
Weighted Operator Precedence Languages?

Manfred Droste1, Stefan Dück1??, Dino Mandrioli2, and Matteo Pradella2,3

1 Institute of Computer Science, Leipzig University, D-04109 Leipzig, Germany
{droste,dueck}@informatik.uni-leipzig.de

2 Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB), Politecnico di
Milano, Piazza Leonardo Da Vinci 32, 20133 Milano, Italy

{dino.mandrioli,matteo.pradella}@polimi.it
3 IEIIT, Consiglio Nazionale delle Ricerche, via Ponzio 34/5, 20133 Milano, Italy

Abstract. In the last years renewed investigation of operator precedence
languages (OPL) led to discover important properties thereof: OPL are
closed with respect to all major operations, are characterized, besides
by the original grammar family, in terms of an automata family (OPA)
and an MSO logic; furthermore they significantly generalize the well-
known visibly pushdown languages (VPL). A different area of research
investigates quantitive evaluations of formal languages by adding weights
to strings. In this paper, we lay the foundation to marry these two
research fields. We introduce weighted operator precedence automata
and show how they are both strict extensions of OPA and weighted
visibly pushdown automata. We prove a Nivat-like result which shows
that quantitative OPL can be described by unweighted OPA and very
particular weighted OPA. In a Büchi-like theorem, we show that weighted
OPA are expressively equivalent to a weighted MSO-logic for OPL.

Keywords: quantitative automata, operator precedence languages, input-driven
languages, visibly pushdown languages, quantitative logic

1 Introduction

In the long history of formal languages the family of regular languages (RL), those
that are recognized by finite state machines (FSM) or are generated by regular
grammars, has always played a major role: thanks to its simplicity and naturalness
it enjoys properties that only partially extend to larger families. Among the many
positive results that have been achieved for RL (e.g., expressiveness, decidability,
minimization, ...), those of main interest in this paper are the following:

• RLs have been characterized in terms of various mathematical logics. The
pioneering papers are due to Büchi, Elgot, and Trakhtenbrot [7, 23, 41] who

? Work partially supported by project AUTOVAM, funded by Fondazione Cariplo and
Regione Lombardia.

?? supported by Deutsche Forschungsgemeinschaft (DFG) Graduiertenkolleg 1763
(QuantLA).

2 M. Droste, S. Dück, D. Mandrioli, and M. Pradella

independently developed a monadic second order (MSO) logic defining exactly
the RL family. This work too has been followed by many further results; in
particular those that exploited weaker but simpler logics such as first-order,
propositional, and temporal ones which culminated in the breakthrough of
model checking to support automatic verification [35, 24, 8].

• Weighted RLs have been introduced by Schützenberger in his pioneering
paper [39]: by assigning a weight in a suitable algebra to each language word,
we may specify several attributes of the word, e.g., relevance, probability, etc.
Much research then followed and extended Schützenberger’s original work in
various directions, cf. the books [22, 38, 30, 4, 15].

Unfortunately, all families with greater expressive power than RL – typically
context-free languages (CFL), which are the most widely used family in practical
applications – pay a price in terms of properties and, consequently, of possible
tools supporting their automatic analysis. For instance, for CFL, the inclusion
problem is undecidable and they are not closed under complement.

What was not possible for general CFL, however, has been possible for
important subclasses of this family, which together we call structured CFL.
Informally, with this term we denote those CFLs where the syntactic tree-
structure of their words is immediately “visible” in the words themselves. A first
historical example of such families is that of parenthesis languages, introduced
by McNaughton in another seminal paper [34], which are generated by grammars
whose right hand sides are enclosed within pairs of parentheses; not surprisingly
an equivalent formalism of parenthesis grammars was soon defined, namely tree-
automata which generalize the basics of FSM to tree-like structures instead of
linear strings [40]. Among the many variations and generalizations of parenthesis
languages the recent family of input-driven languages (IDL) [36, 6], alias visibly
pushdown languages (VPL) [2], has received much attention in recent literature.
For most of these structured CFL, including in particular IDL, the relevant
algebraic properties of RL still hold [2]. One of the most noticeable results of this
research field has been a characterization of IDL/VPL in terms of a MSO logic
that is a fairly natural extension of Büchi’s original one for RL [31, 2].

