
that of the operational one, as logic-based specifications allow for a more concise statement of the
required properties.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:4 Pradella, Morzenti, San Pietro

The verification techniques for Model Checking and Satisfiability Checking are typically very
different. For instance, in the automata-theoretic approach to model checking, (the negation of) for-
mula ψ itself is translated into an automaton, and the verification is reduced to emptiness checking
of the product automaton. Satisfiability Checking, on the other hand, may use for instance tableaux
methods for trying to build a logic model of the formula ¬(ΦS → ψ). However, in Bounded Model
Checking (BMC), after choosing a bound k > 0 for the cardinality of the time structure, state-
transition systems and temporal logic properties are all translated into a Boolean logic formula,
which is then checked for satisfiability by feeding it into a SAT solver. Since in the end everything
is just a large Boolean formula, a toolkit may be able to treat homogeneously both operational and
descriptive models, by translating all of them into Boolean logic. When the model is of the form
ΦS , we call this approach Bounded Satisfiability Checking (BSC).

Although the main thrust of this paper is on BSC, the above discussion should make clear that the
results presented in this paper are also valid for BMC, by applying the various enhanced encoding
techniques to the temporal logic property ψ only. For instance, all case studies used in this paper
have been developed both in a descriptive and in an operational version, which will be extensively
compared and discussed, also performance-wise, in Sections 5 and 5.5.

From the methodological point of view, we note that analyzing a property through bounded sat-
isfiability checking provides the same support that can be obtained by means of bounded model
checking: when a conjectured property is not implied by a descriptive model, a counterexample is
obtained that gives the designer a useful insight into the features of the analyzed system that lead to
that result.

In addition, bounded satisfiability checking can be usefully employed during the requirements
analysis and elicitation, by just using the tool to check the satisfiability of the formulae that consti-
tute the descriptive model, therefore obtaining a form of animation of the model that can exemplify
and possibly clarify and make explicit its properties. Adopting a stepwise construction of the de-
scriptive model of the system, the designer can start with the expression of its basic properties and
subsequently, with the support of the generation of possible behaviors offered by the satisfiability
checker, provide further formulae to model additional, specific features. In this process, additional
subformulae that are combined with an existing descriptive model can be used, if they are composed
by means of a conjunction, to provide additional constraints that act as a sort of filter to select or
rule out certain desired or undesired behaviors, or otherwise to characterize certain classes of inputs
that, in the intention of the designer who is carrying out the analysis, can lead the modeled system
to certain behaviors that exhibit interesting system features. Subformulae that are composed with
an existing, partial descriptive model by means of a disjunction can instead be used to enlarge the
set of admissible system behaviors by considering, for instance, exceptions to the usual, ordinary
functioning, or additional classes of acceptable input values.

Incompleteness of BMC and BSC. It is well known from the literature [Biere et al. 1999] that
the results of analysis carried out by means of bounded model checking–and by means of BSC as
well–are partial: if a counterexample to the conjectured property is found then the property does
not hold, but in case no counterexample is found (i.e., if the formula submitted to the SAT solver is
unsatisfiable) this only proves that the conjectured property holds for all finite or eventually periodic
infinite system behaviors with length of the initial and periodic parts limited by the chosen bound.
This does not rule out the possibility that there are other, longer behaviors that do not satisfy the
property. Some recent approaches to bounded model checking (see e.g. [Kroening and Strichman
2003] and [Heljanko et al. 2005]) provide methods for finding a completeness bound, i.e., a value
for the cardinality of the time structure which ensures that the results of the analysis are valid for
every finite or eventually periodic infinite system behavior. However, the completeness bound can
be very hard to compute for real systems.

Completeness issues are out of the scope of the present paper, therefore our technique shares the
limitations that are typical of verification by means of testing: if a counterexample is found then the
conjectured property is definitely disproved; if no counterexample is found it is still possible that

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Bounded Satisfiability Checking of Metric Temporal Logic Specifications A:5

the property does not hold. In many practical cases a high degree of confidence on the results of
the analysis can however be obtained if the size of the adopted time domain is significantly larger
than the time constants of the analyzed system, so that the bounded satisfiability checker can in
fact consider the vast majority, or even all significant combinations of events that can possibly take
place.

2.2. PLTL: Linear Temporal Logic with past operators
We first recall here Linear Temporal Logic with past operators (PLTL), in the version introduced by
Kamp [Kamp 1968].
Syntax of PLTL The alphabet of PLTL includes: a finite set Ap of propositional letters; two propo-
sitional connectives ¬,∧ (from which other traditional connectives such as True,False,∨,→, . . .
may be defined); four temporal operators (from which other temporal operators can be derived):
“until” U , “next-time” ◦, “since” S and “past-time” (or Yesterday), •. Formulae are defined in the
usual inductive way: a formula is a propositional letter p ∈ Ap or ¬φ, φ ∧ ψ, φUψ, ◦φ, φSψ, •φ,
where φ, ψ are formulae; nothing else is a formula.

The traditional “eventually” and “globally” operators may be defined as follows: ♦φ is TrueUφ,
2φ is ¬♦¬φ. Their past counterparts are: �φ is TrueSφ, �φ is ¬�¬φ. Another useful operator is
“Always”Alw, defined asAlw φ := 2φ∧�φ. The intended meaning ofAlw φ is that φmust hold
in every instant in the future and in the past. Its dual is “Sometimes” Som φ defined as ¬Alw¬φ.
For the sake of brevity, we allow n-ary predicate letters (with n ≥ 1) and the ∀,∃ quantifiers as
long as their domains are finite. Hence, one can write, e.g., formulae of the form: ∃p gr(p), with p
ranging over {1, 2, 3}, as a shorthand for

∨
p∈{1,2,3} grp. Also as a shorthand, ◦tφ (and analogously

•tφ), where t > 0 is a constant, stands for t nested application of ◦ to φ: ◦(◦ . . . (◦φ) . . .).
Standard semantics of PLTL The semantics of PLTL is defined here on ω-words, i.e., assuming
time is finite in the past and infinite in the future. A different semantics is shown in Section 4, where
time is considered to be infinite both in the past and in the future (i.e., on Z-words). This bi-infinite
semantics is actually simpler and includes the mono-infinite one as a special case, but it is not yet
universally adopted as the standard one.

In particular, since the temporal structure is mono-infinite, formulae may refer to time instants
before 0 (e.g., by using • at instant 0), where the evaluation is not defined. The typical approach
(see e.g. [Biere et al. 2006]) is to use a default value for operators referring to instants outside the
temporal domain. Hence, •φ is false at 0 for any φ. Given a finite alphabet Σ, Σ∗ denotes the set of
finite words over Σ. An ω-word over Σ is an infinite sequence w = a0a1a2 . . . , with aj ∈ Σ for
every j ≥ 0. The set of all ω-words over Σ is denoted as Σω , while an element aj ofw = a0a1a2 . . .
is denoted as w(j).

For all PLTL formulae φ, for all w ∈ (2Ap)ω , for all natural numbers i, the satisfaction relation
w, i |= φ is defined as follows.

w, i |= p ←→ p ∈ w(i), for p ∈ Ap
w, i |= ¬φ ←→ w, i 6|= φ
w, i |= φ ∧ ψ ←→ w, i |= φ and w, i |= ψ
w, i |= ◦φ ←→ w, i+ 1 |= φ
w, i |= φUψ ←→ ∃k ≥ 0 : w, i+ k |= ψ, and ∀0 ≤ j < k : w, i+ j |= φ
w, i |= •φ ←→ i > 0 and w, i− 1 |= φ
w, i |= φSψ ←→ ∃k ≥ 0 : i− k ≥ 0, w, i− k |= ψ and ∀0 ≤ j < k : w, i− j |= φ.

As customary, PLTL formulae are evaluated at time 0, i.e., a PLTL formula φ is satisfied on an
ω-word w iff w, 0 |= φ. A formula is valid if it is satisfied on all ω-words.

Figure 1 presents, for the sake of illustration, the initial part of w, where w is an ω-word with
prefix:

∅{φ}{φ, ψ}{φ}∅{φ}{φ}{φ}{ψ}∅∅∅.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:6 Pradella, Morzenti, San Pietro

Fig. 1. An example ω-word.

For instance, the following holds: w, i |= φUψ, for i ∈ {1, 2, 5, 6, 7, 8}; w, i |= φSψ, for i ∈
{2, 3, 8}; w, i |= ◦φ, for i ∈ {0, 1, 2, 4, 5, 6}; and w, i |= •φ, for i ∈ {2, 3, 4, 6, 7, 8}
Positive Normal Form and Dual operators We introduce here a normal form, where negations
may only occur on atoms, which is very convenient when defining encodings of PLTL into proposi-
tional logic. Define the dual operator for each operator in the syntax: the dual of ∧ is just ∨, the dual
of ◦ is ◦ itself, the dual of Until is “Release”R: φRψ is ¬(¬φU¬ψ); the dual of Since is “Trigger”
T : φT ψ is ¬(¬φS¬ψ); the dual of • is •′: •′φ is ¬ • ¬φ. A formula is in positive normal form if
its alphabet is {∧,∨,U ,R, ◦,S, T , •, •′} ∪ Ap ∪ Ap, where Ap is the set of formulae of the form
¬p for p ∈ Ap. Every PLTL formula φ on the alphabet {¬,∧,U , ◦,S, •} ∪Ap may be transformed
into an equivalent formula φ′ in positive normal form.

By definition, it follows that the truth value of •′φ on ω-words is the same of •φ in every instant
except for instant 0 (where the former is true and the latter is false).

2.3. Metric temporal logic
Metric operators were introduced in Linear Temporal Logic by [Koymans 1990] as a convenient,
general way to model hard real time systems, with quantitative time constraints. The specialized
version of the metric operators introduced in this section does not actually extend the expressive
power of PLTL, but it leads to more succinct formulae.

Metric PLTL (MPLTL for short) extends the alphabet of PLTL with a bounded until operator U∼c
and a bounded since operator S∼c , where∼ represents any relational operator (i.e.,∼∈ {≤,=,≥}),
and c is a natural number. In the following, as a useful shorthand, we will use also the versions of
the bounded operators with a strict bound. For instance, φU>0ψ stands for φ∧◦(φU≥0ψ); the other
strict bounded operators are defined similarly.

In order to define positive normal form for Metric PLTL, we have also to define the dual operators
of U∼c,S∼c. The dual of U∼c is the bounded Release R∼c: φR∼cψ is ¬(¬φU∼t¬ψ). The dual of
S∼c is the bounded Trigger T∼c: φT∼cψ is ¬(¬φS∼t¬ψ).
Semantics The semantics of Metric PLTL on ω-words is defined by the following additional clauses:

w, i |= φU∼tψ ←→ ∃k ≥ 0 : k ∼ t, w, i+ k |= ψ, and ∀0 ≤ j < k : w, i+ j |= φ

w, i |= φS∼tψ ←→ ∃k ≥ 0 : k ∼ t, i− k ≥ 0, w, i− k |= ψ, and

∀0 ≤ j < k : w, i− j |= φ.

Bounded eventually and globally and their past versions The bounded eventually ♦∼cφ and
bounded past �∼cφ are defined as TrueU∼cφ and TrueS∼cφ, respectively. The bounded globally
operator is the dual of ♦∼c: 2∼cφ is ¬♦∼c¬φ. The bounded globally in-the-past operator �∼cφ is
¬�∼c¬φ.

We note that, in practice, the bounded until and since operators are not frequently used, the most
common metric operators being the bounded eventually♦∼tφ, and the bounded globally �∼tφ and
their past counterparts. Therefore, in the following, encodings for metric temporal operators will be
provided focusing on ♦∼cφ, 2∼cφ, �∼cφ, and �∼cφ.

Example 2.1. A synchronous shift register Consider a simple shift register, that receives a single
bit at one end and delivers it at the opposite end with a fixed delay d > 0 (d is a constant representing
the number of memory bits in the register). A specification of this system can be described by the

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Bounded Satisfiability Checking of Metric Temporal Logic Specifications A:7

Table I.

Formula Equivalent formula
�≥tφ �=t�φ
�≥tφ �=t�φ
2=tφ ♦=tφ
♦≥tφ ♦=t♦φ
2≥tφ 2=t2φ
�′≤tφ �=t True∧�≤tφ

�′≤tφ �=t False∨�≤tφ

�′≥tφ �=t�φ
�′≥tφ �=t�φ

Definition of metric operators in
terms of ♦=t, ♦≤t, 2≤t, �=t,
�=t, �≤t, �≤t

S0 S1 Sh-1 Sh Sk=Sh-1

Fig. 2. An infinite bounded path.

following simplest formula:

2(in←→ ♦=dout)

where in is the value of the bit entering the shift register (True stands for 1, False for 0), and out is
the value of the bit exiting the shift register after delay d.

Relations among the various bounded operators. First, one may notice that 2=tφ is equivalent to
♦=tφ, while on a monoinfinite semantics �=tφ is not equivalent to �=tφ: when there is no instant
at distance t in the past, �=tφ is true and �=tφ is false. In fact, � assumes that everything outside
the temporal domain is true by default, while in the same case � assumes that it is false. For instance,
�=1φ←→ •′φ, while �=1φ←→ •φ.

In general, when dealing with a monoinfinite semantics, the usage of operators �≤tφ and �≤tφ
may not be very convenient to specify all relevant behaviors. In fact, if instant t in the past does not
exist and φ is true from the current instant to instant 0, then �≤tφ is true, even though the interval
of validity of φ is shorter than t: instead, the intuitive meaning of �≤tφ is that φ must hold for at
least t instants in the past.

This motivates the introduction of a new �′≤t operator, that is false by default when referring
to instants outside the temporal domain, and of its dual �′≤t that in the same case is true by de-
fault. Hence, �′≤tφ is false whenever the interval of validity of φ is shorter than t. Define �′≤tφ as
�=t True∧�≤tφ, with its dual �′≤tφ being equivalent to �=t False∨�≤tφ.

Analogously, define �′≥tφ as �=t�φ, with its dual �′≥tφ being equivalent to �=t�φ. More on
these operators may be found in Section 4.

All various versions of bounded globally and eventually operators can actually be derived from

♦=t,♦≤t,2≤t,�=t,�=t,�≤t,�≤t.

Table I summarizes the relations among various operators, for every formula φ, when a monoinfinite
semantics is considered.

2.4. A Boolean Encoding for PLTL
Here we describe a standard encoding of PLTL formulae and state-transition systems future frag-
ment of PLTL, into Boolean logic over a finite temporal structure. The encoding includes additional

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:8 Pradella, Morzenti, San Pietro

information so that the resulting Boolean formula is satisfied in the finite structure if and only if the
original PLTL formula is satisfied in a (finite or possibly) mono-infinite structure. This encoding
is a modified version of the one presented in [Biere et al. 2006], Section 5.1: BMC for PLTL with
Eventualities.

For the goal of this section, define a state transition system Ms as tuple (S, I, T,Ap, λ), where
S is a finite set of states, I ⊆ S is the set of initial states (i.e., a boolean predicate), T ⊆ S × S
is the transition relation, Ap is a finite alphabet of propositions, and λ : S → 2Ap is a labeling
function, associating each state with the set of propositions holding in that state. A computation of
MS is an infinite sequence of states S0S1 . . . such that I(S0) holds and for every i ≥ 0, Si ∈ S
and T (Si, Si+1) holds. A PLTL formula φ on alphabet Ap is valid on MS if for every computation
S0S1 . . . of MS the ω-word w = λ(S0)λ(S1) . . . satisfies it, i.e., w, 0 |= φ holds. Model Check-
ing is the activity of verifying whether a given formula (i.e., a property) is valid on a given state
transition system (i.e., a model).

Following the conventions of [Biere et al. 2006], the notation |[X]| denotes the Boolean variables
introduced in the encoding to represent some entity X . We also use the notation 〈〈X〉〉 (or variants
thereof) to represent auxiliary Boolean variables, that are related to X and explained later.

To perform bounded model checking with bound k, we represent symbolically the transition
relation of the system MS as a propositional formula, where the states Si are represented as bit
vectors. The k-times unrolling of the transition relation represents all the finite paths of length k:

|[MS]|k ←→ I(S0) ∧
∧

0≤i<k

T (Si, Si+1)

The idea on which the encoding is based is graphically depicted in Figure 2. Following the nota-
tion presented in the picture, in the rest we will use h to denote the instant i in which the loop starts.
An ultimately periodic mono-infinite structure has a finite representation that includes the initial non
periodic portion, and the periodic portion with a cycle that is encoded by having two equal states
in the sequence, Sh−1 and Sk: the interpreter of the formula (in our case, the SAT solver), when it
needs to evaluate the subformula at a state beyond the last state Sk, will follow the “backward link”
and consider the states Sh, Sh+1, . . . as the states following Sk.

Let Φ be a LTL formula in positive normal form. Its semantics is given as a set of Boolean
constraints over the so called formula variables, i.e., fresh unconstrained propositional variables.
There is a variable |[φ]|i for each subformula φ of Φ and for each instant 0 ≤ i ≤ k + 1. Instant
k + 1 is not explicitly shown in Figure 2, but has a particular role in the encoding, as shown next
in the Last state constraints, namely if there is a loop at position h then state Sk+1 and Sh are
equivalent.

First, to allow for the representation of a mono-infinite structure into a finite one composed of
k+ 1 states S0, S1, . . . Sk, other k+ 1 fresh propositional variables l0, l1, . . . lk must be introduced,
called loop selector variables, which describe the loop that may exist in the finite structure. At most
one of these loop selector variables may be true. If lh is true then state Sh−1 = Sk, i.e., the bit
vector representing the state Sh−1 is identical to that for state Sk. Further propositional variables,
InLoopi (0 ≤ i ≤ k) and LoopExists, respectively mean that position i is inside a loop and that a
loop does actually exist in the structure.

The variables defining the loops in the finite structure are constrained by the following Table (1).
Loop constraints:

Base ¬l0 ∧ ¬InLoop0

1 ≤ i ≤ k (li → Si−1 = Sk) ∧ (InLoopi ←→ InLoopi−1 ∨ li)
(InLoopi−1 → ¬li) ∧ (LoopExists←→ InLoopk)

(1)

The Loop constraints of Table (1) (with one formula for each value of i, 1 ≤ i ≤ k) state
that the structure may have at most one loop. When a loop exists they allow the SAT solver to
nondeterministically select exactly one of the many possible values for the loop selector variable.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Bounded Satisfiability Checking of Metric Temporal Logic Specifications A:9

The following Table (2) provides the additional constraints, for every subformula φ of Φ, needed
to account for the absence of a forward loop in the structure (the first line of the table states that if
there is no loop then everything is false beyond the k-th state) or its presence (the second line states
that if there is a loop at position i then in states Sk+1 and Si formula variables must have the same
truth value).

Last state constraints:
Base ¬LoopExists→ ¬|[φ]|k+1

1 ≤ i ≤ k li → (|[φ]|k+1 ←→ |[φ]|i)
(2)

Table (3) constrains in a natural way the formula variables. For instance, if φi∧φ2 is a subformula
of Φ, then each variable |[φi ∧ φ2]|i must be equivalent to the conjunction of variables |[φ1]|i and
|[φ2]|i.