This fact has suggested to extend the investigation of weighted RL to various
cases of structured languages. The result of such a fertile approach is a rich
collection of weighted logics, first studied by Droste and Gastin [13], associated
with weighted tree automata [20] and weighted visibly pushdown automata (VPA),
the automata recognizing VPL, also called weighted nested word automata (NWA)
[11, 33, 19].

In an originally unrelated way operator precedence languages (OPL) have
been defined and studied in two phases temporally separated by four decades.
In his seminal work [26] Floyd was inspired by the precedence of multiplicative
operations over additive ones in the execution of arithmetic expressions and
extended such a relation to the whole input alphabet in such a way that it could
drive a deterministic parsing algorithm that builds the syntax tree of any word
that reflects the word’s semantics; Figure 1 and Section 2 give an intuition of how
an OP grammar generates arithmetic expressions and assigns them a natural

Weighted Automata and Logics for Operator Precedence Languages 3

structure. After a few further studies [10], OPL’s theoretical investigation has
been abandoned due to the advent of LR grammars which, unlike OP grammars,
generate all deterministic CFL.

OPL, however, enjoy a distinguishing property which we can intuitively
describe as “OPL are input driven but not visible”. They can be claimed as
input-driven since the parsing actions on their words –whether to push or to pop
their stack– depend exclusively on the input alphabet and on the relation defined
thereon, but their structure is not visible in their words: e.g, they can include
unparenthesized arithmetic expressions where the precedence of multiplicative
operators over additive ones is explicit in the syntax trees but hidden in their
frontiers (see Figure 1). Furthermore, unlike other structured CFL, OPL include
deterministic CFL that are not real-time [32].

This remark suggested to resume their investigation systematically at the
light of the recent technological advances and related challenges. Such a renewed
investigation led to prove their closure under all major language operations [9]
and to characterize them, besides by Floyd’s original grammars, in terms of an
appropriate class of pushdown automata (OPA) and in terms of a MSO logic
which is a fairly natural but not trivial extension of the previous ones defined
to characterize RL and VPL [32]. Thus, OPL enjoy the same nice properties
of RL and many structured CFL but considerably extend their applicability by
breaking the barrier of visibility and real-time pushdown recognition.

In this paper we put together the two above research fields, namely we
introduce weighted OPL and show that they are able to model system behaviors
that cannot be specified by means of less powerful weighted formalisms such as
weighted VPL. For instance, many events like interrupts in operating systems,
exceptions in programming languages, errors during the transfer of complex web
data, may have a different impact on the overall quality of the produced result.
It is therefore important to evaluate how critically the occurrences of such events
affect the normal system behavior, e.g., by counting the number of pending calls
that have been preempted by an interrupt, or by weighing transmission errors
depending on where they occur within a web page.

As an example consider a system logging all hierarchical calls and returns
over words where this structural information is hidden. Depending on changing
exterior factors like energy level, such a system could decide to log the above
information in a selective way. In Section 3 we describe a few practical cases
where system quality can be naturally modeled in terms of our new weighted
OPL model. We will also show that VPL are not adequate to model such systems.

Our main contributions in this paper are the following, after introducing the
necessary background on OPL (Section 2):

• The new model of weighted OPA, which have weights at their transitions, is
introduced by adopting as the weight algebra a valuation monoid, i.e., an
additive monoid equipped with a general valuation function [17] (Section 3).
We also investigate semirings as a special and interesting case of valuation
monoids (Section 8).

4 M. Droste, S. Dück, D. Mandrioli, and M. Pradella

• Weighted OPA significantly increase the descriptive power of previous weighted
extensions of VPA (Section 4), and have desired closure and robustness prop-
erties (Section 5).

• In general, there is a relevant difference in the expressive power of the model
depending on whether it permits assigning weights to pop transitions or
not. The difference in descriptive power is due to the fact that OPL may be
non-real-time and therefore OPA may execute several pop moves without
advancing their reading heads (Section 3). For commutative semirings, how-
ever, we show that weights on pop transitions do not increase the expressive
power of the automata (Section 8).

• We extend the classical result of Nivat [37] to weighted OPL. This robustness
result shows that the behaviors of weighted OPA without weights at pop
transitions are exactly those that can be constructed from weighted OPA
with only one state, intersected with OPL, and applying projections which
preserve the structural information (Section 5).

• We propose a weighted MSO logic and a Büchi-Elgot-Trakhtenbrot-Theorem
proving its expressive equivalence to weighted OPA without weights at pop
transitions (Sections 6 and 7). This result holds for general weight structures,
which include all semirings and valuation functions like average. As a corollary,
for commutative semirings, this weighted logic is equivalent to weighted OPA
including weights at pop transitions (Section 8).

An earlier, partial report on the above results appeared in [12]. The present
version extends and completes the previous one in that it documents all tech-
nical details –mainly the proofs– that have been omitted there. Furthermore,
the original formulation where the algebra of weights was a semiring is now
generalized to valuation monoids, of which semirings are an important special
case. Additionally, in contrast to the case of commutative semirings, we prove
that even for commutative valuation monoids, the version of wOPA without pop
weights is strictly weaker than the unrestricted version.

2 Operator Precedence Languages

We rely on the basic knowledge of the reader in the field of formal language
theory, for concepts such as grammar, derivation and parsing, or refer them to
any classic textbook of this discipline, e.g., [28].

Let Σ be an alphabet and ε the empty string. Let G = (Σ,VN , R, S) be a
context-free (CF) grammar, where VN is the nonterminal alphabet, R the rule
(or production) set, and S the axiom. A rule is in operator form if its right hand
side has no adjacent nonterminals; an operator grammar (OG) contains only
such rules. The following naming convention will be adopted, unless otherwise
specified: lowercase Latin letters a, b, . . . denote terminal characters; uppercase
Latin letters A,B, . . . denote nonterminal characters; letters r, s, t, u, v, . . . denote
terminal strings; and Greek letters α, . . . , ω denote strings over Σ ∪ VN . The
strings may be empty, unless stated otherwise.

Weighted Automata and Logics for Operator Precedence Languages 5

For an OG G and a nonterminal A, the left and right terminal sets are

LG(A) = {a ∈ Σ | A ∗⇒ Baα} RG(A) = {a ∈ Σ | A ∗⇒ αaB}

where B ∈ VN ∪ {ε} and
∗⇒ denotes the derivation relation.

The following binary operator precedence (OP) relations are defined:

equal in precedence: a
.
= b ⇐⇒ ∃A→ αaBbβ,B ∈ VN ∪ {ε}

takes precedence: am b ⇐⇒ ∃A→ αDbβ,D ∈ VN and a ∈ RG(D)

yields precedence: al b ⇐⇒ ∃A→ αaDβ,D ∈ VN and b ∈ LG(D)

Following the custom of sequential parsers, we enclose the input string between
two # special characters, and we assume that # yields precedence to any other
character and any character takes precedence over #.

The operator precedence matrix (OPM) M = OPM(G) is a |Σ ∪ {#}| ×
|Σ ∪ {#}| array that associates with any ordered pair (a, b) the set Mab of OP
relations holding between a and b. We define an OP alphabet as a pair (Σ,M).

Definition 1. An OG G is an operator precedence grammar (OPG) if, and only
if, M = OPM(G) is a conflict-free matrix, i.e., ∀a, b, |Mab| ≤ 1.

Definition 2. An OPG is in Fischer normal form [25] if no two rules have the
same right hand side (r.h.s.); no rule, possibly except one with the axiom S as
the left hand side (l.h.s.), has ε as the r.h.s.; renaming rules, i.e., those with a
single nonterminal character as the r.h.s., are those and only those with S as the
l.h.s.