The following tables are composed of two columns: the left column, labeled ϕ, denotes the var-
ious cases of subformulae considered by the table; the right column shows the encoding of each
case, and it is labeled with the set of all integer values i the encoding is applied to.
Propositional constraints, with p denoting a propositional symbol:

ϕ 0 ≤ i ≤ k
p |[p]|i ←→ p ∈ Si
¬p |[¬p]|i ←→ p 6∈ Si

φ1 ∧ φ2 |[φ1 ∧ φ2]|i ←→ |[φ1]|i ∧ |[φ2]|i
φ1 ∨ φ2 |[φ1 ∨ φ2]|i ←→ |[φ1]|i ∨ |[φ2]|i

(3)

As a simple example, consider the formula A ∧ B ∨ ¬C. For each 0 ≤ i ≤ k, we introduce the
propositional formulae:
|[A ∧B ∨ ¬C]|i ←→ |[A ∧B]|i ∨ |[¬C]|i, and |[A ∧B]|i ←→ |[A]|i ∧ |[B]|i.
The following Table (4) defines the basic temporal behavior of PLTL future operators ◦,U and
R, by using their traditional fixpoint characterizations.
Future temporal subformulae constraints:

ϕ 0 ≤ i ≤ k
◦φ1 |[◦φ1]|i ←→ |[φ1]|i+1

φ1Uφ2 |[φ1Uφ2]|i ←→ |[φ2]|i ∨ (|[φ1]|i ∧ |[φ1Uφ2]|i+1)
φ1Rφ2 |[φ1Rφ2]|i ←→ |[φ2]|i ∧ (|[φ1]|i ∨ |[φ1Rφ2]|i+1)

(4)

These constraints do not consider the implicit eventualities that the definitions of U andR impose
(e.g. φ1Uφ2 requires that φ2 must eventually hold).

To define properly eventualities, it is necessary to introduce a new propositional letter 〈〈♦φ2〉〉i,
for each subformula of Φ of the form φ1Uφ2, for every i such that 0 ≤ i ≤ k. Analogously, add
a new propositional letter 〈〈2φ2〉〉i for each subformula of the form φ1Rφ2, 0 ≤ i ≤ k. Then,
constraints on these eventuality propositions are quite naturally stated as follows.
Eventuality constraints:

ϕ Base
φ1Uφ2 ¬〈〈♦φ2〉〉0 ∧ (LoopExists→ (|[φ1Uφ2]|k → 〈〈♦φ2〉〉k))
φ1Rφ2 〈〈2φ2〉〉0 ∧ (LoopExists→ (|[φ1Rφ2]|k ← 〈〈2φ2〉〉k))

(5)

ϕ 1 ≤ i ≤ k
φ1Uφ2 〈〈♦φ2〉〉i ←→ 〈〈♦φ2〉〉i−1 ∨ (InLoopi ∧ |[φ2]|i)
φ1Rφ2 〈〈2φ2〉〉i ←→ 〈〈2φ2〉〉i−1 ∧ (¬InLoopi ∨ |[φ2]|i)

(6)

The encoding of past operators is not completely symmetrical to the encoding for future operators,
because their definition is not symmetrical with mono-infinite time. Table (7) below is the analogous
of Table (4), but it also has operator •′. Notice that this part of the encoding is perfectly symmetrical
to its future counterpart.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:10 Pradella, Morzenti, San Pietro

Past Temporal subformulae constraints:

ϕ 1 ≤ i ≤ k + 1
•φ1 |[•φ1]|i ←→ |[φ1]|i−1

•′φ1 |[•′φ1]|i ←→ |[φ1]|i−1

φ1Sφ2 |[φ1Sφ2]|i ←→ |[φ2]|i ∨ (|[φ1]|i ∧ |[φ1Sφ2]|i−1)
φ1T φ2 |[φ1T φ2]|i ←→ |[φ2]|i ∧ (|[φ1]|i ∨ |[φ1T φ2]|i−1)

(7)

Indeed, the main difference with the treatment of future is in the following constraints. Being
the temporal structure mono-infinite, there exists a first state, i.e. time 0. Constraints in Table (8)
are used to state that, for φ1Sφ2 to hold at 0, φ2 must also hold there, and vice versa, as there are
not time instants before 0. T is treated analogously, while • and •′ at 0 refer to a point outside
the temporal domain, so they assume their conventional values (false and true, respectively). Notice
also that eventuality constraints are not needed for past operators, since past is finite.
First state constraints:

ϕ Base
φ1Sφ2 |[φ1Sφ2]|0 ←→ |[φ2]|0
φ1T φ2 |[φ1T φ2]|0 ←→ |[φ2]|0
•φ1 ¬|[•φ1]|0
•′φ1 |[•′φ1]|0

(8)

The complete encoding of Φ consists of the logical conjunction of the above components regard-
ing loops, propositional connectives, temporal operators, and eventualities, together with |[Φ]|0 (i.e.
Φ is evaluated only at instant 0).

The encoding of [Biere et al. 2006], unlike the one presented here, adopts a virtual unrolling tech-
nique, where extra variables are introduced for the past-time operators, in order to obtain minimal-
length counterexamples. Our approach does not strive instead for minimal-length: rather, we adopt
a cardinality of the temporal domain which is typically much larger than the largest time constant
d appearing in the time operators, such as 2<d or ♦<d, occurring in the formulae that constitute
our models. Naturally, the above unrolling technique could be adapted to the encodings presented
here, to obtain minimal-length counterexamples when they are really needed (e.g., when using k-
induction or trying to understand complex execution traces).

2.5. Case studies
Besides the Synchronous Shift Register of Example 2.1 we conduct our experiments with reference
to the following case studies, and report them throughout the paper.

2.5.1. Fischer’s protocol. Fischer’s algorithm [Lamport 1987] is a timed mutual exclusion algo-
rithm that allows a number of timed processes to access a shared resource. These processes are
usually described as timed automata, and are often used as a benchmark for timed automata verifi-
cation tools.

We consider the system in two variants. The first one, called fischer-3-5, considers 3 processes
with a delay after the request of 5 time units. The second one, called fischer-4-10, considers 4
processes with a delay after the request of 10 time units.

We used the tool to check the safety property of the system i.e., it is never possible that two
different processes enter their critical sections at the same time instant.

As a last test for this system, we added a constraint to generate a behavior in which there is always
at least an alive process in the system.

2.5.2. Kernel Railway Crossing (KRC). The Kernel Railway Crossing problem has extensively
been used as a benchmark for comparing real-time notations and analysis methods and tools [Heit-
meyer and Mandrioli 1996]. We adopt here a simplified version which considers only one track and
one direction of movement for the trains, but at the same time we enrich the case study by adding
an interlocking system, which is usually disregarded.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Bounded Satisfiability Checking of Metric Temporal Logic Specifications A:11

Fig. 3. A history for the example of the timed lamp, assuming ∆ = 5.

The detailed description of the case study, together with its descriptive and operational models,
and the analyzed properties, are reported in Appendix I.1. Two sets of time constants are considered,
allowing for different degrees of nondeterminism.

2.5.3. Real-time allocator. The real-time allocator, originally presented in [Felder and Morzenti
1994], serves a set of client processes competing for a shared resource.

Each process p requires the resource by issuing the message rq(p), by which it identifies itself
to the allocator. Requests have a time out: they must be served within Treq time units, or else be
ignored by the allocator. If the allocator is able to satisfy p’s request within the time-out, then it
grants the resource to p by a gr(p) signal. Once a process is assigned the resource by the allocator,
it releases the resource, by issuing a rel signal, within a maximum of Trel time units. The allocator
grants the request to processes according to a FIFO policy, considering only requests that are not
yet timed out and in a timely manner, i.e., no process will have to wait for the resource while it
is not assigned to any other process. The analysis of the real time allocator can provide significant
results only with reference to bi-infinite time domains requiring the bi-infinite semantics of PLTL
presented in Section 4, because the assumption of unconstrained rotation, under which the property
of conditional fairness can be correctly checked, implies a series of requests by the various processes
which repeats itself indefinitely towards the past (a detailed exemplification of this circumstance is
reported in Example 4.3 of Section 4). Hence, verification results on mono-infinite time are incorrect
and are not reported. The temporal logic formulae describing the allocation policy and its properties
are presented in Appendix I.2.

2.5.4. Timer Reset Lamp. The timer-reset-lamp case study was first introduced in paper [Pradella
et al. 2008b]. Here we present the descriptive model, consisting of axioms specifying its key timing
features; the operational model is reported in Section 5.1.

The lamp has two buttons, ON and OFF: when the ON button is pressed the lamp is lighted and
it remains so, if no other event occurs, for ∆ time units, after which it goes off spontaneously. It
is also possible, before the above expiration deadline, to either turn off the lamp, by pushing the
OFF button, or to extend the lighting of further ∆ time units, by pushing again the ON button. This
behavior is expressed by the following axiom (where predicate letter L means that the light is on,
while letters ON and OFF respectively indicate that the button to turn the lamp on or off is pressed).

(D1) L←→ •(¬OFF S<∆ON)

To ensure that the pressure of a button is always meaningful, it is assumed that ON and OFF
cannot be pressed simultaneously.

(D2) ¬(ON ∧ OFF)

The descriptive model of the timer-reset-lamp consists of the conjunction of the two above formulae,
to which the temporal universal quantification operator Alw is applied.

(DM) Alw(D1 ∧D2)

Starting from the above characterization one can disprove the following (conjectured) property

(DP1) Alw(¬�≤∆+1L)

(i.e., the lamp will never remain on for more than ∆ time units), by generating a counter-example
similar to the one shown in Figure 3, including two push actions of the ON button at distance less

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:12 Pradella, Morzenti, San Pietro

than ∆; the following property holds and can be checked starting from the descriptive model:

(DP2) Som(�≤∆+1L)→ Som(ON ∧ ♦≤∆ON)

(i.e., the lamp remains lighted for more than ∆ time units only in case of two consecutive press
actions of the ON button at a distance of less than ∆ time units).

Various versions of the example have been studied, for different values of constant ∆ (10, 15, 20,
corresponding to lamp-10, lamp-15, lamp-20).

2.5.5. Asynchronous Shift Register. This is a variation of the Synchronous Shift Register dis-
cussed in Example 2.1, where the shift does not occur at every tick of the clock, but only at a
special, completely asynchronous Shift command. We consider two cases, where the number of bits
is n = 10 and n = 20; we prove satisfiability of the specification, and analyze one timed property
(if the Shift signal remains true for n time units then the value In, which was inserted in the Shift
register at the beginning of the time interval, will appear at the opposite side of the register at the end
of the time interval). The descriptive and operational models for the Asynchronous Shift Register
are reported in Appendix I.3.

2.6. Experimental setup
In the last years we designed and implemented an open, plug-in based tool called Zot.1 Zot was
not designed to be a new, more efficient model checker, but to define a simple and flexible open
environment, to experiment with new approaches and encodings for bounded model checking. Zot is
written in Common Lisp and it is scriptable, thus favoring experimentation, as plugins are typically
simple, compact (usually around 500 lines of code), easily modifiable, and extensible. Zot supports
various SAT solvers, like MiniSat [Eén and Sörensson 2003], and MiraXT [Lewis et al. 2007],
and in general can be extended to any SAT solver that adopts the standard format DIMACS for
its interface data. The tool supports different logic languages through a multi-layered approach: its
core uses PLTL, and on top of it a decidable predicative fragment of TRIO [Ghezzi et al. 1990],
essentially equivalent to Metric PLTL. Other notations are also available in the toolset, namely
dense-time metric temporal logic through approximation, and variants of timed automata and Petri
nets [Furia et al. 2008a; 2008b; Bersani et al. 2009]. All the results and encodings presented in this
paper, together with their implementations as Zot plugins, are freely available, and can be ported to
other tools.

Zot provides a simple language to define both descriptive and operational models, and to mix
them freely; this is possible because both types of models are eventually translated into Boolean
logic, to be fed to the SAT solver. When Zot finds a counterexample, i.e., a possible trace of the
submitted model, the trace reported to the user is expressed in a readable form, through the value of
the variables and predicates of the submitted formula, rather than in terms of the internal encoding
adopted by the tool.

2.7. Assumptions in reporting the experiments
The experiments were run on a PC equipped with two XEON 5335 processors at 2.0 Ghz, with 16
GB RAM, running under GNU/Linux Gentoo X86-64. The SAT-solver was MiniSat 2.

For every experiment we report total Generation time (Gen) in seconds, total SAT Solver time
(Solver) in seconds, and number of CNF clauses submitted by Zot to the SAT solver. The memory
footprint of the SAT solver is not reported, for the sake of simplicity: memory is strongly correlated
to both CNF clauses and Solver time, and it is never critical (ranging from a few MBs for the
smallest examples to less than one Gbyte for the biggest example presented in this paper). Overall,
CNF clauses is a better measure of the quality of the encoding techniques. All numerical results
reported in this paper are actually averaged over analyses carried out with three bounds: 30, 60 and
90, to reduce the dependence of the behavior of the Solver with the bound itself (in certain cases, a

1Available at http://home.dei.polimi.it/pradella/Zot/.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Bounded Satisfiability Checking of Metric Temporal Logic Specifications A:13

fis
ch

er
-3

-4
-d

e

fis
ch

er
-3

-4
-o

p

fis
ch

er
-4

-5
-d

e

fis
ch

er
-4

-5
-o

p

kr
c-

sa
fe

-u
til

-d
e

kr
c-

sa
fe

-u
til

-o
p

kr
c-

sa
fe

-u
til

-d
e2

kr
c-

sa
fe

-u
til

-o
p2

la
m

p-
10

-d
e

la
m

p-
10

-o
p

la
m

p-
15

-d
e

la
m

p-
15

-o
p

la
m

p-
20

-d
e

la
m

p-
20

-o
p

sh
ift

-a
sy

nc
-d

e

sh
ift

-a
sy

nc
-o

p

sh
ift

-a
sy

nc
-d

e-
20

sh
ift

-a
sy

nc
-o

p-
20

sh
ift

-s
yn

c-
de

sh
ift

-s
yn

c-
op

0,1

1

10

100

1000

Time (sec)

0E+00

2E+05

4E+05

6E+05

8E+05

1E+06

1E+06

1E+06

2E+06

2E+06

Clauses

Gen
Solver
CNF clauses

Results for standard PLTL encoding

Fig. 4. Summary of raw experimental data for the standard PLTL mono-infinite encoding described in Section 2.4. For
each case study (defined on the horizontal axis), the figure reports the time in seconds for the Generation (Gen) and Solver
phases (vertical axis at the left, on a logarithmic scale), and the number of CNF clauses fed to the SAT-solver (vertical axis
at the right).

particular bound can by chance help in simplifying the verification). The results are also averaged
over various properties. Details and names are as follows:

— alloc denotes the verification of the allocator, averaged over the verification of all considered
properties.

— krc and krc-2 denote the verification of the railway crossing problem, in the versions with, re-
spectively, the smaller and the larger time constants; krc allows however more nondeterminism.
Various versions and properties of krc will be defined in Section 5. The notation krc-safe-util is
used for denoting the results averaged over verification of satisfiability, safety and utility proper-
ties.

— fischer-3-5 and fischer-4-10 are the Fischer protocol, averaged over satisfiability of the specifica-
tion and the safety property, using the version with 3 processes and delay 5 and the version with 4
processes and delay 10.

— lamp-10, lamp-15, lamp-20 denote the satisfiability verification of versions of the timer-reset-lamp
with a delay of, respectively, 10, 15 and 20 units.

— shift-sync denotes the result of satisfiability verification for the synchronous shift register;
— shift-async and shift-async-20 denote the average result of satisfiability and timing verifications

for the asynchronous shift register, with delays 10 and 20, respectively.

The suffix -de is added to denote that a model is descriptive (therefore, BSC is used) and the suffix
-op to denote that the model is operational with properties described by temporal logic formulae
(therefore, BMC is used).

2.8. Preliminary experiments
We report in Figure 4 experimental results with the encoding of Section 2.4, where the metric
temporal operators are encoded by the naive technique illustrated in the initial part of Section 3.1.
Such experimental results provide some baseline for comparison when evaluating results in later
experiments.

The experiments report the results for both BSC and BMC in the mono-infinite case. The allo-
cator case study is not included since it requires the bi-infinite semantics of Section 4.1. Also, the
synchronous shift register is not reported, since it will be extensively discussed in Section 3.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:14 Pradella, Morzenti, San Pietro

The experimental results show the feasibility of BSC, even though BSC is often (but not always)
less efficient than BMC, which is not surprising since in general time complexity of BSC may be
exponential in the size of the specification. The case for reduced efficiency is not always so clear
cut (e.g., for krc example), but further discussion of the issue is deferred to Section 5.

3. BOUNDED SATISFIABILITY CHECKING FOR METRIC TEMPORAL LOGIC
This section presents additional constraints to the encoding for PLTL of Section 2.4, to support
some metric operators natively and more efficiently. For the sake of simplicity, first only the future
fragment of metric PLTL is considered, and then, after some experimental assessment, the encoding
is extended to metric past operators. The results of this section were originally presented in [Pradella
et al. 2009].

3.1. Mono-infinite encoding of future metric operators
In our definition of metric temporal logic in Section 2.3, bounded until U∼t (where ∼∈ {≤, =,
≥} and t is a natural number) is a primitive operator: all other metric operators are derived from it.
The encoding of PLTL defined in Section 2.4 can still be applied to U∼t after an application of the
following translation τ , which may be considered as an alternative way of providing the semantics
of Metric PLTL.

τ(φ1U≤0φ2) := φ2

τ(φ1U≤tφ2) := φ2 ∨ φ1 ∧ ◦τ(φ1U≤t−1φ2), with t > 0
τ(φ1U≥0φ2) := φ1Uφ2

τ(φ1U≥tφ2) := φ1 ∧ ◦τ(φ1U≥t−1φ2), with t > 0
τ(φ1U=0φ2) := φ2

τ(φ1U=tφ2) := φ1 ∧ ◦τ(φ1U=t−1φ2), with t > 0

This completely removes the metric nature of these operators. For instance, formula φ1U≤2φ2 is
translated into the PLTL formula:

φ2 ∨ (φ1 ∧ ◦(φ2 ∨ (φ1 ∧ ◦φ2))) .

The PLTL formula is then encoded as usual. When constant t is large, however, this method
generates a very large formula, and, consequently, a very large Boolean encoding, which can slow
down verification. As already noted in Section 2, in practice, the bounded until operator is not so
useful, since the most common metric operators are actually the bounded eventually ♦∼tφ, and the
bounded globally �∼tφ.

For instance, formula ♦≤dp may be used to denote that p must occur within a deadline d > 0,
and �≥dq may be used to denote that condition q must hold indefinitely, starting from d instants in
the future.

For these operators, it is possible to introduce an explicit, more compact Boolean encoding, and
to show that in many cases this so called metric encoding gives considerable advantages, both in the
size of the encoding and in SAT time, over their definition as derived from U∼t.

To provide the encoding of every (future) metric operator of the form ♦∼t, and 2∼t with t ≥
0,∼∈ {=,≤,≥}, notice first that in a mono-infinite structure, by Table I, only the following cases
are to be considered:

♦=t,♦≤t,2≤tφ
since all other cases of future bounded globally and eventually operators are derived immediately
from them, with very simple formulae. For instance, a direct encoding of formula ♦≥tφ would not
give substantially different results from encoding its equivalent definition ♦=t♦φ.

Ideally, with an unbounded time structure, the encoding of the future metric operators should be:

|[♦=tφ]|i ←→ |[φ]|i+t, |[2≤tφ]|i ←→
t∧

j=1

|[φ]|i+j .

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Bounded Satisfiability Checking of Metric Temporal Logic Specifications A:15

Fig. 5. Evaluation of formula ♦=5φ at time i = 16, with k = 18, and h = 10.

The presence of a bounded time structure, in which infinity is encoded through a loop, makes the
encoding less straightforward.

For the sake of readability, let λi = k − i + 1 be the number of time instants from i to the
bound k and, for every integer m,n, let mod(m,n) be the remainder of the integer division of m
by n. To represent the values of subformulae inside the future loop, a new propositional variable,
〈〈MF(φ, j)〉〉, is introduced for every 0 ≤ j ≤ t − 1 and for every formula φ such that one among
♦=tφ, 2≤tφ, ♦≤tφ is a subformula of Φ. The idea is that 〈〈MF(φ, j)〉〉 holds whenever there is an
instant i, 1 ≤ i ≤ k, such that li holds (i.e., there is a loop at i) and φ holds at i + mod(j, λi) (i.e.,
φ holds j instants in the future of i, considering the loop). For instance, if the future loop selector is
at instant h = 10 (i.e., l10 holds), then 〈〈MF(φ, 2)〉〉 represents |[φ]|12 (i.e. φ at instant 10+2). For
♦=5φ, variable 〈〈MF(φ, j)〉〉, 0 ≤ j ≤ 4, represents the value of φ j time units after the starting
point of the loop.

Table (9) defines MF for every metric future subformula of Φ.

ϕ 0 ≤ j ≤ t− 1

♦=tφ, 2≤tφ, ♦≤tφ 〈〈MF(φ, j)〉〉 ←→
∨k
i=1 li ∧ |[φ]|i+mod(j,λi)

(9)

Table (10) reports the translation of the above metric operators. It is composed of two parts: the
first one defines the translation inside the bounded portion of the time domain (i.e., for instants i
such that i+ t ≤ k), and the other one is based on MF in the loop portion.

ϕ 0 ≤ i ≤ k
♦=tφ |[♦=tφ]|i ←→ |[φ]|i+t, when i+ t ≤ k

|[♦=tφ]|i ←→ 〈〈MF(φ, t− λi)〉〉, otherwise
2≤tφ |[2≤tφ]|i ←→

∧min(t,λi−1)
j=0 |[φ]|i+j ∧

∧t
j=λi
〈〈MF(φ, j − λi)〉〉

♦≤tφ |[♦≤tφ]|i ←→
∨min(t,λi−1)
j=0 |[φ]|i+j ∨

∨t
j=λi
〈〈MF(φ, j − λi)〉〉

(10)

Figure 5 shows a graphical interpretation of the second clause of Table (10), the one asserting
that, when i+ t > k, |[♦=tφ]|i ←→ 〈〈MF(φ, t− λi)〉〉. Considering, for instance, formula ♦=5φ,
current time i = 16, bound k = 18, future loop loop selector at h = 10, and λi = k−i+1 = 3. The
figure illustrates that the clause |[♦=tφ]|i ←→ 〈〈MF(φ, t − λi)〉〉 is in this case |[♦=5φ]|16 ←→
〈〈MF(φ, 2)〉〉: starting from time i = 16, 5 steps forwards are taken: after the first two steps the next
one goes backwards to h = 10, and the last two steps proceed to time 12, which corresponds to the
fact that, for h = 10, 〈〈MF(φ, 2)〉〉 is |[φ]|12.

The actual implementation of the metric encoding contains some optimizations, not reported here
for the sake of brevity, such as the re-use, whenever possible, of the various 〈〈MF(·, ·)〉〉 proposi-
tional letters.

LEMMA 3.1. Correctness of the mono-infinite future metric encoding. The above metric en-
codings of the three basic metric operators, ♦=tφ, 2≤tφ, and ♦≤tφ, are equivalent to those of
equivalent non-metric formulae in the encoding presented in Section 2.4 for LTL.

PROOF. Formula ♦=tφ is equivalent to the LTL formula ◦tφ, hence we show that the metric
encoding of ♦=tφ is equivalent to the LTL encoding of ◦tφ.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:16 Pradella, Morzenti, San Pietro

In case i+t ≤ k, according to the metric encoding, |[♦=tφ]|i ←→ |[φ]|i+t (by the first line of Ta-
ble (10)), while, according to the LTL encoding, |[◦tφ]|i ←→ |[◦t−1φ]|i+1 ←→ |[◦t−2φ]|i+2 ←→
...←→ |[φ]|i+t, by repeated application of the first clause of Table (4).

In case i + t > k, in the metric encoding we have |[♦=tφ]|i ←→ 〈〈MF(φ, t − λi)〉〉; since
the future loop selector position h is the (only) value such that lh holds, then, from Table (9)
and the second line of Table (10), 〈〈MF(φ, t − λi)〉〉 ←→ |[φ]|h+mod(t−λi,λh); on the other
hand, according to the LTL encoding, we have, by repeated application of the first clause of Ta-
ble (4), |[◦tφ]|i ←→ |[◦t−(k−i)φ]|k; then by the last state constraint (clause 2), |[◦t−(k−i)φ]|k ←→
|[◦t−k+i−1φ]|h ←→ |[◦t−λiφ]|h; by repeatedly applying the first clause of Table (4) and the
last state constraint to cycle, possibly many times, through the forward loop, |[◦t−λiφ]|h ←→
|[◦mod(t−λi,λh)φ]|h ←→ |[φ]|h+mod(t−λi,λh).

Formula 2≤tφ, whose metric encoding is reported in the third line of Table (10), is equivalent
to the LTL formula

∧t
j=0♦=jφ. The encoding of those conjuncts ♦=jφ, for which i + j ≤ k,

corresponds to the part
∧min(t,λi−1)
j=0 |[φ]|i+j , while the encoding of those♦=jφ for which i+ j > k

(if there are any, i.e., if i+ t > k) is obtained by the part
∧t
j=λi
〈〈MF(φ, j − λi)〉〉 in the same line

of the Table (10). Therefore the correctness of the encoding of formula 2≤tφ follows directly from
that of ♦=tφ.

A similar reasoning applies to the metric encoding of formula ♦≤tφ, reported in the fourth
line of Table (10): notice that ♦≤tφ is equivalent to the LTL formula

∨t
j=0♦=jφ, that the

part
∨min(t,λi−1)
j=0 |[φ]|i+j takes care of the time points before the bound k, while the part∨t

j=λi
〈〈MF(φ, j − λi)〉〉 considers the values of j (if any) such that i+ j > k.

A first assessment of the encoding The behavior of the metric encoding has been first exper-
imented on the very simple specification of Example 2.1, using the non-metric encoding of Sec-
tion 2.4 and comparing it to the above metric encoding.

The experimental results (with the hardware and software setup described in Section 2.6) are
graphically shown in Figures 6,7, where Gen represents the generation phase, i.e., the generation
starting from the above specification, of a Boolean formula in conjunctive normal form, of size
CNF clauses, and Solver represents the verification phase, performed by a SAT solver, with a bound
k = 400 and various values of delay d (from 10 to 150). The first diagrams show the time, in
seconds, for Gen and Solver phases, using either a PLTL encoding or the metric encoding, as a
function of delay d, also reporting the number of CNF clauses, while the last diagram shows the
speedup, as the ratio between the PLTL encoding values and the metric encoding values, again as
a function of delay d. As one can see, the speedup obtained for both the Gen and Solver phases is
roughly proportional to delay d, and can be quite substantial (up to 300% for Solver and 700% for
Gen phases). Also the ratio between the size of the generated Boolean formula for PLTL and metric
encodings increases with the value of d and tends to reach a stable value around 145%.

These results can be explained by comparing the two encodings. In general, if a formula φ con-
tains a time constant, then the number of subformulae is much higher in the non-metric encoding
than in the metric one. For instance, in the above example, the non-metric encoding of ♦=dout is
translated into d nested applications of the next-time operator, ◦dout, hence there are d+ 1 subfor-
mulae, ◦iout for 0 ≤ i ≤ d, while in the metric encoding of♦=dout there are only two subformulae,
♦=dout itself and out. Concerning the number of generated Boolean variables, this is much higher
for the non-metric encoding, due to the presence of a larger number of subformulae.

Regarding the size of the generated constraints for the formula♦=dout, computed here as the sum
of the number of formula variables for each constraint, it is immediate to notice that propositional,
eventuality and loop constraints have the same size, which is O(k), in both encodings. The size of
the remaining constraints is shown in the following table, where MF constraints are those of Tables
(9) and (10) introduced for the metric encoding only.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Bounded Satisfiability Checking of Metric Temporal Logic Specifications A:17

10 30 50 70 90 110 130 150

Delay

0

100

200

300

400

500

600

700
Time (sec)

0,0E+00

5,0E+05

1,0E+06

1,5E+06

2,0E+06

2,5E+06

3,0E+06

3,5E+06

ClausesPLTL Encoding

10 30 50 70 90 110 130 150

Delay

0

100

200

300

400

500

600

700
Time (sec)

0,0E+00

5,0E+05

1,0E+06

1,5E+06

2,0E+06

2,5E+06

3,0E+06

3,5E+06

Clauses

CNF cl.
Gen
Solver

 Metric Encoding

Fig. 6. Summary of experimental data for the synchronous version of a Shift Register, with Generation time, Solver time
and number of generated CNF clauses plotted as functions of the delay. In each diagram, the left-hand vertical axis measures
time in seconds (for Generation and Solver), while the right-hand vertical axis measures the number of clauses (for CNF
clauses).

10 30 50 70 90 110 130 150

Delay

0

1

2

3

4

5

6

7
Gen and Solver ratios

1,1

1,2

1,3

1,4

1,5

Clauses ratio

CNF cl. ratio
Gen ratio
Solver ratio

 PLTL vs. Metric Ratio

Fig. 7. Ratios for Generation times, Solver times and CNF-clauses of PLTL vs. Metric encodings. The left-hand vertical
axis measures the ratio for Generation and Solver, while the right-hand vertical axis measures the ratio for CNF clauses.

Last state Temporal Sub. MF Total
PLTL 3k · (d+ 1) 2(k + 1) · d 0 5k · d+ 3k + 2d
Metric 6k 2(k + 1) 2(k + 1) + d · (2k + 1) 2k · d+ 10k + d+ 4

Thus, in the metric encoding we have O(d + k) variables (i.e., less than in the non-metric case)
and a size of constraints that is O(d · k), i.e. the same as in the non-metric case but with a smaller
constant factor (2 rather than 5). This is also clear from Figure 7, where the size saving tends to a
constant when d is large enough.

The analysis of the other metric temporal operators, 2≤tφ and♦≤tφ, leads to similar conclusions.

3.2. Mono-infinite encoding of past metric operators
Next, we present the constraints for past metric operators of Section 2.3, for a mono-infinite time
structure. Again, we will not consider the bounded since operator, because it is rarely used in prac-
tice and hard to optimize. Its current implementation is based on its translation using an approach
analogous to the one defined for until at the beginning of Section 3.1 (namely, using • instead of
◦). By virtue of Table I, we can consider only the following cases: �=t,�=t,�≤t,�≤tφ, assuming
moreover that t > 0 (since the case t = 0 is trivial). In the actual implementation in Zot, operators
�′≤t and �′≤t are natively encoded. Their encodings are straightforward variants of those of �≤t,
and �≤t, so we prefer their presentation here, for the sake of brevity.

The first group of constraints encode the past operators for all time points without considering
the possible presence of a future loop.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:18 Pradella, Morzenti, San Pietro

Fig. 8. An illustration of the Past in Loop constraint (ix) for �=10φ.

Fig. 9. An illustration of the Past in Loop constraint (ix) for �=30φ. Grey ¬φ’s are due to the bottom line of the constraint
(for 27 ≤ j ≤ 30).

ϕ 0 ≤ i < t
(i) �=tφ ¬|[�=tφ]|i
(ii) �=tφ |[�=tφ]|i
(iii) �≤tφ |[�≤tφ]|i ←→

∨i
j=0 |[φ]|j

(iv) �≤tφ |[�≤tφ]|i ←→
∧i
j=0 |[φ]|j

ϕ t ≤ i ≤ k + 1
(v) �=tφ |[�=tφ]|i ←→ |[φ]|i−t
(vi) �=tφ |[�=tφ]|i ←→ |[φ]|i−t
(vii) �≤tφ |[�≤tφ]|i ←→

∨t
j=0 |[φ]|i−j

(viii) �≤tφ |[�≤tφ]|i ←→
∧t
j=0 |[φ]|i−j

The next part is about the behavior of the past operators when a future loop is present. These
constraints are called stabilization forcing constraints in [Biere et al. 2006]. They are necessary,
because we do not use any virtual unrolling technique, so we need to force all past subformulae to
“stabilize” in the loop. In this case, since the state after Sk is Sh, then state Sh has two previous
states, namely Sh−1 and Sk. Therefore if any past formula stated inside the loop asserts a property
concerning states Sh−1, Sh−2, Sh−3, ..., then the encoding must ensure that the same property holds
for the state sequence Sk, Sk−1, Sk−2, ... as well.
Past in Loop constraints:

ϕ 1 ≤ i ≤ k

(ix) �=tφ li →

(∧min(t,i)
j=1 (|[φ]|i−j ←→ |[φ]|k−mod(j−1,λi))∧∧t

j=i+1

(
¬|[φ]|k−mod(j−1,λi)

))

(x) �=tφ li →

(∧min(t,i)
j=1 (|[φ]|i−j ←→ |[φ]|k−mod(j−1,λi))∧∧t

j=i+1

(
|[φ]|k−mod(j−1,λi)

))

ϕ 1 ≤ i ≤ k

(xi) �≤tφ InLoopi →

(
|[�≤tφ]|i ←→

(∨min(i,t)
j=0 (InLoopi−j ∧ |[φ]|i−j)∨∨min(k−i,t)

j=0 (¬InLoopmax(0,i−t+j) ∧ |[φ]|k−j)

))

(xii) �≤tφ InLoopi →

(
|[�≤tφ]|i ←→

(∧min(i,t)
j=0 (¬InLoopi−j ∨ |[φ]|i−j)∧∧min(k−i,t)

j=0 (InLoopmax(0,i−t+j) ∨ |[φ]|k−j)

))
Clause (ix) provides constraints that relate the value of φ inside the loop with that at time points

immediately preceding it, both inside and outside the temporal domain. Let us preliminarily remark

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Bounded Satisfiability Checking of Metric Temporal Logic Specifications A:19

that i − min(i, t) = 0 if i ≤ t, and i − min(i, t) = i − t if i ≥ t; therefore subformula |[φ]|i−j of
clause (ix) refers to the time points preceding i but only up to the distance t, or to time point 0, if the
latter is closer. Then, assuming that li holds, i.e., that the loop selector variable is true for position
i, the first line of the clause,

∧min(t,i)
j=1 (|[φ]|i−j ←→ |[φ]|k−mod(j−1,λi)), asserts that the value of φ

at the time points from i − 1 back to i − t (or to 0 if t ≥ i) are respectively equal to the value
of φ at the corresponding time points in the segment of the loop immediately preceding point k:
for each j, with 1 ≤ j ≤ min(t, i), the time point i − j outside the loop is matched by the point
k −mod(j − 1, λi) inside the loop. The expression mod(j − 1, λi) takes into account the fact that,
if j − 1 is greater than the loop length λi, one step is taken “back” from point i to point k, then the
loop is traversed div(j − 1, λi) times and finally mod(j − 1, λi) steps back from the last point k
are taken. The second line of the clause,

∧t
j=i+1

(
¬|[φ]|k−mod(j−1,λi)

)
, asserts that, if t > i so that

the formula �=tφ refers to a point i− t < 0 outside the temporal domain, since |[φ]|i−t is false by
convention, then the value |[φ]|k−mod(j−1,λi) referring to the corresponding point inside the loop,
must also be false.

Figure 8 illustrates the application of Clause (ix), to the formula �=10φ, evaluated at time i =
h = 26 so that li is true, highlighting the possible values of index j and showing the correspondence
between two particular points outside the loop and inside it. Since i > t the top line of clause (ix)
considers values of j such that 1 ≤ j ≤ 10; for the specific value of j = 3, the two matching points
inside and outside the loop are at instants 23 and 32.

Figure 9 also illustrates the application of clause (ix), now considering formula �=30φ (still eval-
uated at time i = h = 26), for which t > i, and shows the consequence of applying both the top and
bottom line parts. Concerning the top line, for the specific value of j = 23 the two matching time
points outside and inside the loop are the instants 3 and 30 (notice that 30 = 34−mod(23− 1, 9):
the loop is traversed twice). Concerning the bottom line of clause (ix), the grey ¬φ’s correspond to
values of index j such that 27 ≤ j ≤ 30.

Clause (x) is analogous to clause (ix), except for the different default value of φ outside the time
domain.

Clause (xi) provides constraints, additional to those of clauses (iii) and (vii), for the case in which
formula �≤tφ is evaluated inside the loop (i.e., variable InLoopi is true). Its two lines refer to sets
of time points, where the subformula φ may hold, that precede point i (top line) or follow it (bottom
line). The bottom line uses a correspondence between time points i − t + j, and time points k − j
based on the common value for variable j, as explained, and illustrated through examples, in the
next paragraph.

Figure 10 and Figure 11 illustrate how index j is used in the bottom line of clause (xi) to denote
corresponding time points inside and outside the loop. Figure 10 refers to a case in which i > t,
hence all referenced time points are inside the time domain, while Figure 11 considers a case in
which i < t, so that some of the referenced time points are outside the time domain. It can be
noticed that, in the bottom line of clause (xi), increasing values of index j denote a sequence of time
points from left to right when outside the loop, and from right to left when inside the loop.

Clause (xii) is the dual of clause (xi) and uses the same indexing method to denote the relevant
time points.

In Figure 12 a scenario for the formula �≤5φ, evaluated at instant i = 8, and with l6 true, is
presented. It can be noticed that i > t, so that all referenced time points are inside the time domain.
The top line of constraint (xii) requires the three occurrences of φ at instants from 6 to 8, while the
bottom line corresponds to the parts depicted in grey. In fact, instants from 3 to 5 are outside the
loop, hence φ must hold at the corresponding instants k − 2, k − 1, and k.

Figure 13 depicts a scenario for the formula �≤10φ, evaluated at instant i = 8, and with l6 true.
Now i < t, so that some of the time points referenced by the �≤10φ formula are outside the time
domain. Again the first line requires the three φ at instants from 6 to 8; now the referenced time
points outside the loop include all instants from 0 to 5 and they correspond to time instants from
k − 5 to k, where the φ is depicted in grey.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:20 Pradella, Morzenti, San Pietro

Fig. 10. An illustration of the Past in Loop constraint (xi) for �≤5φ.

Fig. 11. An illustration of the Past in Loop constraint (xi) for �≤10φ.

Fig. 12. An illustration of the Past in Loop constraint (xii) for �≤5φ. The black φ’s derive from the top line of the
constraint, while the parts from the bottom line are depicted in grey.

LEMMA 3.2. Correctness of the mono-infinite encoding for past metric operators. The above
metric encodings of the four basic operators �=t,�=t,�≤t,�≤tφ are consistent with the semantics
of PLTL as defined in Sections 2.2 and 2.3.

PROOF. We consider in turn the four operators.
Let us first consider the operator �=t. Clause (i) encodes the fact that �=tφ is false when asserted

at a time point i < t, and clause (v) that �=tφ asserted at time i ≥ t is equivalent to φ asserted at
i− t. Clause (ix) encodes the stabilization forcing constraints, ensuring that past formulas are stable
in the future loop. It encodes the relation between the values of the φ subformula at corresponding
time points, inside the loop and outside it, that are within the stated distance t: the top line concerns
points, outside the loop, that are inside the time domain, while the bottom line covers any point
outside the time domain, where φ is conventionally false.