Example 3. Consider arithmetic expressions with two operators, an additive
one and a multiplicative one that takes precedence over the other one, in the
sense that, during the interpretation of the expression, multiplications must
be executed before sums. Parentheses are used to force different precedence
hierarchies. Figure 1 depicts a grammar generating arithmetic expressions (a), its
precedence matrix (b), its version in Fischer Normal Form (c), and an example
derivation tree of the expression n+ n× (n+ n) (d).

Notice that the structure of the syntax tree (uniquely) corresponding to
the input expression reflects the precedence order which drives computing the
value attributed to the expression. This structure, however, is not immediately
visible in the expression; if we used a parenthesis grammar, it would produce
the string (n + (n × (n + n))) instead of the previous one, and the structure
of the corresponding tree would be immediately visible. For this reason we say
that such grammars “hide” the structure associated with a sentence, whereas
parenthesis grammars and other input-driven ones make the structure explicit in
the sentences they generate.

The precedence relations are used to drive the parsing of a string in the
following way. Preliminarily, the original OPG is transformed in Fischer Normal
Form.

6 M. Droste, S. Dück, D. Mandrioli, and M. Pradella

S → E
E → E + T | T
T → T × F | F
F → n | (E)

S

E

F

n

+ T

F

n

× F

(E

F

n

+ F

n

)

+ × () n

+ m l l m l
× m m l m l
(l l l .

= l
) m m m
n m m m

(a) (d) (b)

S → E | T | F
E → E + T | E + F | T + T | F + F | F + T | T + F
T → T × F | F × F
F → n | (E)

(c)

Fig. 1. A grammar generating arithmetic expressions (a), its precedence matrix (b),
its version in Fischer Normal Form (c), and an example derivation tree of the Fischer
Normal Form (d).

The terminal part of the right hand side of a production is enclosed between
a pair l, m, such that the

.
= holds between its adjacent terminals. For instance,

with reference to Figure 1, the right hand side n is always enclosed between l,
m, in all its occurrences. Therefore a bottom-up parsing algorithm can reduce
it to its left-hand side, i.e. F in this case. In a futher step, the right hand side
F + F is enclosed between (and), and since (l+ and +m) – notice that the
nonterminals are “transparent” w.r.t. the parsing – it is reduced to E. Then the
parsing goes on, until reaching S, and finally the syntaxt tree is built.

To model the hierarchical structure of a sentence and make it accessible
without depicting the whole syntax tree, we introduce the chain relation y.

Let w = (a1...an) ∈ Σ+ be a non-empty word. We say a0 = an+1 = #
and define a new relation y on the set of all positions of #w#, inductively,
as follows. Let i, j ∈ {0, 1, ..., n + 1}, i < j. Then, we write i y j if there
exists a sequence of positions k1...km, m ≥ 3, such that i = k1 < ... < km = j,
ak1 l ak2

.
= ...

.
= akm−1 m akm , and either ks + 1 = ks+1 or ks y ks+1 for each

s ∈ {1, ...,m− 1}. In particular, iy j holds if ai l ai+1
.
= ...

.
= aj−1 m aj . Thus,

by looking again at Figure 1, we can see that relation iy j and the corresponding
pair (l,m) embrace any subtree of the derivation tree of a string generated by a
given grammar.

We say that a string w is compatible with the OPM M if for #w# we have
0 y n + 1. In particular, this forces Maiaj 6= ∅ for all i + 1 = j and for all
iy j. We denote by (Σ+,M) the set of all non-empty words over Σ which are

Weighted Automata and Logics for Operator Precedence Languages 7

compatible with M . For a complete OPM M , i.e. one without empty entries,
this is Σ+. In fact, for any #w# it is possible to build a (unique) syntax tree
whose frontier is w (see, e.g., [32]). An example of the y relation will be given
in Figure 11.