Considering the operator �=t, clauses (ii), (vi), and (x) are dual of clauses (i), (v), and (ix), in
line with the fact that formula �=tφ is conventionally true when asserted at a time point i < t.

For what concerns operator �≤t, clause (iii) considers the case when i < t and states that only the
values of φ at time points from 0 to i determine the value of �≤tφ at time i < t. Clause (vii) covers
the case in which i ≥ t: then it considers the value of φ at all time points from i−t to i, since they are
all inside the temporal domain. Clause (xi) encodes the stabilization forcing constraints. Its top line
concern points, where the subformula φ may hold, that precede point i. In this case the subformula∨min(i,t)
j=0 (InLoopi−j ∧ |[φ]|i−j) states that |[φ]| holds at some of the time points preceding i: by

means of the upperbound min(i, t) in the value of index j, it ensures that the considered time points,
preceding i, where |[φ]| is required to hold, are at most t and do not precede the initial time instant

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Bounded Satisfiability Checking of Metric Temporal Logic Specifications A:21

Fig. 13. An illustration of the Past in Loop constraints (xii) for �≤10φ. The black φ’s derive from the top line of the
constraint, while the parts from the bottom line are depicted in grey.

0. The bottom line of clause (xi)
min(k−i,t)∨

j=0

(¬InLoopmax(0,i−t+j) ∧ |[φ]|k−j)

encodes the stabilization forcing constraints by ensuring that if |[φ]| holds for states Sh−1, Sh−2,
Sh−3, ..., then it holds also for the state sequence Sk, Sk−1, Sk−2, The subformula asserts that
|[φ]| holds at some of the time points that are inside the loop, following point i: these points are
denoted by k−j, with j ∈ [0..min(k−i, t)], and match, through the value of index j, points i−t+j
that precede i and are positioned outside the loop, as expressed by the negated variable InLoop. Since
variable InLoop is defined only for non-negative time instants, the subformula ¬InLoopmax(0,i−t+j)
includes the subscript max(0, i − t + j), which ensures that no reference is made to negative time
points positioned outside the time domain.

Concerning the operator �≤t, clauses (iv) and (viii) are dual to clauses (iii) and (vii) where dis-
junctions are substituted by conjunctions, in agreement with the universal quantification expressed
by the operator. Clause (xii) is dual of clause (xi), and uses the same indices to denote the same
points.

3.3. Experimental results
Figure 14 summarizes the comparison of metric and PLTL encodings on the various case studies
(with the usual exception of the bi-infinite allocator), including both operational and descriptive
models. We computed the ratio of the results obtained by using the PLTL encoding of Section 2.4
and the results obtained by using the metric encoding of this section, and then averaged over the
usual bounds 30, 60 and 90 and the various properties checked for each model. On average, the ratio
are 1.60, 1.88 and 1.28 for Gen time, Solver time and CNF clauses, respectively. However, there is
large variability, since operational models have often a lower ratio. For instance, the operational
models for Fischer and the synchronous shift register are close to a ratio of 1. This is due to the
fact that the operational models do not use metric operators: the ratio for an operational model is
around 1 (i.e., no gain and no loss), unless the property to be analyzed is a metric formula. Both
descriptive models with metric constraints and operational models to be checked against complex
metric temporal properties may instead considerably gain by using the metric encoding, such as in
the case of the Kernel Railroad Crossing and the Timed Lamp.

4. BI-INFINITE TIME
Historically, past operators and bi-infinite time are as old as temporal logic itself [Prior 1967],
and widely adopted in logic and philosophy [Rescher and Urquhart 1971]. The reason is that all
definitions are symmetrical and one has not to worry of a “first time instant”. In computer science,
however, mono-infinite time has been almost universally used. One of the likely reasons is that
temporal logic was introduced to study properties of programs and of finite-state models [Pnueli
1977], i.e., of computational systems with an initial state, whose typical models are ω-words or
mono-infinite computation paths. Following this approach, only future temporal operators were
considered. When past operators [Lichtenstein et al. 1985] were introduced in computer science,

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:22 Pradella, Morzenti, San Pietro

fis
ch

er
-3

-4
-d

e
fis

ch
er

-3
-4

-o
p

fis
ch

er
-4

-5
-d

e
fis

ch
er

-4
-5

-o
p

kr
c-

sa
fe

-u
til

-d
e

kr
c-

sa
fe

-u
til

-o
p

kr
c-

sa
fe

-u
til

-d
e2

kr
c-

sa
fe

-u
til

-o
p2

la

m
p-

10
-d

e
la

m
p-

10
-o

p
la

m
p-

15
-d

e
la

m
p-

15
-o

p
la

m
p-

20
-d

e
la

m
p-

20
-o

p

sh
ift

-a
sy

nc
-d

e-
20

sh
ift

-a
sy

nc
-o

p-
20

sh
ift

-a
sy

nc
-d

e
sh

ift
-a

sy
nc

-o
p

sh
ift

-s
yn

c-
de

sh
ift

-s
yn

c-
op

0

0,5

1

1,5

2

2,5

3

3,5

4

R
a
ti

o

Average Gen ratio
Average Solver ratio
Average CNF cl. RatioComparison of PLTL vs. Metric encoding

Fig. 14. Summary of experimental comparison of PLTL vs. metric encodings. The comparison is expressed as the average
ratio of time (for Gen and Sat) or Clauses (for CNF clauses) obtained in the PLTL encoding and in the metric encoding of
the same specification. The higher the ratio the better the performance of the metric encoding with respect to the PLTL one.

because of their convenience and conciseness in many cases, the underlying models were still ω-
words. Later, also model checking, developed for the verification of finite transition systems with
initial states, again considered only ω-words.

However, when temporal logic is used to describe not only properties but also to specify (parts
of) a complete system, then it is more natural to adopt bi-infinite time. Hence, our own past works
with TRIO [Ghezzi et al. 1990; Morzenti and San Pietro 1994; Ciapessoni et al. 1999; Gargantini
and Morzenti 2001] on temporal logic specifications always considered bi-infinite time, although
allowing for different time domains when needed [Morzenti et al. 1992; Felder and Morzenti 1994;
Mandrioli et al. 1995; San Pietro et al. 2000], e.g. for verification.

Here we argue that interpreting a PLTL specification on bi-infinite time may be convenient to
allow for more abstract and simpler specifications.

First, analogously to the mono-infinite case where termination may be ignored, bi-infinite time
is convenient to deal with system models where initialization may be ignored. This may add an-
other layer of abstraction, since one can write specifications that are simpler and more easily un-
derstandable, because they do not include the description of the operations (such as configuration,
installation, . . .) typically performed at system deployment time. For instance, for reactive systems
embedded into devices that continuously monitor or control some process, initialization may often
be ignored and one may focus only on routine behavior.

Second, bi-infinite time for PLTL also helps in solving a technical problem, called the “border
effect” [Morzenti et al. 1992; Coen-Porisini et al. 1998], which may make specification rather cum-
bersome. The problem arises in conjunction with bounded temporal operators, such as the “previous
time” • operator. We show here some of these issues through examples.

Example 4.1. A PLTL version of the synchronous shift register Consider again Example 2.1,
where a transmission line receives one bit at one end and delivers it at the opposite end with a fixed
delay d. Assume that d = 1. The following PLTL formula, which uses • rather than ◦, expresses that
every received message is delivered, and no spurious message is emitted (i.e., every out is preceded

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Bounded Satisfiability Checking of Metric Temporal Logic Specifications A:23

by an in and if there is no out then there was no in).

� ((out→ •in) ∧ (¬out→ •¬in)) (11)

Since time is finite “on the left”, the evaluation of past operators may be problematic at the very
first time instant. The traditional solution, already used in the encoding of Section 2.4 is to return
a “default” false value when the evaluation of a subformula is outside the time domain (the typical
PLTL semantics of •φ is w, i |= •φ ⇐⇒ i − 1 ≥ 0 ∧ w, i − 1 |= φ, which is false if i = 0).
This definition may easily lead to subtle specification errors. For instance, the above specification
not only is not equivalent to the one given in Example 2.1 for d = 1, but it is even unsatisfiable: at
instant 0, both •¬in and •in are false. Therefore, at instant 0, if out holds then formula out→ •in is
false; otherwise, out does not hold at 0 and ¬out→ •¬in is false. But if we rewrite •¬in as ¬• in,
the original formula becomes satisfiable. This is because, in general ¬•φmay have a different value
from •¬φ. Hence, for instance, Property (11) above is not equivalent to �(out ←→ •in), which,
by definition of Boolean operator←→, is �((out → •in) ∧ (•in → out)). This behavior may be
somehow “fixed” by allowing two different forms of the • operators, the second one being defined
to the default true value when its argument cannot be evaluated: this dual version of • is usually
denoted by •′ and was introduced in Section 2.4 with the goal of allowing positive normal form.
This is clearly cumbersome and counterintuitive.

Similar, and sometimes more serious, semantic problems arise for the other past operators of
metric temporal logic. Clearly, the same example above, for the case d > 1, can be stated as:

� ((out→ �=din) ∧ (¬out→ �=d¬in)) (12)

which gives the same semantics problems. A correct reformulation is:

� ((out→ �=din) ∧ (¬out→ �=d¬in))

since �=d,�=d are, respectively, false and true by default in the time instants from 0 to d − 1,
regardless of the value of their arguments.

Example 4.2. A simple monitoring system Another example with other metric operators is a
monitoring system that must guarantee that when the monitored system is warm for at least 5
consecutive time instants then an alarm condition is raised, which is then withdrawn immediately
when the system cools down. A very simple, but wrong, specification of this property is:

�(alarm←→ �≤5warm).

The above formula is wrong since, for example, a single instance of warm at instant 0 would cause
an incongruous alarm at instant 1. Its correct specification relies instead on operator �′≤5, which is
false by default in the first 4 time instants, hence no spurious alarm may be raised:

�(alarm←→ �′≤5warm).

Other examples can be found in [Coen-Porisini et al. 1998], where a different solution is pro-
posed, which however changes the semantics of temporal logic: Kleene’s three-valued logic is used
for the propositional part, with the third value standing for “unevaluatable”. That approach has not
found generalized adoption, also because it may hamper bounded model checking verification, since
a three-valued logic has a more complex and lengthy Boolean encoding.

The simplest and most effective solution is to adopt bi-infinite time, where the past operators are
always defined. Examples 4.1 and 4.2 can be written, respectively, as:

Alw ((out→ �=din) ∧ (¬out→ �=d¬in)) ,

and

Alw(alarm←→ �≤5warm).

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:24 Pradella, Morzenti, San Pietro

Fig. 15. A bi-infinite behavior of the real-time allocator.

With bi-infinite time, the outermost operator is typically Alw, rather than �, since the intended
meaning is that the formula must hold “for every instant”, while � only means “for every instant
from now on”.

For instance, there is no spurious alarm in this version of Example 4.2, since �≤5warm is true
if and only warm holds for at least 5 consecutive instants in the past, without exceptions.

Notice that the usage of bi-infinite time does not rule out finite or infinite-in-future behaviors. The
last formula allows finite, infinite-in-the-future, infinite-in-the-past and bi-infinite intervals where
alarm and warm may occur. If infinite-in-the-past intervals are to be ruled out, e.g., because the
system has an initial state, it is enough to add the axiom: Som(�¬warm) (again, notice the use of
Som with bi-infinite time rather than ♦). In fact, bi-infinite time allows for the explicit modeling
of the initial state of a system, and hence it incurs in no loss of expressive power (e.g., just use
a propositional symbol start, with the additional constraint that start must occur exactly once at
some time and nothing happens before it).

Similarly, above formula (12) (which was “wrong” on mono-infinite time) when written as:

Alw ((out→ �=din) ∧ (¬out→ �=d¬in))

has the correct meaning and it is equivalent, unlike in the mono-infinite case, to:

Alw ((out→ �=din) ∧ (¬out→ �=d¬in))

since in bi-infinite time �=din is equivalent to �=din.

Example 4.3. Real-time allocator As a more complex example of a formula that can be cor-
rectly analyzed only with respect to a bi-infinite time domain, let us consider the assumption of
unconstrained rotation, for the real-time allocator case study (see Section 2.5.3), under which the
property of conditional fairness can be correctly checked. The property specifies that a process will
ask for the resource only after all other ones have requested and obtained it, without imposing any
specific order in the requests (the predicates used in the formula are explained in Section 2.5.3).

∀p Alw

 rq(p)→

∀q
(
q 6= p→ •

(
¬rq(p) S

(
rq(q)∧

◦♦≤Treq
gr(q)

)))
If unconstrained rotation is checked for satisfiability with reference to a mono-infinite time do-
main (this requires to replace the outermost Alw operator with the future-only operator �) the
only obtained behavior is the one where there is no request and the resource is always available;
if one imposes, by means of an additional formula, the presence of some request, then the overall
property (unconstrained rotation and presence of some request) is unsatisfiable. The property of
unconstrained rotation is however satisfiable in a non-trivial way with respect to a bi-infinite time
domain: Figure 15 shows a bi-infinite behavior that satisfies it. The bi-infinite time domain is rep-
resented by means of two loops, one for the future and one for the past (the past loop is introduced
in the coming Section 4.1); the two loops overlap, as they share the time points from 1 to 7. For the

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Bounded Satisfiability Checking of Metric Temporal Logic Specifications A:25

Sh' Sh'+1 Sh-1 Sh Sk=Sh-1S0=Sh'+1

Fig. 16. A bi-infinite temporal structure

sake of readability the figure includes only the predicates available, rq, gr, rel; requests by the three
processes repeat indefinitely, in the order rq(1)− rq(2)− rq(3), both in the future and in the past.

Semantics The semantics of PLTL and MPLTL is here defined on bi-infinite words. A bi-infinite
word w over a finite alphabet Σ is a function w : Z −→ Σ. A bi-infinite language is a set of bi-
infinite words. Finite automata and linear temporal logic formulas with an outermost Alw or Som
operator may only define shift invariant languages [Perrin and Pin 2004], i.e., languages where
instant 0 (the “origin” for ω-words) has no special role.

The definition in Sections 2.2, 2.3 of the semantics is unchanged when w is a bi-infinite word
and index i ranges on Z, except for the following cases, corresponding to past operators (S is not
reported since it is equivalent to S≥0):

w, i |= •φ ←→ w, i− 1 |= φ
w, i |= φS∼tψ ←→ ∃k ≥ 0 : k ∼ t, w, i− k |= ψ, and ∀0 ≤ j < k : w, i− j |= φ.

A formula φ on a propositional alphabet Ap is satisfiable if there exists a bi-infinite word
w ∈ (2Ap)Z such that w, 0 |= φ. Satisfiability at instant 0 is only conventional, because of shift
invariance.

This semantics is simpler than the mono-infinite one, being symmetrical, since • has no condition
i ≥ 0 and S,S∼t have no condition i − k ≥ 0: • and S are indeed defined as the past duals of ◦
and U , respectively. Clearly, all “primed” versions of the past operators are not needed now, e.g.,
the bi-infinite semantics of •′ is the same as that of •.

Finite automata can easily be adapted to work with bi-infinite words. While a standard Büchi
automaton at instant 0 must start in one of the prescribed initial states, a bi-infinite automaton has
an initial condition which is analogous to the Büchi acceptance condition, but towards the past: the
automaton must traverse an initial state infinitely often in the past. Instant 0 has instead no special
role since it is not used to represent the initial configuration of the system. We refer the interested
reader to [Gire and Nivat 1991; Perrin and Pin 2004] for formal definitions and basic properties of
automata on bi-infinite words.

4.1. Bi-infinite Encoding of PLTL
The goal of this section is to show that the techniques developed for Bounded Model Checking
[Biere et al. 1999] may be adapted to deal with temporal logic specifications on bi-infinite time.
Defining semantics for PLTL is more natural on a bi-infinite time domain, because in this case past
and future have the same role and importance, and actually leads to a simpler encoding than in
the mono-infinite case. The encodings and basic results of this section were originally presented in
[Pradella et al. 2007; 2008a], and [Pradella et al. 2009] for the metric part.

A bounded bi-infinite temporal structure is shown in Figure 16. As the reader may notice, it is
a natural extension of the mono-infinite structure: the loops are now at most two, one towards the
future (as before), and a new one towards the past. There are new loop selector variables l′i to define
the loop which goes towards the past, and the corresponding propositional letters InLoop′i, and
LoopExists′. Like in the mono-infinite case, we will use in the description of the encoding the
letter h to denote the value of i for which li, and analogously we will use h′ for l′i. In the picture the
two loops do not overlap, since h′ < h, but the encoding admits also the case in which h′ is greater
than h.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:26 Pradella, Morzenti, San Pietro

Analogously to the mono-infinite case, to perform BMC we represent symbolically the transition
relation of the systemMS as a propositional formula. The k-times unrolling of the transition relation
represents all the finite paths of length k:

|[MS]|k ←→ I(S0) ∧
∧

0≤i<k

T (Si, Si+1)

where T is a total transition relation predicate. Notice that, being the transition system MS defined
on a bi-infinite temporal domain, I(S0) is a condition on a special instant 0, which is propagated
forward and backward by the unrolling of the transition relation. Although I(S0) may be used,
analogously to an initial state predicate in mono-infinite time, to avoid incorrect states, such as
unacceptable system configurations, S0 is not the initial state of the system.

To define the bi-infinite encoding of PLTL, Propositional constraints, Loop constraints, Eventu-
ality constraints and Last state constraints are defined, respectively, as in Tables (3), (1), (5) and
(2) of Section 2.4. For the remaining constraints, it is necessary to introduce a special instant -1,
which has a symmetric role of instant k + 1: if there is a loop in the past at position i then at state
S−1 and Si formulae must have the same truth value. Hence, it is necessary to add a new variable
|[φ]|−1 for each subformula φ of Φ. Temporal subformulae constraints include a slightly modified
version of Table (4) for the future operators and a new set of constraints for the past operators (i.e.,
the back-loops):

Temporal subformulae constraints:

ϕ −1 ≤ i ≤ k
◦φ1 |[◦φ1]|i ←→ |[φ1]|i+1

φ1Uφ2 |[φ1Uφ2]|i ←→ |[φ2]|i ∨ (|[φ1]|i ∧ |[φ1Uφ2]|i+1)
φ1Rφ2 |[φ1Rφ2]|i ←→ |[φ2]|i ∧ (|[φ1]|i ∨ |[φ1Rφ2]|i+1)

(13)

ϕ 0 ≤ i ≤ k + 1
•φ1 |[•φ1]|i ←→ |[φ1]|i−1

φ1Sφ2 |[φ1Sφ2]|i ←→ |[φ2]|i ∨ (|[φ1]|i ∧ |[φ1Sφ2]|i−1)
φ1T φ2 |[φ1T φ2]|i ←→ |[φ2]|i ∧ (|[φ1]|i ∨ |[φ1T φ2]|i−1)

(14)

Symmetrically to the mono-infinite encoding of eventualities, there are new loop selector vari-
ables l′i, 0 ≤ i ≤ k, to define the loop which goes towards the past, and the corresponding proposi-
tional letters InLoop′i, and LoopExists′.

The variables defining the loops are constrained by the following set of formulae.
Loop constraints in the past:

Base ¬l′k ∧ ¬InLoop′k

1 ≤ i ≤ k (l′i → Si+1 = S0) ∧ (InLoop′i ←→ InLoop′i+1 ∨ l′i)
(InLoop′i+1 → ¬l′i) ∧ (LoopExists′ ←→ InLoop′0)

(15)

The above loop constraints state that the structure may have at most one loop in the past. In the
case of a cyclic structure, they allow the SAT solver to select nondeterministically exactly one of
the many possible values of the loop selector variables.

Past Eventuality constraints, symmetrical to the future ones of Tables (5) and (6), are applied to
operators S and T , by introducing propositional letters 〈〈�φ2〉〉 and 〈〈�φ2〉〉, as follows.

Past Eventuality constraints:

ϕ Base
φ1Sφ2 ¬〈〈�φ2〉〉k ∧ (LoopExists′ → (|[φ1Sφ2]|0 → 〈〈�φ2〉〉0))
φ1T φ2 〈〈�φ2〉〉k ∧ (LoopExists′ → (|[φ1T φ2]|0 ← 〈〈�φ2〉〉0))

(16)

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Bounded Satisfiability Checking of Metric Temporal Logic Specifications A:27

ϕ 0 ≤ i ≤ k − 1
φ1Sφ2 〈〈�φ2〉〉i ←→ 〈〈�φ2〉〉i+1 ∨ (InLoop′i ∧ |[φ2]|i)
φ1T φ2 〈〈�φ2〉〉i ←→ 〈〈�φ2〉〉i+1 ∧ (¬InLoop′i ∨ |[φ2]|i)

(17)

Finally, symmetrically to the last state constraints of Table (2), we define first state constraints, to
ensure that if there is no loop in the past then everything is false before instant 0, and that state S−1

and Si are equivalent if there is a loop at instant i.
First state constraints:

Base ¬LoopExists′ → ¬|[φ]|−1

0 ≤ i ≤ k − 1 l′i → (|[φ]|−1 ←→ |[φ]|i) (18)

4.2. Bi-infinite Encoding of metric temporal logic
This section presents the encoding of temporal operators for bi-infinite time, first focusing on past
time operators and then on future ones.

The primitive past operator of metric temporal logic is Bounded Since, S∼t, where ∼∈ {≤,
=,≥} and t is a natural number. As it was the case for the future fragment of MPLTL, the usage of
S∼t as the only primitive operator, while sufficient for what concerns expressive power, may lead
to a very large encoding when constants t are large. In practice, �∼t and its dual �∼t are much
more common, and their encoding, rather than following their definition as derived from S∼t, can
be made much more compact.

The encoding is defined as follows. First, analogously and symmetrically to the MF variables,
〈〈MP(ψ, j)〉〉 are introduced for past operators with argument ψ, and represent the value of ψ j time
units before the starting point of the past loop. E.g., if the past loop selector is at instant 7 (i.e. l′7),
then 〈〈MP(ψ, 2)〉〉 represents |[ψ]|7−2.

Analogously to the mono-infinite case, we introduce the two following abbreviations λi = k −
i+ 1 and λ′i = i+ 1, denoting the length of the intervals [i..k] and [0..i], respectively.

The first constraints are introduced to define MP for every metric subformula of Φ: Table (19) is
the symmetrical version, for the past operators, of Table (9), valid for future ones.

ϕ 0 ≤ j ≤ t− 1

�=tφ, �≤tφ, �≤tφ 〈〈MP(φ, j)〉〉 ←→
∨k−1
i=0 l

′
i ∧ |[φ]|i−mod(j,λ′

i)
(19)

Next we provide the translation of the past metric operators. Table (20) is the past counterpart of
Table (10).

ϕ 0 ≤ i ≤ k + 1
�=tφ |[�=tφ]|i ←→ |[φ]|i−t, when i ≥ t

|[�=tφ]|i ←→ 〈〈MP(φ, t− λ′i)〉〉, elsewhere
�≤tφ |[�≤tφ]|i ←→

∧min(t,λ′
i−1)

j=0 |[φ]|i−j ∧
∧t
j=λ′

i
〈〈MP(φ, j − λ′i)〉〉

�≤tφ |[�≤tφ]|i ←→
∨min(t,λ′

i−1)
j=0 |[φ]|i−j ∨

∨t
j=λ′

i
〈〈MP(φ, j − λ′i)〉〉

(20)

Up to this point, the encoding was completely symmetrical to the future case. However, the pres-
ence of both past and future loops determines some change in the Loop Constraints; we illustrate
them on the past operators.

Table (21) reports the Loop Constraints for the past operators �=tφ, �≤tφ, and �≤tφ.
Table (22) displays the Loop Constraints for the future operators ♦=tφ, 2≤tφ, and ♦≤tφ, which

are perfectly symmetrical to the clauses of Table (21).

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:28 Pradella, Morzenti, San Pietro

Past in Loop constraints:

ϕ 1 ≤ i ≤ k

�=tφ li →

(∧min(t,λ′
i−1)

j=1 (|[φ]|i−j ←→ |[φ]|k−mod(j−1,λi))∧∧t
j=λ′

i

(
〈〈MP(φ, j − λ′i)〉〉 ←→ |[φ]|k−mod(j−1,λi)

))

�≤tφ InLoopi →

(
|[�≤tφ]|i ←→

(∨min(i,t)
j=0 (InLoopi−j ∧ |[φ]|i−j)∨∨min(k−i,t)

j=0 (¬InLoopmax(0,i−t+j) ∧ |[φ]|k−j)

))

�≤tφ InLoopi →

(
|[�≤tφ]|i ←→

(∧min(i,t)
j=0 (¬InLoopi−j ∨ |[φ]|i−j)∧∧min(k−i,t)

j=0 (InLoopmax(0,i−t+j) ∨ |[φ]|k−j)

)) (21)

Future in Loop constraints:

ϕ 0 ≤ i ≤ k − 1

♦=tφ l′i →

(∧min(t,λi−1)
j=1 (|[φ]|i+j ←→ |[φ]|mod(j−1,λ′

i)
)∧∧t

j=λi

(
〈〈MF(φ, j − λi)〉〉 ←→ |[φ]|mod(j−1,λ′

i)

))

♦≤tφ InLoop′i →

(
|[♦≤tφ]|i ←→

(∨min(k−i,t)
j=0 (InLoop′i+j ∧ |[φ]|i+j)∨∨min(i,t)

j=0 (¬InLoop′min(k,i+t−j) ∧ |[φ]|j)

))

2≤tφ InLoop′i →

(
|[2≤tφ]|i ←→

(∧min(k−i,t)
j=0 (¬InLoop′i+j ∨ |[φ]|i+j)∧∧min(i,t)
j=0 (InLoop′min(k,i+t−j) ∨ |[φ]|j)

)) (22)

LEMMA 4.4. Correctness of the bi-infinite encoding for past metric operators. The bi-infinite
encodings of the metric temporal logic for the past operators �=t,�≤t,�≤tφ (Tables from (19) to
(22)) are consistent with the semantics of metric PLTL as defined in Section 4.

PROOF. We focus on the clauses of Table (21) because Tables (19) and (20) are the symmet-
ric counterpart of Tables (9) and (10), and the clauses of Table (22) are analogous, for the future
operators, to those of Table (21).

First, let us notice that the two operators �=tφ and �=tφ now coincide, because of the presence
of the past loop, which makes it unnecessary to assign a conventional value to formulae at time
points preceding instant 0, hence the two clauses (ix) and (x) of Section 3.2 are replaced by the first
clause of Table (21).

The top line of this clause states that, for every time point (denoted as i− j) preceding the current
time i and back to a distance t or to the initial time point 0, φ holds if and only if it also holds at a
corresponding instant inside the future loop (denoted by the usual notation k−mod(j−1, λi)). The
bottom line of the clause for �=tφ concerns the case in which t > i, hence the formula refers to a
time point preceding the first time instant of the time domain. Due to the past loop, the value of the
subformula φ at that point is encoded as 〈〈MP(φ, j − λ′i)〉〉, where j − λ′i is the distance between
the initial time 0 and the referenced time point i− j; the value of subformula φ inside the past loop
is equal to the value of φ at the corresponding position inside the future loop, which is, as usual,
denoted as k −mod(j − 1, λi).

Next, concerning operators �≤tφ and �≤tφ, we notice that the second and third clauses of Ta-
ble (21), are identical to clauses (xi) and (xii) of Section 3.2: all these clauses do not refer to the
value of subformula φ before the initial time 0, because their purpose is to encode the value of φ at
the time points that belong to the future loop.

Figure 17 illustrates the application of the bottom line of the first clause of Table (21) to the
formula �=11φ with reference to a case where k = 14, i = h = 8, and h′ = 5, so that λi = 7 and
λ′i = 9

The presence of bi-infinite time doubles the loop constraints but does not introduce any additional
complexity. In fact, thanks to the complete symmetry of bi-infinite time, the constraints of Table

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Bounded Satisfiability Checking of Metric Temporal Logic Specifications A:29

Fig. 17. An illustration of the loop constraint for �=11φ.

fis
ch

er
-3

-4
-d

e

fis
ch

er
-3

-4
-o

p

fis
ch

er
-4

-5
-d

e

fis
ch

er
-4

-5
-o

p

kr
c-

sa
fe

-u
til

-d
e

kr
c-

sa
fe

-u
til

-d
e2

kr
c-

sa
fe

-u
til

-o
p

kr
c-

sa
fe

-u
til

-o
p2

la
m

p-
10

-d
e

la
m

p-
10

-o
p

la
m

p-
15

-d
e

la
m

p-
15

-o
p

la
m

p-
20

-d
e

la
m

p-
20

-o
p

sh
ift

-a
sy

nc
-d

e-
20

sh
ift

-a
sy

nc
-d

e

sh
ift

-a
sy

nc
-o

p-
20

sh
ift

-a
sy

nc
-o

p

sh
ift

-s
yn

c-
de

sh
ift

-s
yn

c-
op

1,00

1,50

2,00

2,50

3,00

3,50

R
a
ti

o

Average Gen ratio
Average Solver ratio
Average CNF clauses ratio

Comparison of bi-infinite vs. monoinfinite encodings

Fig. 18. Summary of experimental comparisons for bi-infinite vs. mono-infinite encodings. The comparison is expressed
as the average ratio of time (for Gen and Sat) or Clauses (for CNF clauses) obtained in the bi-infinite case and in the
monoinfinite case of the same specification. The higher the ratio the lower the performance of a bi-infinite verification with
respect to the mono-infinite one.

(21) and (22) are even more compact than the corresponding Past in Loop Constraints presented in
Section 3.2 for the mono-infinite case.

4.3. Experimental results with the bi-infinite encoding
The results of the experiments carried out to compare the tool performance on the bi-infinite vs.
mono-infinite time domain are shown in Figure 18, which, as in previous comparisons, shows fig-
ures for Generation time, Solver time, and number of generated CNF clauses for all case studies ex-
cept the Real-time allocator example (where the mono-infinite case is not meaningful). The values
concerning generation (generation time and number of generated CNF clauses) are quite uniform,
with the ratio bi-infinite/mono-infinite never rising significantly above the value of 2. Such value
clearly derives from the fact of having to encode the presence of two loops in the time structure.
The values for the ratio of the SAT solver times are less uniform, since they are more dependent on
the intrinsic timing features of each single case study, but they are around 2 and all below 3.5.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:30 Pradella, Morzenti, San Pietro

Based on these results we can consider the overhead deriving by the adoption of bi-infinite time
structure for Bounded Satisfiability Checking to be acceptable in practice; in addition, bi-infinite
time allows us to avoid the subtle semantic problems of combining past operators with a mono-
infinite semantics. However, this advantage is less clear with the much more common BMC ap-
proach to specification and verification: in most cases in the literature, the abstract model of the
system is operational and some simple PLTL formulae only state a few general system properties to
be verified. Operational models are typically mono-infinite, with an initial state predicate ruling out
certain ”bad“ states, since this is the way operational models have always been conceived, and the
main advantage of bi-infinite time (avoiding very frequent and subtle semantic problems in PLTL
formulae) is at least partially lost.

5. A COMPARISON OF BSC AND BMC: DESCRIPTIVE VS. OPERATIONAL MODELS
In the present section, we explore in more depth analogies and differences between bounded satisfi-
ability checking and (bounded) model checking, in order to assess the merits of the two approaches,
also by means of a detailed performance comparison. We observe that, from a temporal logic spec-
ification viewpoint, a state-transition system MS differs from a descriptive model ΦS of the same
system. As already outlined, in our approach ΦS is a MPLTL formula, without particular restric-
tions on the temporal operators occurring in the formula itself. Hence, ΦS may refer to any instant
in the past or in the future. Instead, MS directly relates pairs of states occurring in two consecutive
time instants, (the current state and the next one) with no possible reference to states in other time
points, neither in the past nor in the future. The actual encoding of the state-transition system MS

is the one given in Section 2.4. On the other hand, we note that MS may be expressed as a temporal
logic formula, of the very special form

Alw

 ∧
1≤i≤h

Ci → ◦Ni

where h > 1 is the number of transitions and Ci, Ni are Boolean formulae. For simplicity and to
avoid the introduction of another notation, in the rest of the paper we will use this representation
and often leave Alw and

∧
implicit, writing only the clauses.

MS , though it can be made more abstract through nondeterminism, is more constrained than ΦS ,
because it only relates states in two consecutive time instants. As a consequence of these stronger
syntactic constraints, MS is also bound to be more detailed: in order to characterize the behavior
of the modeled system by means of a set of transitions that refer only to the present and next
time instants, it must convey, for each time instant, a larger amount of information, adequate to
completely determine the subsequent evolution of the modeled system.

Therefore, MS typically (but not necessarily) has a larger alphabet than a descriptive model, with
the additional elements of the alphabet consisting of internal state variables needed to implement
the properties that are stated, in an abstract style, by the descriptive model.

As a simplest example, consider the Synchronous Shift Register of Example 2.1 (where, at each
clock tick, an input bit is shifted one position to the right), and assume that the observable interface
of this system consists only of the input and output bits at the two ends of the register. A descriptive
model of this system is provided by its concise MPLTL specification (where the outermost operator
is Alw, since bi-infinite time is considered):

Alw(in←→ ♦=dout).

To provide a description of the synchronous shift register in terms of a state-transition system which,
based on the current state, determines the next one, the alphabet of the above descriptive model,
consisting of the predicate letters in and out, would not suffice, for the obvious reason that the
current value of the in predicate does not determine the next value of out (in fact, it is immaterial for
that purpose). The next value of the out predicate is determined by whether or not the in predicate
held d time units before. Therefore, to convey in the current state the information which suffices to

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Bounded Satisfiability Checking of Metric Temporal Logic Specifications A:31

determine the next state (and the following ones), an additional unary predicate is needed, call it
shr. For each i, 0 ≤ i ≤ d, shr(i) “encodes” the fact that an in event occurred i time units before.
Then the out predicate is characterized by the following formula

Alw(out←→ shr(d))

and the new predicate must be in its turn specified by a suitable axiom, also to be provided in a
present-to-next-state style, as follows:

Alw

(
(shr(0)←→ in)

∧
∀x(0 ≤ x ≤ d− 1→ (shr(x)←→ ◦(shr(x+ 1))))

)
Because of its simplicity and uniformity, the operational model can be provided in a variety of
semantically equivalent notations, like tabular or graphical representations of the transition relation
as in [Gargantini and Morzenti 2001], or by means of programming language-like notations as in
Spin [Holzmann 1997] or NuSMV [Cimatti et al. 2002]. In the present work, which is focused on
bounded satisfiability checking, where the model is expressed in terms of temporal logic formulae,
we adopt a representation of the operational model as a set of temporal logic formulae that are
constrained to use (beside the unique outermostAlw operator) only the next state temporal operator
‘◦’: this makes the operational model directly comparable with the descriptive one, and facilitates an
immediate encoding for analysis and verification through logic-oriented tools such as SAT-solvers.

In summary, we call bounded satisfiability checking the verification method based on bounded
model checking when the model is a MPLTL formula; if the formula includes only unnested
applications of the ◦ next-time then we have a state-based, implementation oriented operational
model; otherwise, i.e., if other MPLTL operators are allowed, we have an abstract, property-based,
specification-oriented descriptive model.

5.1. Operational model of the Timer Reset Lamp
The logic characterization of the timer-reset-lamp provided in Section 2.5 constitutes a descriptive
model of it. We now show how an operational model can be provided for the this system. As men-
tioned above, the idea is to define, for each instant, the next system state based on the current state
and, possibly, of the stimuli coming, still at the current time, from the environment. A brief reflec-
tion shows that the current state of the timer-reset-lamp is not completely characterized by the value
of predicate letter L; e.g., if at a given time we know that the lamp is on (predicate letter L holds)
and that no button is pressed, this does not allow us to conclude that the lamp will still be on at the
next time instant, since this depends on the time that has elapsed from the last press action on the
ON button. To model explicitly this component of the state it is therefore necessary to introduce a
further element in the alphabet of the model: a counter variable ranging over the interval [0 .. ∆] to
store exactly this information. With this addition the definition of the operational model becomes
an easy exercise, yielding the following clauses.

The pressure of the ON button sets the counter to ∆.

(O1) ON→ ◦(count = ∆)

The pressure of the OFF counter resets the counter to 0.

(O2) OFF→ ◦(count = 0)

When the counter has a positive value and no external event occurs, it is decremented.

(O3) ∀x(count = x ∧ x > 0 ∧ ¬ON ∧ ¬OFF → ◦(count = x− 1))

If the counter is null and the ON button is not pressed, it remains null.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:32 Pradella, Morzenti, San Pietro

(O4) count = 0 ∧ ¬ON→ ◦(count = 0)

The lamp is on if and only if the counter is positive.

(O5) L←→ count > 0

The two buttons cannot be pressed simultaneously.

(O6) ¬(ON ∧ OFF)

The operational model of the timer-reset-lamp system simply consists of the conjunction of the six
clauses above (O1-O6), with the usual outermos Alw operator

(OM) Alw(
∧

1≤i≤6 Oi)

5.2. An example of descriptive and operational models with the same alphabet
It is interesting to note that in some special case the descriptive and the operational models may have
the same alphabet. This typically happens in systems, being relatively simple from the temporal
point of view, in which the consequences of the occurrence of any event follow immediately their
cause, so that in a state-based operational model there is no need of additional variables to carry that
information to further future time instants.

As an instance, consider the interlocking component of the KRC example: the purpose of this
device is to prevent two trains from being simultaneously present in the critical region R. To reach
this goal, the interlocking sets the light to red immediately after a train entrance in region R, and
sets it to green immediately after a train exit with no simultaneous train entrance.

The descriptive model for the Interlocking subsystem consists of the following formula:

Alw (red←→ •(¬(ExitI ∧ ¬EnterR) S EnterR))

The operational model can be provided on the basis of the same alphabet with no additional
specification item, due to the fact that the value of the light at the next time always depends only
on its current value and on the events (train entrance or exit of the critical region) occurring at the
present time. This is demonstrated by the following operational model.

red ∧ ¬ExitI → ◦red
red ∧ ExitI ∧ ¬EnterR → ◦¬red

¬red ∧ EnterR → ◦red
¬red ∧ ¬EnterR → ◦¬red

5.3. Performance comparison
When, for a given system under development, one has produced both a descriptive model
that abstractly specifies the requirements and an operational one that characterizes, in a more
implementation-oriented way, the same set of behaviors, the question arises whether it would be
preferable to analyze some further properties with reference to the descriptive model or to the oper-
ational one2.