This new relation can be compared with the nesting or matching relation of
[2], as it also is a non-crossing relation, going always forward and originating
from additional information on the alphabet. However, it also features significant
differences: instead of adding unary information to symbols, which partition
the alphabet into three disjoint parts (calls, internals, and returns), we use the
precedence relations between terminal symbols. Therefore, in contrast to the
nesting relation, the same symbol can be either call or return depending on its
context, and the same position can be part of multiple chain relations.

We now recall the definition of an operator precedence automaton from [32].

Definition 4. A (nondeterministic) operator precedence automaton (OPA) A
over an OP alphabet (Σ,M) is a tupleA = (Q, I, F, δ), where δ = (δpush, δshift, δpop),
consisting of

– Q, a finite set of states,
– I ⊆ Q, the set of initial states,
– F ⊆ Q, a set of final states, and
– the transition relations δpush, δshift ⊆ Q×Σ ×Q, and δpop ⊆ Q×Q×Q.

Let Γ = Σ ×Q. A configuration of A is a triple C = 〈Π, q, w#〉, where Π ∈ ⊥Γ ∗
represents a stack, q ∈ Q the current state, and w the remaining input to read.

A run of A on w = a1...an is a finite sequence of configurations C0 ` ... ` Cm
such that every transition Ci ` Ci+1 has one of the following forms, where a is
the first component of the topmost symbol of the stack Π, or # if the stack is ⊥,
and b is the next symbol of the input to read:

push move : 〈Π, q, bx〉 ` 〈Π[b, q], r, x〉 if al b and (q, b, r) ∈ δpush,
shift move : 〈Π[a, p], q, bx〉 ` 〈Π[b, p], r, x〉 if a

.
= b and (q, b, r) ∈ δshift,

pop move : 〈Π[a, p], q, bx〉 ` 〈Π, r, bx〉 if am b and (q, p, r) ∈ δpop.
An accepting run of A on w is a run from 〈⊥, qI , w#〉 to 〈⊥, qF ,#〉, where qI ∈ I
and qF ∈ F . The language accepted by A, denoted L(A), consists of all words
of (Σ+,M) over which A has an accepting run. We say that L ⊆ (Σ+,M) is an
OPL if L is accepted by an OPA over (Σ,M). As proven in [32], the deterministic
variant of an OPA, using a single initial state instead of I and transition functions
instead of relations, is equally expressive to nondeterministic OPA.

An example automaton is depicted in Figure 2: with the OPM of Figure 1
(right), it accepts the same language as the grammar of Figure 1 (left).

In addition to the above description of OPL in terms of grammars and
automata, the following second order logic has been defined to further characterize
them [32].

Definition 5. The logic MSO(Σ,M), short MSO, is defined as

β ::= Laba(x) | x ≤ y | xy y | x ∈ X | ¬β | β ∨ β | ∃x.β | ∃X.β

where a ∈ Σ∪{#}, x, y are first-order variables; and X is a second order variable.

8 M. Droste, S. Dück, D. Mandrioli, and M. Pradella

0 1

2 3

n

(

0, 1+,×

n
(

0, 1, 2, 3+,×

)

Fig. 2. Automaton for the language of the grammar of Figure 1. Shift, push and pop
transitions are denoted by dashed, normal and double arrows, respectively.

We define the natural semantics for this (unweighted) logic as in [32]. The
predicate Laba(x) asserts that position x is labeled a. The semantics of the
formula y is defined by the chain relation introduced above.

We use the following usual abbreviations:

(β ∧ ϕ) = ¬(¬β ∨ ¬ϕ),

(β → ϕ) = (¬β ∨ ϕ),

(β ↔ ϕ) = (β → ϕ) ∧ (ϕ→ β),

(∀x.ϕ) = ¬(∃x.¬ϕ),

(y = x) = (x ≤ y) ∧ (y ≤ x),

(y = x+ 1) = (x ≤ y) ∧ ¬(y ≤ x) ∧ ∀z.(z ≤ x ∨ y ≤ z),
min(x) = ∀y.(x ≤ y),

max(x) = ∀y.(y ≤ x) .

To summarize, the main previous results on OPL are the following:

• A language L over (Σ,M) is an OPL iff it is [32]
• generated by an OP grammar (as defined in [32]);
• recognized by an OPA;
• MSO-definable.