To investigate this issue, we defined the operational model of all the case studies presented in
Section 2.5, of which we already provided a descriptive model. Then we carried out, on the op-
erational model, the analysis of the same properties. The results of the performance comparison
between descriptive and operational models are reported in Figure 19. The encoding is the metric,
mono-infinite one for all examples, with the exception of the allocator where the metric, bi-infinite

2The issue of checking whether an operational model constitutes a correct implementation of a given descriptive model will
be dealt with in the next section.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Bounded Satisfiability Checking of Metric Temporal Logic Specifications A:33

al
lo
c

fis
ch

er
-3

-4

fis
ch

er
-4

-5

kr
c-

sa
fe

-u
til

kr
c-

sa
fe

-u
til

2

kr
c-

co
nt

-a
lo
ne

kr
c-

co
nt

-a
lo
ne

2

kr
c-

in
te

r-a
lo
ne

kr
c-

in
te

r-a
lo
ne

2

la
m

p-
10

la
m

p-
15

la
m

p-
20

sh
ift

-a
sy

nc
-2

sh
ift

-a
sy

nc

sh
ift

-s
yn

c
0

2

4

6

8

10

12

14
R

a
ti

o
Average Gen ratio
Average Solver ratio
Average CNF cl. ratio

Comparison of descriptive vs. operational models

Fig. 19. Summary of experimental data for comparison of descriptive vs. operational models. The comparison is expressed
as the average ratio of time (for Gen and Sat) or Clauses (for CNF clauses) obtained in the descriptive case and in the
operational case of the same specification. The higher the ratio the lower the performance of a descriptive model respect to
an operational one.

encoding was used. Again, the ratio of each verification case between descriptive and operational
models was computed, and then averaged over bounds 30, 60 and 90 and over the various proper-
ties verified for each model. Two more cases have been added for the KRC, namely krc-inter-alone
and krc-cont-alone (for both versions of KRC), representing the verification of, respectively, the
Interlocking and the Controller components of KRC.

As it can be noticed, the ratio varies considerably from case to case. The most significant and
uniformly valid result is that the time needed to analyze a certain property is always directly (but
not linearly) related with the overall size of the Boolean formula fed to the SAT solver, resulting
from the translation of both the model and the property.

In other words, when analyzing an operational model a performance improvement, with respect
to the descriptive model, can be expected if the Boolean encoding of the operational model is more
compact than the encoding of the corresponding descriptive one. This is very often, but not always,
the case, as discussed next. By carefully considering the adopted case studies, we have identified
three significant, recurring patterns in the features of the models and their influence on the encoding
size.

The first pattern is that of a system that exhibits a simple temporal property, like a time-out
or a delay between events, which in the descriptive model is typically expressed by means of a
(sub)formula like ♦∼cφ or �∼cφ. In the corresponding operational model the feature is easily ren-
dered by means of a numerical variable that represents a counter, and very simple axioms that
specify the increase or decrease of the counter variable from one time instant to the next. The rep-
resentative example of this category of systems is the Timer Reset Lamp, whose behavior depends
essentially on the expiration of a time-out (cases lamp-10, lamp-15, and lamp-20 in Figure 19).
Since the encoding of a numeric counter variable and of axioms specifying its increase or decrease
is more compact than that of the ♦∼cφ and �∼cφ operators, the analysis of operational models ex-
hibiting such kind of features can be significantly more efficient when performed on the operational
model than on the descriptive one.

A second, significant category of systems is the one, represented in our examples by the inter-
locking subsystem of the Kernel Railway Crossing (cases krc-inter-alone and krc-inter-alone-2 in
Figure 19), in which the alphabet of the formulae that constitute the operational model is exactly the
same as that of the descriptive model. This also results in an advantage for the analysis carried out
on the operational model, because for such systems there is no actual metric property to be charac-

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:34 Pradella, Morzenti, San Pietro

terized (only qualitative time relations, like precedence or immediate effect among events), hence
the operational model is composed of formulae that are simpler in their syntactic structure and do
not include any actual metric time operator, whose presence in the descriptive model instead makes
the encoding more complex.

A third pattern, which instead is less favorable for the operational models, is the case where
some complex temporal property can be expressed, in the descriptive model, in some very concise
way using a few specification items and suitable metric temporal operators, while in the operational
model it is rendered by means of quite a few additional specification items encoding a significant
amount of temporal constraints. This is, for instance, the case of the synchronous shift register
(case shift-sync in Figure 19), which, despite the conciseness of the descriptive model (consisting
of the single, brief formula Alw(in ←→ ♦=dout)) depicts a system that can remember the time
of occurrence of all the in events in a time window of length d. In the operational version of the
model the representation of this feature requires the introduction, as an additional specification
item, of a predicate with a numeric argument, and of a set of axioms, with universal quantifiers,
that account for its change in time. In cases like this the Boolean SAT formula resulting from the
encoding of the operational model may turn out to be of comparable, or even larger size than that
of the descriptive model, and the time needed for the analysis is increased accordingly. Another
example in this category is the Controller component of the KRC case study (cases krc-cont-alone
and krc-cont-alone-2 in Figure 19), whose descriptive and operational models are both reported in
the Appendix (Section I.1)

We should also point out, however, that in most non-trivial systems all the above features are often
simultaneously present, and their combined effect may possibly vary depending on the numerical
value of the time constants or the structure of the overall formula, so that a strong performance
gain for one kind of model over the other is usually present only in the simplest systems (like the
few representative ones discusses above) or in systems in which a specific type of property has a
dominating influence.

In summary, the experimental results of this paper show that BSC can often be reasonably effi-
cient, although it is rarely competitive with BMC; in some cases, however, it may be much slower.
In general, since BSC allows using very concise models, there is a trade-off between succinctness
and abstraction on the one hand and efficiency on the other one, to be decided on a case by case
basis.

5.4. Bounded Refinement Checking
All the above illustrated example systems, of which we provided both the descriptive and the oper-
ational model, share the following features:

(1) The descriptive model is more abstract and concise than the operational one;
(2) The alphabet of the formulae that constitute the operational model is a superset (most often a

proper superset) of the alphabet of the descriptive model;
(3) When present, the additional elements of the alphabet in the operational model incorporate in

their value the information, resulting from the previous computation, that suffices to determine
the next states;

(4) The properties that hold valid for the descriptive model also hold for the operational one.

These features are typical of what, in many system development methods, is called a refinement
step, where a version of the system under development that is more abstract, close to the require-
ments specification, is substituted, possibly through systematic transformation steps, by another
version, more concrete and close to implementation, which is bound to satisfy the same properties
as the first one.

In our formal setting features (1)-(3) above are an immediate consequence of having a descriptive
model and a corresponding operational one. Feature (4) constitutes a form of semantic monotony:
the operational model can replace the descriptive one because it satisfies the same properties. This
is an essential feature in our notion of refinement: we say that an operational model OM correctly

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Bounded Satisfiability Checking of Metric Temporal Logic Specifications A:35

implements a descriptive model DM if OM ensures all the properties that are guaranteed by DM ,
i.e., for every property φ built on the alphabet of DM (hence expressible also in the context of OM ,
whose alphabet is a superset of that of DM), if DM → φ holds then OM → φ also holds.

A sufficient condition for the correct implementation relation to hold between an operational
model OM and a descriptive model DM is the following implication,

OM → DM

as ensured by the tautological form (OM → DM) ∧ (DM → φ)→ (OM → φ).
In the literature the correct implementation relation between an abstract model and a correspond-

ing concrete one is very often formalized by an implication [Abrial 1996] also in approaches that
are quite far from our own. In our setting the notion of refinement is especially characterized by the
transition from the “abstract” to the “concrete” by renouncing the use of all the operators of tem-
poral logic except for the next-state operator ◦, possibly introducing in the specification alphabet
further items to encode the additional information incorporated into the current state.

We also notice that the formula OM → DM , when interpreted as a relation between the sets of
possible executions of the modeled systems, asserts that the set of traces of the operational model
is a subset of that of the descriptive one. This interpretation also corresponds to the customary,
intuitive interpretation of the refinement operation, where the implementation does not introduce
any “surprise” in the form of new, unexpected behaviors, hence it satisfies the same properties as
the abstract model.

The property of correct implementation, as expressed by OM → DM , can itself be analyzed
by the bounded satisfiability checker, with the usual incompleteness caveats. For instance, in the
simplest case of the previously discussed Synchronous Shift Register example, the formula OM →
DM is the following.

Alw

(
(out←→ shr(d))) ∧
(shr(0)←→ in)∧

∀x(0 ≤ x ≤ d− 1→ (shr(x)←→ ◦(shr(x+ 1))))

)
→ Alw(in←→ ♦=dout)

The check of correct refinement using BSC is called here Bounded Refinement Checking (BRC).
We have carried out BRC for the descriptive and operational model of all the case studies introduced
in the previous sections. We report the results in Figure 20 (the suffix -ref stands for BRC based on
the considered descriptive and operational models). As it can be seen, BRC is considerably slower
than the verification of a single property of a descriptive or operational model.

From a methodological viewpoint, BRC, although an incomplete technique (being based on BSC)
can still provide useful insights, in particular when the check fails, i.e., the operational model does
not constitute a correct refinement of the descriptive one, thanks to the counterexample that is pro-
vided by the tool. If the implication OM → DM does not hold then the counterexample constitutes
an admissible behavior of the operational model that is not a legal behavior of the descriptive model.
The appropriate interpretation of this result by the practitioner who is using the tool depends on
whether the counterexample corresponds to a behavior that is intuitively acceptable for the mod-
eled system or not. If the behavior encoded into the counterexample is acceptable this might be the
sign that the descriptive model is too restrictive, in that it rules out some behavior that is in fact
compliant with the actual system requirements. In this case the descriptive model could be modi-
fied by adding some subformulae (typically in disjunction with those that constitute the descriptive
model) that enlarge the set of possible behaviors, or by removing some subformulae included in the
model that unduly constrain its set of admissible behaviors. Somewhat symmetrically, if the coun-
terexample provided by the satisfiability checker corresponds to an unacceptable system behavior,
this is a symptom of an error in the operational model, which must be adjusted by restricting the
set of its behaviors by means of suitable additional constraints, typically to be conjoined with the
formulae which constitute the existing operational model, or by means of removal of some clauses
corresponding to inappropriate behaviors. A very useful guideline for the practitioner comes from

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:36 Pradella, Morzenti, San Pietro

al
lo
c-

re
f

fis
ch

er
-3

-4
-re

f

fis
ch

er
-4

-5
-re

f

kr
c-

re
f

kr
c-

re
f2

la
m

p-
10

-re
f

la
m

p-
15

-re
f

la
m

p-
20

-re
f

sh
ift

-a
sy

nc
-re

f-1
0

sh
ift

-a
sy

nc
-re

f-2
0

sh
ift

-s
yn

c-
re

f
0,10

1,00

10,00

100,00

1000,00

10000,00

Time (sec)

0,0E+00

2,0E+05

4,0E+05

6,0E+05

8,0E+05

1,0E+06

1,2E+06

1,4E+06

1,6E+06

1,8E+06

2,0E+06

Clauses

Gen
Solver
CNF clauses

Bounded Refinement Checking

Fig. 20. Summary of experimental data for Bounded Refinement Checking. The vertical axis at the left measures time
seconds in a logarithmic scale, for Generation and Solver; the vertical axis on the right measures the number of CNF clauses.

the remark, deriving from our own experience in analyzing descriptive and operational models of
the same system. When writing an operational model for a system for which a descriptive model
has already been provided, one is often induced to formalize, by means of suitable axioms, transi-
tions among classes of states, without stating precisely the set configurations that are admissible, or
possibly disregarding the system initial state, if there is any. This results in a typical modeling error,
because the operational model will admit a set of behaviors that is larger than the one actually in-
tended, therefore resulting in a failure when attempting to check the correct implementation relation
OM → DM . In this case, a careful inspection of the counterexample is very useful to identify the
salient features of the inappropriate behavior of the operational model, and therefore to correct the
exposed defect.

5.5. Modularization
When developing a complex, reactive, (time-)critical system, the designers must not only state in
an explicit, abstract, and precise way the user/application requirements, but also adopt a modular
approach for dealing adequately with the complexity of the system under development and provide
a model of the environment surrounding the computer-based system under development that incor-
porates environment assumptions to be taken into account in the validation and verification of the
system requirements.

For these reasons the modular structure of the overall system model will include a set ENV of
components representing the environment, a set CUD (for Component Under Development) cor-
responding to the parts that will be actually implemented as computer based applications, and a
set REQ of components specifying the requirements that the components under development must
satisfy in their interaction with the environment.

The modular structure of the system model can be exploited in various ways to improve the
efficiency of its analysis and verification: in the following we discuss an example centered on the
bounded refinement checking of the KRC example.

The KRC example includes, for what concerns the environment, a description of the move-
ment of the trains and of the gate, while the gate controller and interlocking are the object of
the development process, and the safety and utility properties constitute the overall requirements.
Therefore we model the whole KRC system as composed of five modules, as shown in Figure 21,
where Train&Track and Gate modules represent the environment and are labeled by ENV, the

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Bounded Satisfiability Checking of Metric Temporal Logic Specifications A:37

ENV

Train&TrackInterlock

Controller Gate

CUD

Safe&Util

REQ

CUD ENV

green InI

EnterR ExitI

bar

go

Fig. 21. Modular structure of the Kernel Railroad Crossing.

Controller and Interlock modules are labeled CUD, and the Safe&Util module is labeled by
REQ. In the figure the lines connecting the modules represent specification items that are shared
among the connected modules: for instance EnterR and ExitI are Boolean variables, respectively
representing the event of a train entering region R or exiting region I , that appear in the logical
axioms included in the three modules: Train&Track, Controller, and Interlock.

In the Appendix (Section I.1) the MPLTL formulae modeling the KRC system are grouped into
the five modules shown in Figure 21.

In the initial version of the system modular structure the CUD will be naturally provided in a
descriptive version that includes its requirements specification, hence we will indicate it as CUDDE.
The ENV and REQ modules, which are not the object of the development process, will be provided
in the form that the designer considers more suitable, and will not be refined, hence in the following
they will not be annotated by any DE nor OP subscript.

Therefore, in a logic-based setting, the ability of the overall system to satisfy its requirements is
stated as follows

ENV ∧ CUDDE → REQ (23)

Formula (23) is analyzed, before any further development takes place, to validate the system
requirements and verify that the features specified, in an abstract way, by CUDDE ensure their satis-
faction.

Then the descriptive model CUDDE is refined into an operational model CUDOP, which incorpo-
rates design decisions and implementation choices, suitable to accomplish the properties stated in
the CUDDE model. The correctness of the new system version, incorporating the refined version of
CUD, will be stated as follows.

ENV ∧ CUDOP → REQ (24)

Formula (24) can similarly be checked to verify that the implementation choices incorporated into
the operational model are adequate to satisfy the overall system requirements. Checking formula
(24) will be easier than checking formula (23), because of the presence of the operational model
CUDOP taking the place of the descriptive model CUDDE. However, since the only part that has
changed in the system model is the CUD component, a further substantial reduction of the effort
required for checking (24) can be obtained, under the assumption that (23) holds, by simply showing
that the new version CUDOP is a correct refinement of the original, abstract version CUDDE. In
general, the correctness of the refinement might depend on some features of the environment in

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:38 Pradella, Morzenti, San Pietro

which it operates, hence it would be stated by means of the following formula.

ENV→ (CUDOP → CUDDE) (25)

In many significant cases, however, CUDOP correctly implements CUDDE in all possible circum-
stances, hence the following, stronger property can be checked.

CUDOP → CUDDE (26)

In other terms, if in a system composed of several modules one or more of these modules are refined,
a sufficient condition for the correctness of the refined system is provided by the correctness of the
refinement of the implemented modules, provided that the abstract version of the entire system has
been previously verified.

Checking Formula (26) is in practice much more convenient than checking (24), for two reasons.
First, Formula (26) is much more compact than (24), hence its automatic verification is likely to
require a significantly slighter effort. Second, the Component Under Development, that we have
globally denoted as CUD, may be in its turn composed of several parts that may be developed
and analyzed separately, adopting an incremental approach. This would bring several advantages in
terms of better manageability of the development process: the validation and verification activity,
which could focus on individual components of the model, and the overall effort would be reduced
since the analysis would be conducted in several, relatively simple incremental steps focusing only
on the parts to be effectively developed, leaving the parts representing the environment untouched.

In the Kernel Railway Crossing case study the Controller and the Interlock modules cor-
respond to the CUD): we call ControllerDE and InterlockDE their descriptive models while
ControllerOP and InterlockOP denote the corresponding operational models (all models are re-
ported in the Appendix I.1). Therefore the correctness of the refined version of the KRC (24) can be
verified by checking the two properties of type (26)

ControllerOP → ControllerDE (27)

and

InterlockOP → InterlockDE (28)

Figure 22 depicts graphically the comparison between modular and non-modular refinement us-
ing Bounded Refinement Checking. BRC for the two separately refined components (cases modular-
krc and modular-krc-2) requires an effort that is one or two orders of magnitude less than that for
the entire system (cases non-modular-krc and non-modular-krc-2, respectively).

6. RELATED WORK
Since the seminal paper [Biere et al. 1999] on SAT-based model checking, several bounded model
checkers were introduced. To name some of them, we cite NuSMV [Cimatti et al. 2002], SAL
[de Moura et al. 2004], CBMC [Clarke et al. 2004], EBMC [Clarke et al. 2005], and BAT [Manolios
et al. 2007].

NuSMV is probably the most renowned, as it was the first, freely available bounded model check-
ing tool, and many new encodings were originally tested in modified versions of NuSMV (e.g. those
collected in [Biere et al. 2006]). Bounded model checking was introduced as an alternative, SAT-
based approach to classical symbolic model checking. Indeed, NuSMV is a re-implementation of
the traditional symbolic model checker SVM, and also provides its original BDD-based approach.

SRI’s SAL (Symbolic Analysis Laboratory) is in some respects comparable with NuSMV, as it
supports both BDD-based and SAT-based model checking. Its input language is not dissimilar from
that of NuSMV, and is based on concurrent operational modules. SAL supports also infinite-state
model checking through SMT (Satisfiability Modulo Theory) - the default tool for SAT or SMT
checking is Yices, also available from SRI.

CBMC is a bounded model checker for C and C++ programs that can be used to verify array
bounds, pointer safety, exceptions and user-specified assertions. Moreover, it can check consistency

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Bounded Satisfiability Checking of Metric Temporal Logic Specifications A:39

no
n-

m
od

ul
ar

-k
rc

m
od

ul
ar

-k
rc

no
n-

m
od

ul
ar

-k
rc

2

m
od

ul
ar

-k
rc

2
0

1

10

100

Time (sec)

0

200000

400000

600000

800000

1000000

1200000

1400000

ClausesRefinement for KRC

kr
c

kr
c-

2

0

10

20

30

40

50

60

70

Time

0

1

2

3

4

5

6

7

8

Clauses

Gen
Solver
CNF clauses

Non-modular/modular refinement ratio

Fig. 22. Summary of experimental data for Bounded Refinement Checking of KRC. For the leftmost picture, the vertical
axis on the left measures time seconds in a logarithmic scale, for Generation and Solver, while the vertical axis on the right
measures the number of CNF clauses; In the rightmost picture, the ratios for the time (left axis) and the size (right axis) are
reported in a linear scale.

of C programs with specifications written in hardware-oriented languages, like Verilog. EBMC,
from the same research group, is geared towards hardware design, and supports various input no-
tations: Netlists, Verilog, and SMV. Both CBMC and EBMC can use either SAT solvers or SMT
solvers for verification.

BAT (Bit-level Analysis Tool) is a very efficient bounded model checker that supports quantifier-
free formulae over the extensional theory of fixed-size bit-vectors and fixed-size bit-vector arrays.
Properties can be specified using a future-only fragment of LTL.

To the best of our knowledge, all the bounded model checkers considered in the literature support,
as in classical model checking, an operational model, offering either a more hardware-oriented
language, as e.g. in NuSMV and BAT, or a more software-oriented language, as in CMBC, while
they all use classical temporal logic languages, usually PLTL or CTL, only for expressing properties
of the model.

As stated in the introduction, our approach has a different scope. We started working on automatic
satisfiability checking tools for temporal logic since our works [Morzenti et al. 2003; Pradella et al.
2003], based on classical explicit-state model checking tools. Another relevant work adopting a
similar approach is the one by Vardi [Rozier and Vardi 2007]. Our aim is to perform verification
of purely descriptive real-time models, typically arising from high-level requirement analysis of
critical systems, or hybrid descriptive/operational ones, e.g. those obtained after refinement steps
following the approach presented in Section 5.5. To this end, we developed Zot, the tool introduced
in Section 2.6.

The Alloy Analyzer [Jackson 2003] is a mature SAT-based tool, well-known in the Software
Engineering community. The scope of application of Alloy is complementary to that of Zot: Alloy
provides a rich language for describing complex data structures, while Zot is focused and optimized
for complex metric-time specifications, an issue not considered by Alloy.

Uppaal [Bengtsson et al. 1995] is another very efficient tool suitable for verification of real-time
systems. It is based on timed automata extended with some useful data types, so it was designed
for managing quantitative metric time. It is a mature, industrial-strength tool, with an easy to use
graphical interface. Uppaal is different in scope from Zot, as it provides a strong support to opera-
tional, timed automata-based models, while the logic used for expressing properties is quite limited
in expressiveness and readability, if compared to the one offered by Zot. On the other hand, Uppaal
performance is superior in many notable cases.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:40 Pradella, Morzenti, San Pietro

Program refinement is most often viewed in Software Engineering as a verifiable transformation
of a high-level specification into an executable program. Usually this method is based on several
intermediate steps, and is supported by suitable tools like, e.g., in the B method [Abrial 1996].
Our approach to refinement, as covered by Sections 5.4 and 5.5, has many similarities with that of
B: we start from a description S of the system, and we refine it, by substituting part of it with a
more operational version. The lower-level system S′ thus obtained is said to be a refinement of S
if S′ implies S. The most notable differences of our approach from the B method are that Bounded
Refinement Checking is in general incomplete and that we focus on high-level requirements, while
the B method is complete and is based on an operational notation called AMN (Abstract Machine
Notation) that covers relatively lower levels of the development reaching actual code generation (an
aspect that we do not consider).

Instead, our concept of refinement is quite different from the one presented in [Clarke et al.
2002], where SAT-based abstraction refinement is introduced. In that work, abstraction/refinement
is a means to more efficiently generate counterexamples through a SAT solver.

Compositional analysis techniques, based on modularization of models and requirements speci-
fications, apply some, possibly formal, method to infer global properties of a large, complex system
through a hierarchical and iterative process that exploits the system’s modular structure. The need
for compositionality has become undeniable in the formal methods community, due to the increased
complexity of the analyzed systems and of the addressed verification issues. Therefore almost every
newly introduced specification formalism and verification method encompasses some sort of com-
positional technique or permits compositional specifications. A general (and historical) introduction
to compositional methods can be found in [de Roever 1997; de Roever et al. 2001]. Among the nu-
merous contributions to this field we cite, without aiming at exhaustiveness, those approaches that
most share our goals and motivations.

Two important issues underlying our work, and still largely unexplored in the present literature on
compositionality, are the consideration of hard real-time aspects, which require a metric modeling of
time, and the modularization of requirements expressed in a descriptive way by means of temporal
logic formulae.

The work presented in [Ostroff 1999], uses the metric temporal logic RTTL in a compositional
framework, and provides a verification method based on inference rules and a notion of module
refinement. Nonetheless the approach is rather different from ours, as time is treated as a separate
variable (while in our approach time is an implicit item of the language) and adopts state machines
as the unique kind of model.

The contribution [Furia et al. 2007] introduces an automated compositional proof system for
modular specifications expressed in the TRIO metric linear temporal logic, adopts a simple com-
positional rely/guarantee circular inference rule plus a methodology for the integration of different
parts into a whole system. The main difference with respect to our approach in the present work
derives from the provided tool support, implemented on top of the proof-checker PVS, allowing for
deduction-based verification through theorem-proving of modular real-time axiom systems.

The works of McMillan ([McMillan 2000] and [Jhala and McMillan 2001]) present some simi-
larities both with that of [Furia et al. 2007] and with ours, though they are focused on verification
of hardware architectures and they use somewhat domain specific proof techniques. An abstract
model of the architecture is used as a specification, against which a more detailed one, considered
as an implementation, is verified. The correct implementation is stated in terms of a set of refine-
ment relations, and the proof relies on circular compositional techniques such as mutual temporal
induction.

A rather different compositional framework to support the top-down development of real-time
systems based on logical formulae is studied by Hooman [Hooman 1998]. Although the framework
is independent of semantic assumptions, its set-theoretic model of semantic primitives naturally
relates to interleaving semantics models. The notion of refinement adopted by the framework is
focused on decomposition, and basically consists of an inference rule that allows one to deduce that

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Bounded Satisfiability Checking of Metric Temporal Logic Specifications A:41

the decomposition of a module into its refined parts correctly implements the original unrefined
module.

An early work related with ours is [Grumberg and Long 1994], which introduces a framework
based on finite state processes as operational models and requirements expressed in a subset of CTL
to provide efficient verification methods and an assume/guarantee style of reasoning.

7. CONCLUSIONS
In the present paper we discussed an approach to system specification and verification based on
temporal logic, called Bounded Satisfiability Checking (BSC). The approach shares some features
with the techniques of Bounded Model Checking (BMC), where a model consisting of a state-
transition system and a temporal logic property are translated into a Boolean logic formula to be
verified by a SAT solver. BSC is more general than BMC, which can thus be regarded as a special
case of BSC, in that it can handle the verification of descriptive models, i.e., models consisting of
generic temporal logic formulae. All the techniques presented in this paper have been tested on a
rich set of case studies, ranging from simple protocols to relatively complex real-time systems.

First, we introduced a technique to handle efficiently metric temporal logic formulae, which is of
crucial importance for verifying real-time or time-dependent systems. The encoding exhibits a gain
in efficiency which increases with the value of the time constants of the systems, and can be helpful
also in case of an operational model (i.e., in the case of BMC) when the property to be checked is
expressed in metric temporal logic.

Next, we defined a specialized encoding to tackle bi-infinite time, which is more natural and
less error-prone when dealing with past time operators. In fact, past operators are very useful to
write compact and readable specifications and properties, but the usage of default values when an
operator requires the evaluation of a formula before the initial time instant of a mono-infinite time
structure may be counter-intuitive and easily lead to writing mistaken formulae. Although efficiency
is reduced when using the bi-infinite encoding, the decrease is not dramatic, since solving time is
typically doubled, and hence the bi-infinite encoding can be used with no significant penalty to
check a model whenever past operators such as Yesterday are present. Again, this encoding can be
usefully applied to BMC as well.

Finally, the paper addresses the issue of model refinement using Bounded Satisfiability Checking,
and therefore called Bounded Refinement Checking. BSC supports very naturally the verification
that a model M1 is a refinement of another model M0, at least within a chosen temporal bound.
WhenM0 is descriptive andM1 is operational, then the latter may be considered an implementation
of the former. Experimental results have shown that checking correctness of model refinement is
feasible with Bounded Satisfiability Checking, although typically incomplete. Moreover, applying
modularization techniques can significantly speed up BRC. In fact, often only parts of a system
model are actually refined, so BRC can be done separately for a subset of the modules. For instance,
in the modular version of the Kernel Railroad Crossing problem, refining separately the models for
the controller and the interlocking subsystems led to a 70-fold increase of efficiency with respect to
simultaneously refining the two models.

Overall, the results obtained on the adopted case studies concerning modeling, simulation, prop-
erty analysis, and model refinement, allow us to consider Bounded Satisfiability Checking a viable
method for the design and verification of complex time critical systems.

Further developments of the present work include the extension of the techniques here illustrated
to more expressive temporal logic languages and the adoption of an SMT solver [Nieuwenhuis et al.
2006] as verification engine.

Acknowledgments
We thank the anonymous referees for their many insightful comments and suggestions, which al-
lowed us to improve significantly the quality of the presentation.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:42 Pradella, Morzenti, San Pietro

REFERENCES
ABRIAL, J.-R. 1996. The B-Book: Assigning Programs to Meanings. Cambridge University Press.
BENGTSSON, J., LARSEN, K. G., LARSSON, F., PETTERSSON, P., AND YI, W. 1995. UPPAAL — a Tool Suite for Au-

tomatic Verification of Real–Time Systems. In Proc. of Workshop on Verification and Control of Hybrid Systems III.
Number 1066 in Lecture Notes in Computer Science. Springer–Verlag, 232–243.

BERSANI, M. M., FURIA, C. A., PRADELLA, M., AND ROSSI, M. 2009. Integrated modeling and verification of real-time
systems through multiple paradigms. In SEFM, D. V. Hung and P. Krishnan, Eds. IEEE Computer Society, 13–22.

BIERE, A., CIMATTI, A., CLARKE, E., AND ZHU, Y. 1999. Symbolic model checking without BDDs. Lecture Notes in
Computer Science 1579, 193–207.

BIERE, A., HELJANKO, K., JUNTTILA, T., LATVALA, T., AND SCHUPPAN, V. 2006. Linear encodings of bounded LTL
model checking. Logical Methods in Computer Science 2, 5, 1–64.

CIAPESSONI, E., MIRANDOLA, P., COEN-PORISINI, A., MANDRIOLI, D., AND MORZENTI, A. 1999. From formal models
to formally based methods: An industrial experience. ACM Trans. Softw. Eng. Methodol. 8, 1, 79–113.

CIMATTI, A., CLARKE, E. M., GIUNCHIGLIA, E., GIUNCHIGLIA, F., PISTORE, M., ROVERI, M., SEBASTIANI, R., AND
TACCHELLA, A. 2002. NuSMV 2: An opensource tool for symbolic model checking. In CAV ’02: Proceedings of the
14th Intern. Conf. on Computer Aided Verification. Springer-Verlag, London, UK, 359–364.

CLARKE, E., KROENING, D., AND LERDA, F. 2004. A tool for checking ANSI-C programs. In Tools and Algorithms for
the Construction and Analysis of Systems (TACAS 2004), K. Jensen and A. Podelski, Eds. Lecture Notes in Computer
Science Series, vol. 2988. Springer, 168–176.

CLARKE, E., KROENING, D., OUAKNINE, J., AND STRICHMAN, O. 2005. Computational challenges in bounded model
checking. Software Tools for Technology Transfer (STTT) 7, 2, 174–183.

CLARKE, E. M., GUPTA, A., KUKULA, J. H., AND STRICHMAN, O. 2002. SAT based abstraction-refinement using ILP
and machine learning techniques. In CAV, E. Brinksma and K. G. Larsen, Eds. Lecture Notes in Computer Science
Series, vol. 2404. Springer, 265–279.

COEN-PORISINI, A., PRADELLA, M., AND SAN PIETRO, P. 1998. A finite-domain semantics for testing temporal logic
specifications. In Formal Techniques in Real-Time and Fault-Tolerant Systems, 5th Intern. Symposium, FTRTFT’98,
Lyngby, Denmark, September 14-18, 1998, Proceedings. 41–54.

DE MOURA, L. M., OWRE, S., RUESS, H., RUSHBY, J. M., SHANKAR, N., SOREA, M., AND TIWARI, A. 2004. SAL 2.
In CAV, R. Alur and D. Peled, Eds. Lecture Notes in Computer Science Series, vol. 3114. Springer, 496–500.

DE ROEVER, W. P. 1997. The need for compositional proof systems: A survey. In COMPOS, W. P. de Roever, H. Langmaack,
and A. Pnueli, Eds. Lecture Notes in Computer Science Series, vol. 1536. Springer, 1–22.

DE ROEVER, W.-P., DE BOER, F., HANNEMANN, U., HOOMAN, J., LAKHNECH, Y., POEL, M., AND ZWIERS, J. 2001.
Concurrency Verification: Introduction to Compositional and Noncompositional Methods. Cambridge University Press.

EÉN, N. AND SÖRENSSON, N. 2003. An extensible SAT-solver. In SAT Conference. LNCS Series, vol. 2919. Springer-
Verlag, 502–518.

FELDER, M. AND MORZENTI, A. 1994. Validating real-time systems by history-checking TRIO specifications. ACM Trans.
Softw. Eng. Methodol. 3, 4, 308–339.

FURIA, C. A., PRADELLA, M., AND ROSSI, M. 2008a. Automated verification of dense-time mtl specifications via discrete-
time approximation. In FM, J. Cuéllar, T. S. E. Maibaum, and K. Sere, Eds. Lecture Notes in Computer Science Series,
vol. 5014. Springer, 132–147.

FURIA, C. A., PRADELLA, M., AND ROSSI, M. 2008b. Practical automated partial verification of multi-paradigm real-time
models. In ICFEM, S. Liu, T. S. E. Maibaum, and K. Araki, Eds. Lecture Notes in Computer Science Series, vol. 5256.
Springer, 298–317.

FURIA, C. A., ROSSI, M., MANDRIOLI, D., AND MORZENTI, A. 2007. Automated compositional proofs for real-time
systems. Theor. Comput. Sci. 376, 3, 164–184.

GARGANTINI, A. AND MORZENTI, A. 2001. Automated deductive requirements analysis of critical systems. ACM Trans.
Softw. Eng. Methodol. 10, 3, 255–307.

GHEZZI, C., MANDRIOLI, D., AND MORZENTI, A. 1990. TRIO: A logic language for executable specifications of real-time
systems. Journal of Systems and Software 12, 2, 107–123.

GIRE, F. AND NIVAT, M. 1991. Langages algébriques de mots biinfinis. Theoret. Comput. Sci. 86, 2, 277–323.
GRUMBERG, O. AND LONG, D. E. 1994. Model checking and modular verification. ACM Trans. Program. Lang. Syst. 16, 3,

843–871.
HEITMEYER, C. AND MANDRIOLI, D. 1996. Formal Methods for Real-Time Computing. John Wiley & Sons, Inc., New

York, NY, USA.
HELJANKO, K., JUNTTILA, T. A., AND LATVALA, T. 2005. Incremental and complete bounded model checking for full

PLTL. In CAV, K. Etessami and S. K. Rajamani, Eds. Lecture Notes in Computer Science Series, vol. 3576. Springer,
98–111.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Bounded Satisfiability Checking of Metric Temporal Logic Specifications A:43

HOLZMANN, G. J. 1997. The model checker SPIN. IEEE Trans. on Software Engineering 23, 5, 279–295. Special Issue:
Formal Methods in Software Practice.

HOOMAN, J. 1998. Compositional verification of real-time applications. In COMPOS’97. LNCS Series, vol. 1536. 276–300.
JACKSON, D. 2003. Alloy: A logical modelling language. In ZB, D. Bert, J. P. Bowen, S. King, and M. A. Waldén, Eds.

Lecture Notes in Computer Science Series, vol. 2651. Springer, 1.
JHALA, R. AND MCMILLAN, K. L. 2001. Microarchitecture verification by compositional model checking. In CAV,

G. Berry, H. Comon, and A. Finkel, Eds. Lecture Notes in Computer Science Series, vol. 2102. Springer, 396–410.
KAMP, J. A. W. 1968. Tense Logic and the Theory of Linear Order (Ph.D. thesis). University of California at Los Angeles.
KOYMANS, R. 1990. Specifying real-time properties with metric temporal logic. Real-Time Systems 2, 4, 255–299.
KROENING, D. AND STRICHMAN, O. 2003. Efficient computation of recurrence diameters. In VMCAI, L. D. Zuck, P. C.

Attie, A. Cortesi, and S. Mukhopadhyay, Eds. Lecture Notes in Computer Science Series, vol. 2575. Springer, 298–309.
LAMPORT, L. 1987. A fast mutual exclusion algorithm. ACM TOCS-Transactions On Computer Systems 5, 1, 1–11.
LEWIS, M., SCHUBERT, T., AND BECKER., B. 2007. Multithreaded SAT solving. In 12th Asia and South Pacific Design

Automation Conference.
LICHTENSTEIN, O., PNUELI, A., AND ZUCK, L. D. 1985. The glory of the past. In Proceedings of the Conf. on Logic of

Programs. Springer-Verlag, London, UK, 196–218.
MANDRIOLI, D., MORASCA, S., AND MORZENTI, A. 1995. Generating test cases for real-time systems from logic speci-

fications. ACM Trans. Comput. Syst. 13, 4, 365–398.
MANOLIOS, P., SRINIVASAN, S. K., AND VROON, D. 2007. BAT: The bit-level analysis tool. In CAV, W. Damm and

H. Hermanns, Eds. Lecture Notes in Computer Science Series, vol. 4590. Springer, 303–306.
MCMILLAN, K. L. 2000. A methodology for hardware verification using compositional model checking. Sci. Comput.

Program. 37, 1-3, 279–309.
MORASCA, S., MORZENTI, A., AND SAN PIETRO, P. 2000. A case study on applying a tool for automated system analysis

object oriented logic specification of time-critical systems. based on modular specifications written in TRIO. Autom.
Softw. Eng. 7, 2, 125–155.

MORZENTI, A., MANDRIOLI, D., AND GHEZZI, C. 1992. A model parametric real-time logic. ACM Trans. Program. Lang.
Syst. 14, 4, 521–573.

MORZENTI, A., PRADELLA, M., SAN PIETRO, P., AND SPOLETINI, P. 2003. Model-checking TRIO specifications in SPIN.
In FME, K. Araki, S. Gnesi, and D. Mandrioli, Eds. Lecture Notes in Computer Science Series, vol. 2805. Springer,
542–561.

MORZENTI, A. AND SAN PIETRO, P. 1994. Object-oriented logical specification of time-critical systems. ACM Trans. Softw.
Eng. Methodol. 3, 1, 56–98.

NIEUWENHUIS, R., OLIVERAS, A., AND TINELLI, C. 2006. Solving SAT and SAT Modulo Theories: From an abstract
Davis–Putnam–Logemann–Loveland procedure to DPLL(T). Journal of the ACM 53, 6, 937–977.

OSTROFF, J. S. 1999. Composition and refinement of discrte real-time systems. ACM Trans. Softw. Eng. Methodol. 8, 1,
1–48.

PERRIN, D. AND PIN, J.-É. 2004. Infinite Words. Pure and Applied Mathematics Series, vol. 141. Elsevier. ISBN 0-12-
532111-2.

PNUELI, A. 1977. The temporal logic of programs. In Proceedings of the 18th IEEE Symposium on the Foundations of
Computer Science (FOCS-77). IEEE Computer Society Press, Providence, Rhode Island, 46–57.