• OPL sharing the same OPM are a boolean algebra [10] and are closed with
respect to concatenation, Kleene * and other classical language operations
[9].

• OPL strictly include VPL and other structured CFL [9].

3 Weighted Operator Precedence Languages

In this section, we introduce weighted extensions of operator precedence automata
and their respective weighted languages and give examples showing how these
weighted automata can express behaviors which were not expressible before.

Weighted Automata and Logics for Operator Precedence Languages 9

As weight structures, we will employ valuation monoids and semirings as an
important special case thereof. Valuation monoids are a very general weight struc-
ture that, besides covering classical semirings, are also able to model computations
like average or discounting as demonstrated in the following.

Definition 6. [Droste, Meinecke [17]] A valuation monoid D is a tuple D =
(D,+,Val, 0) that consists of a commutative monoid (D,+, 0) and is equipped
with a valuation function Val : D+ → D with Val(d1, ..., dn) = 0 if di = 0 for
some i ∈ {1, .., n}.

D is called commutative if for all n ∈ N and all d1, ..., dn ∈ D, we have
Val(d1, .., dn) = Val(dπ(1), .., dπ(n)) for all permutations π.

Example 7. We set R̄ = R ∪ {−∞}.

1. We set D1 = (R̄, sup, avg,−∞), where

avg(d1, ..., dn) =
1

n

n∑
i=1

di .

2. Let 0 < λ < 1 and R̄+ = {x ∈ R | x ≥ 0} ∪ {−∞}. We set D2 =
(R̄+, sup,discλ,−∞), where

discλ(d1, .., dn) =

n∑
i=1

λi−1di .

Then D1 and D2 are valuation monoids. Observe that D1 is commutative, while
D2 is not commutative.

Definition 8. A semiring K is a tuple K = (K,+, ·, 0, 1) consisting of a commu-
tative monoid (K,+, 0), and a monoid (K, ·, 1) such that (x+ y) · z = x · z+ y · z,
x · (y + z) = x · y + x · z, and 0 · x = x · 0 = 0 for all x, y, z ∈ K. K is called
commutative if (K, ·, 1) is commutative.

Then, every semiring is a valuation monoid where the product is employed as
valuation function.

Important examples of commutative semirings cover the Boolean semiring
B = ({0, 1},∨,∧, 0, 1), the semiring of the natural numbers N = (N,+, ·, 0, 1),
or the tropical semirings Rmax = (R ∪ {−∞},max,+,−∞, 0) and Rmin = (R ∪
{∞},min,+,∞, 0). Non-commutative semirings are given by n×n-matrices over
semirings K with matrix addition and multiplication as usual (n ≥ 2), or the
semiring (P(Σ∗),∪, ·, ∅, {ε}) of languages over Σ.

Definition 9. A weighted OPA (wOPA) A over an OP alphabet (Σ,M) and a
valuation monoid D is a tupleA = (Q, I, F, δ,wt), where wt = (wtpush,wtshift,wtpop),
consisting of

– an OPA A′ = (Q, I, F, δ) over (Σ,M) and
– the weight functions wtop : δop → D, for op ∈ {push, shift,pop}.

10 M. Droste, S. Dück, D. Mandrioli, and M. Pradella

A restricted weighted OPA (rwOPA) is defined similarly but without weights at
pop transitions, i.e. with wt = (wtpush,wtshift).

A configuration of a wOPA or an rwOPA A is a tuple C = 〈Π, q, w#, d̄〉, where
(Π, q, w#) is a configuration of the underlying OPA A′ and d̄ is a sequence
of weights of D. Given a sequence d̄ = (d1, ..., di), we denote by () the empty
sequence and by (d̄, d) the sequence (d1, ..., di, d).