PRADELLA, M., MORZENTI, A., AND SAN PIETRO, P. 2007. The symmetry of the past and of the future: Bi-infinite time
in the verification of temporal properties. In Proc. of The 6th joint meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on the Foundations of Software Engineering ESEC/FSE. Dubrovnik,
Croatia.

PRADELLA, M., MORZENTI, A., AND SAN PIETRO, P. 2008a. Benchmarking model- and satisfiability-checking on bi-
infinite time. In ICTAC 2008. Lecture Notes in Computer Science Series, vol. 5160. Springer, Istanbul, Turkey, 290–
304.

PRADELLA, M., MORZENTI, A., AND SAN PIETRO, P. 2008b. Refining real-time system specifications through bounded
model- and satisfiability-checking. In 23rd IEEE/ACM International Conference on Automated Software Engineering
(ASE 2008), 15-19 September 2008. 119–127.

PRADELLA, M., MORZENTI, A., AND SAN PIETRO, P. 2009. A metric encoding for bounded model checking. In Pro-
ceedings of FM 2009: Formal Methods, Second World Congress, Eindhoven, The Netherlands, November 2-6, 2009.,
A. Cavalcanti and D. Dams, Eds. Lecture Notes in Computer Science Series, vol. 5850. Springer, 741–756.

PRADELLA, M., SAN PIETRO, P., SPOLETINI, P., AND MORZENTI, A. 2003. Practical model checking of LTL with Past.
In ATVA03, Taipei, Taiwan, 2003.

PRIOR, A. 1967. Past. Present and Future. Oxford University Press (reprinted 2002), Oxford.
RESCHER, N. AND URQUHART, A. 1971. Temporal Logic. Springer-Verlag, New York, NY, USA.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:44 Pradella, Morzenti, San Pietro

ROZIER, K. Y. AND VARDI, M. Y. 2007. LTL satisfiability checking. In SPIN. Lecture Notes in Computer Science Series,
vol. 4595. Springer, 149–167.

SAN PIETRO, P., MORZENTI, A., AND MORASCA, S. 2000. Generation of execution sequences for modular time critical
systems. IEEE Trans. Software Eng. 26, 2, 128–149.

Received R; revised e; accepted c
eived Month Year; revised Month Year; accepted Month Year

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

ABounded Satisfiability Checking of Metric Temporal Logic Specifications A:i

R
I

train direction

sensor sensor

Fig. 23. Regions of interest in the Kernel Railroad Crossing.

I. APPENDIX
We report here the completely formalized version of the case studies that were presented informally
in Section 2.5, namely, the KRC, the Allocator, Timer Reset Lamp, and the Asynchronous Shift
Register.

I.1. The Kernel Railway Crossing Case Study
A rail road crossing is an intersection between a road and a train track with a gate to prevent crossing
of the track by vehicles during train passage. Two regions R and I, surrounding the crossing, are
defined as depicted in Figure 23.

Trains enter region R, then enter critical region I and finally leave the area. Trains entering and
leaving region R are detected by means of sensors placed on the track, at the ends of the R region.
Notice that only one train at a time can enter and exit the R and I regions, but in principle several
trains might be simultaneously present in those regions. However, an interlocking system is set up
with the purpose of ensuring that at most one train is present, at any time, in the R (and hence in
the I) region. This avoids the risk of collisions among trains by maintaining a distance among them
greater than or equal to the length of the R region, and at the same time facilitates the management
of the bar rising and lowering, since the control system must only keep track of the possible presence
of at most one train inside the R region. The Interlocking system operates on a light which is placed
at the entrance of region R: the light is turned red when a train enters R, and is turned green when a
train exits region I. Trains can enter region R only when the light is green. It takes a train a minimum
time dm and a maximum time dMax to go from the beginning of R to the beginning of I , and then a
minimum time hm and a maximum time hMax to go from the beginning of region I to its end (thus
exiting also the region of interest for the KRC). The controller must ensure that the bar is closed
when a train is in region I (safety property), but, to avoid needless blocks on the road, it must also
ensure that the bar is down only when strictly necessary (utility property). The controller operates
the bar by means of up and down commands; the bar current position or state of motion is one of:
closed, open, movingUp (when opening), and movingDown (when closing). It takes the bar γ time
units to reach the closed (respectively, open) position starting from the open (respectively, closed)
state. The controller, based on the data coming from sensors, determines the presence (or absence)
of a train that might possibly be in the region I, and sends to the bar, in a timely manner, suitable
commands to rise or lower it.

In our experiments we analyzed the KRC problem with two sets of time constants. The first one
allows for a high degree of nondeterminism on train behavior, since it considers quite different
values for the minimal and maximal allowed train speed (dMax = 22 and dm = 16, hMax = 14
and hm = 8). The second set of time constants considers a more constrained system, where the
difference between maximal and and minimal train speed is more limited (dMax = 22 and dm = 20,
hMax = 14 and hm = 12). In both settings the considered time necessary to complete the bar
movement was γ = 4.

The experiments considered satisfiability of the specification, analysis of the safety and utility
properties, and various forms of refinement of the descriptive model into an operational one.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:ii Pradella, Morzenti, San Pietro

Since the KRC case study includes a quite large number of formulae, for ease of reading and
reference we will introduce the axioms referring to its various components: the Controller, the In-
terlock, the Gate, the Train&Track. We also provide the safety and utility properties expressed as
temporal logic axioms. For all the above components we provide first the descriptive model, which
is the one analyzed in the experiments presented in Sections 3 and 4. Then, for the two components,
the Controller and the Interlocking, whose descriptive model is refined into an operational one, we
also provide the operational version. For every considered component, the model consists of the
conjunction of the listed axioms, with an outermostAlw operator. For the sake of readability, every
axiom is preceded by an illustrative comment.
Axioms for the Controller
A go(up) command is issued to raise the bar exactly when the train exits critical region I.
go(up)←→ ExitI

A go(down) command is issued to lower the bar exactly dm − γ time units after the train enters
region R
go(down)←→ �dm−γEnterR

Axioms for the Interlocking system
Red and green colors for the signaling semaphores are mutually exclusive
red←→ ¬green

The light is red iff there was no ExitI (with no simultaneous EnterR) since the last EnterR (hence
the light is green in the case there was no EnterR in the past)
red←→ •(¬(ExitI ∧ ¬EnterR) S EnterR)

Axioms for the Gate
We use two unary time dependent predicates go(d), with d ∈ {up, down, notin}, and bar(p), with
p ∈ {open, closed,mvup,mvdown}, to represent commands to the bar and its position. Suitable
additional axioms, not reported here for brevity, ensure existence and uniqueness of these values.
When the bar is closed and it receives a go(up) command it starts moving immediately, it moves
up for γ time units, it reaches the open position and remains in that position until a subsequent
go(down) command, or indefinitely if no successive go(down) command is issued.

•bar(closed) ∧ go(up)
→

�<γbar(mvup) ∧ ♦=γ((bar(open)Ugo(down)) ∨�bar(open))

Symmetrically to the previous axiom: when the bar is open and it receives a go(down) command
it starts moving immediately, it moves down for γ time units, it reaches the closed position and
remains in that position until a subsequent go(up) command, or indefinitely if no successive go(up)
command is issued.

•bar(open) ∧ go(down)
→

�<γbar(mvdown) ∧ ♦=γ((bar(closed)Ugo(up)) ∨�bar(closed))

Axioms describing Train movement
The axioms below are inspired to similar ones in [Gargantini and Morzenti 2001]. Their complexity
derives from the fact that they characterize in a very general and abstract way the movement of
an unbound number of trains that are not individually identified and move at a speed that is not
constant but is constrained between a minimum and a maximum value. It is to be noticed that the
nondeterminism of the train movement is the major source of complexity in the analysis of the KRC
case study.
The trains enter region R only when the semaphore is green
EnterR→ green

Next we introduce axioms defining the relationship predicate ER EI between EnterR events (a
train entering region R) and EnterI events (a train entering region I). The ER EI is used in the
coming axioms to state that EnterR and EnterI are related in pairs, that every EnterR event
causes a unique EnterI event, and that every EnterI event is caused by a unique EnterR event.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Bounded Satisfiability Checking of Metric Temporal Logic Specifications A:iii

Occurrence axiom for ER EI
∀t1(dm ≤ t1 ≤ dMax ∧ ER EI(t1)→ EnterR ∧ ♦=t1EnterI)

Cause axiom for ER EI
EnterR→ ∃t1(dm ≤ t1 ≤ dMax ∧ ER EI(t1))

Effect axiom for ER EI
EnterI → ∃t1(dm ≤ t1 ≤ dMax ∧ �=t1ER EI(t1))

Unique effect axiom for ER EI
∀t1∀t2(dm ≤ t1 ≤ dMax ∧ dm ≤ t2 ≤ dMax ∧ ER EI(t1) ∧ ER EI(t2)→ t1 = t2)

Unique cause axiom for ER EI

∀t1∀t2

 dm ≤ t1 ≤ dMax ∧ dm ≤ t2 ≤ dMax

∧�=t1ER EI(t1) ∧ �=t2ER EI(t2)
→

t1 = t2

Similar axioms define the relationship predicate EI ExI between EnterI events (a train entering
region I) and ExitI events (a train exiting region I)
Occurrence axiom for EI ExI
∀t1(hm ≤ t1 ≤ hMax ∧ EI ExI(t1)→ EnterI ∧ ♦=t1ExitI)

Cause axiom for EI ExI
EnterI → ∃t1(hm ≤ t1 ≤ hMax ∧ EI ExI(t1))

Effect axiom for EI ExI
ExitI → ∃t1(hm ≤ t1 ≤ hMax ∧ �=t1EI ExI(t1))

Unique effect axiom for EI ExI

∀t1∀t2

(
hm ≤ t1 ≤ hMax ∧ hm ≤ t2 ≤ hMax ∧ EI ExI(t1) ∧ EI ExI(t2)

→
t1 = t2

)
Unique cause axiom for EI ExI

∀t1∀t2

 hm ≤ t1 ≤ hMax ∧ hm ≤ t2 ≤ hMax

∧�=t1EI ExI(t1) ∧ �=t2EI ExI(t2)
→

t1 = t2

The train is InI iff no ExitI occurred since the last EnterI
InI ←→ (¬ExitI Si EnterI)

Safety and utility properties
Safety: Whenever the train is in critical region I, the bar is in the closed position.
Alw(InI → bar(closed))

Utility: we introduce the two time constants Dpre and Dpost, denoting the maximal length of the
time interval in which we accept that the bar is not in the open position before the train enters region
I (and, respectively, after it exits it). For the first set of time constants adopted in our experiments
(dMax = 22 and dm = 16, hMax = 14, hm = 8, and γ = 5), we take Dpre = 11 and Dpost = 5,
while for the second set of time constants (dMax = 22 and dm = 20, hMax = 14, hm = 12, and
γ = 5) we take Dpre = 11 and Dpost = 5 (notice that Dpost = 5 in both cases, since it is only
related with the time γ taken by the bar to go from closed to open position). The utility property
asserts that at any time instant for which no train has been in the I region for the last Dpost time
units, and also no train will be in the I region for the next Dpre time units, the bar must be in the
open position.
Alw(�≤Dpre

¬InI ∧�≤Dpost
¬InI → bar(open))

Axioms for the Controller, operational version
We introduce the additional state predicate PastER; PastER(i), for 1 < i < dm − γ, means
that an EnterR event occurred i time units ago. The PastER predicate is defined by the following
axioms.
EnterR←→ ◦PastER(1)

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:iv Pradella, Morzenti, San Pietro

∀x(1 ≤ x < (dm − γ)→ (PastER(x)←→ ◦PastER(x+ 1)))
Initially, when no EnterR event has yet occurred, predicate PastER(x) is false for all values of
its argument. The following axiom is asserted at time 0, which is conventionally assumed as the
instant when the KRC starts its operation.
∀x(1 ≤ x < (dm − γ)→ ¬PastER(x))

A go(down) command is issued to lower the bar exactly dm − γ time units after the train enters
region R
go(down)←→ PastER(dm − γ)

A go(up) command is issued to raise the bar exactly when the train exits critical region I .
go(up)←→ ExitI

Axioms for the Interlocking, operational version
If the light is green and a train enters, then the next time unit the light will be red
green ∧ EnterR→ ◦red

If the light is green and no train enters, then the next time unit the light will still be green
green ∧ ¬EnterR→ ◦green

If the light is red, a train exits and no train enters, the next time unit the light will be green
red ∧ ExitI ∧ ¬EnterR→ ◦green

If the light is red and a train exits, and a train enters, the next time unit the light will still be red
red ∧ ExitI ∧ EnterR→ ◦red

If the light is red and no train exits, the next time unit the light will still be red
red ∧ ¬ExitI → ◦red

I.2. The Real-Time Allocator Case Study
In the formalization of the Real Time Allocator we use the following predicates, with the indicated
meaning.
APR(p): (Active Pending Request) in the recent past process p has issued a request that is still active
(timeout Treq not elapsed yet) and is pending (it has not been satisfied so far).
LRAPR(p): (Least Recent Active Pending Request) there is an active pending request (see predicate
APR(p)) by process p, and it is the least recent one (all other active pending requests are more
recent).
available: the resource is currently available (not assigned to any process).

The description of the real-Time Allocator is composed of the following axioms, where variables
p and q denoting processes are ranging over the integer set [1..np], np being the assumed number of
processes.
The resource is assigned to process p iff it is available and p has the least recent active pending
request

∀p (gr(p)←→ available ∧ LRAPR(p))

The resource is available iff it has not been granted to any process, either from the release by the
last process that was assigned it, or forever in the past

available←→ ¬∃p • (gr(p) S rel) ∨ •�¬∃p gr(p)
A request by process p is active and pending if it was issued by a process p less than Treq time units
ago, and the resource was not granted to p since then

APR(p)←→ •
(
¬gr(p) S<Treqrq(p)

)
A request by process p is the least recent active pending one if it is an active pending request and
if there is no other less recent request by another process q. Here variables tp and tq indicate time

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Bounded Satisfiability Checking of Metric Temporal Logic Specifications A:v

distances, as well as every variable of the form ti, and range on the set [1..Treq].

LRAPR(p)
←→

∃tp

 APR(p)
∧

¬rq(p)S=tprq(p)
∧ ¬∃q ∃tq

 q 6= p∧
tq > tp∧
APR(q)∧

¬rq(q)S=tqrq(q)

Once granted the resource, any process p keeps it for at least one time unit and releases it within
Trel time units

∀p (gr(p)→ ¬rel ∧ ◦♦<Trel
rel)

There are no spurious release signals: a release signal is issued only if there has be no previous
release since the last grant of the resource to any process p

rel→ •(¬rel S ∃p gr(p))
There can be no simultaneous requests by two distinct processes

¬∃p ∃q (rq(p) ∧ rq(q) ∧ p 6= q)

There are no spurious resource requests by any process, i.e., a process will not issue a resource
request if there is an active pending request by the same process, or if the process is holding the
resource (the resource has been granted to the process and since then it has not released it)

∀p ((APR(p) ∨ gr(p) ∨ •(¬rel S gr(p)))→ ¬rq(p))
The overall specification of the real-time allocator system is obtained by prefixing all axioms

by universal quantifications on any free variable, by conjoining the axiom and prefixing universal
temporal quantification operator Alw.

In the reported experiments we considered the case of a system with three processes and Trel =
Treq = 3 (referred to as alloc). As in the previous case studies, we first used Zot to generate a simple
“run” of the system (history generation); then, based on the above formalization, the following
properties, named Simple Fairness, Conditional Fairness, Precedence, and Suspend Fairness, were
analyzed by means of the Zot tool.
Simple Fairness If a process that does not obtain the resource always requests it again immediately
after the request is expired, then if it requests the resource it will eventually obtain it. This property
holds only for Trel < Treq, hence not in our case, and Zot generates a counterexample. We indicate
the following formula as SFAIR:

Alw
(
rq(p) ∧ ◦�<Treq¬gr(p)→ ♦=Treq+1rq(p)

)
→ Alw (rq(p)→ ♦gr(p))

Conditional Fairness Let us first define the notion of “unconstrained rotation” among processes: a
process will require the resource only after all other ones have requested and obtained it. Notice that
this requirement does not impose any precise ordering among the requests made by the processes
(though, once requests take place in a given order, the order remains unchanged from one round
among processes to the next one). This property is described by the following formula:

∀p Alw

 rq(p)→

∀q
(
q 6= p→ •

(
¬rq(p) S

(
rq(q)∧

◦♦≤Treq
gr(q)

)))
Under this assumption of “unconstrained rotation” the allocator system is fair for all processes: if
a process, when it requests the resource and does not obtain it, always requests it again after the
request is expired, then, when it requests the resource, it will eventually obtain it. If for brevity we

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:vi Pradella, Morzenti, San Pietro

symbolically indicate the property of “unconstrained rotation” as UNROT, this conditional fairness
property may be stated as:

UNROT → SFAIR

Precedence The allocator system cannot grant the resource to a process a asking for it after another
process b, if the resource has not yet been granted to b.

∀a∀b∀c

rq(a)∧

∃t1♦=t1(rq(b) ∧ b 6= a)∧
∃t2 (♦=t2gr(c) ∧ ◦�<t2¬∃p gr(p))

→
b 6= c

Suspend Fairness Simple fairness holds under the assumption that every process, after obtaining
the resource, suspends itself for np · Trel time units, np being the number of processes.

Alw

∀p
 rq(p) ∧ ◦♦<Treqgr(p)

→
◦�<np·Trel

¬rq(p)

→ SFAIR

I.3. The Asynchronous Shift Register Case Study
We represent the value of the n bits of the register by the predicate R(x), with x ∈ [0..n− 1], the
Shift signal by predicate letter Sh, and the bit which is input at one end of the register by predicate
letter In.
Descriptive model
The first bit of the register, R(0), is true iff no Shift command occurred since the last time when
the In signal was true simultaneously with the Shift command.

R(0)←→ • (¬Sh S (Sh ∧ In))

Notice the operator • in front of the S to ensure that the R(0) bit changes one time unit after the
signals Sh and In.
The specification for the remaining n − 1 bits R(x), for x ∈ [1..n − 1], is similar to the previous
one, with the difference that, for any of the R(x) bits, the role of the input signal In is played by
the previous bit R(x− 1).

∀x (1 ≤ x ≤ n− 1→ (R(x)←→ • (¬Sh S (Sh ∧R(x− 1)))))

Operational model
As in the descriptive model, we have two similar (group of) axioms, the first for bit R(0) and the
second for the successive bits. Every bit remains unchanged, from one time instant to the next, when
the Shift command does not occur. Otherwise (i.e., when the Shift command occurs) at the next
time instant the bit takes the value of the In signal if it is the first one, or otherwise the value of the
previous bit.
The following clauses specify the value of the first bit.

¬Sh ∧R(0)→ ◦R(0)

¬Sh ∧ ¬R(0)→ ◦¬R(0)

Sh ∧ In→ ◦R(0)

Sh ∧ ¬In→ ◦¬R(0)

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Bounded Satisfiability Checking of Metric Temporal Logic Specifications A:vii

The next clauses specify the value of the successive bits.

∀x

1 ≤ x ≤ n− 1→

 ¬Sh ∧R(x)→ ◦R(x) ∧
¬Sh ∧ ¬R(x)→ ◦¬R(x) ∧
Sh ∧R(x− 1)→ ◦R(x) ∧
Sh ∧ ¬R(x− 1)→ ◦¬R(x)

 .

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