A run of a wOPA is a sequence of configurations C0 ` C1 ` . . . ` Cm
satisfying the previous conditions and, additionally, we add every encountered
weight to the sequence of weights as follows. As before, we denote with a the first
component of the topmost symbol of the stack Π, or # if the stack is ⊥, and
with b the next symbol of the input to read:

〈Π, q, bx, d̄〉 ` 〈Π[b, q], r, x, (d̄,wtpush(q, b, r)〉 if al b and (q, b, r) ∈ δpush,
〈Π[a, p], q, bx, d̄〉 ` 〈Π[b, p], r, x, (d̄,wtshift(q, b, r))〉 if a

.
= b and (q, b, r) ∈ δshift,

〈Π[a, p], q, bx, d̄〉 ` 〈Π, r, bx, (d̄,wtpop(q, p, r))〉 if am b and (q, p, r) ∈ δpop.

A run of an rwOPA is defined analogously to a run of a wOPA but we do not
have pop weights, so the third line above becomes

〈Π[a, p], q, bx, d̄〉 ` 〈Π, r, bx, d̄〉 if am b and (q, p, r) ∈ δpop.

We call a run ρ accepting if it leads from 〈⊥, qI , w#, ()〉 to 〈⊥, qF ,#, d̄〉, where
qI ∈ I and qF ∈ F . For such an accepting run, the weight of ρ is defined as

wt(ρ) = Val(d̄) .

Note that in the case of a semiring, wt(ρ) equals the product of all encountered
weights.

We denote by acc(A, w) the set of all accepting runs of A on w. Finally, the
behavior of A is a function JAK : (Σ+,M)→ D, defined as

JAK(w) =
∑

ρ∈acc(A,w)

wt(ρ) .

Every function S : (Σ+,M) → D is called a weighted operator precedence
language (short: weighted language, also series). A wOPA A recognizes or accepts
a weighted language S if JAK = S. A weighted language S is called recognizable
or a wOPL if there exists a wOPA A accepting it. S is strictly recognizable or an
rwOPL if there exists an rwOPA A accepting it.

Remark 10. Since an rwOPA applies no weights at pop operations, strictly
speaking rwOPA are not a special case of wOPA, due to the fact that the
sequence of weights for the valuation gets shorter. This is in contrast with the
semiring case, where applying no weight is equivalent to applying the neutral
element of the multiplication (the ‘1’).

Since semirings are a main instance of valuation monoids and, additionally,
one could extend valuation monoids with a neutral element for the valuation
function, we call rwOPL a “restricted” version of wOPL.

Weighted Automata and Logics for Operator Precedence Languages 11

Example 11. Consider the source code of an HTML web page. Web pages are
subject to errors, sometimes because of transmission, but often because they are
written by inexperienced people. A typical error is forgetting to close a tag; for
this reason new standards (e.g. HTML5) admit some of these situations. “Up to a
certain point” these errors should be tolerated and should not prevent displaying
the page by the browser, though not in a perfect shape. To give a precise meaning
to the above still tolerable “certain point” we can define a suitable wOPA that
exploits an average valuation function.

The automaton is based on the idea that deeper levels of nesting of HTML
tags mark smaller and/or less relevant portions of the web page; therefore errors
occurring within deeper levels of nesting should weigh less than those occurring at
the external levels. Thus, we build a wOPA that counts the level of nesting up to
a threshold K by means of its finite state memory: at any push corresponding to
the opening of a new scope the finite memory counter is increased by 1 until level
K is reached. At that point the wOPA remembers the reaching of the threshold
by pushing the state qK onto the stack and moves to a “forgetful state” which
does not count anymore the nesting levels until the qK is popped from the stack.
From that point on, it restarts counting and de-counting up to value K.

During such operations the wOPA weighs possible errors in the following
way: the valuation monoid is (D,+,Val, 0) = (R ∪ {+∞,−∞}, sup, avgT ,−∞),
i.e., the set of reals, augmented with +∞ and −∞ which is the neutral element;
the valuation function is the average augmented with a threshold T defined as
follows. For d ∈ D+, we set avgT (d) := +∞ if avg(d) > T , and avg(d), otherwise.
At start the weight is 0 which represents “no error” and therefore the best weight
for the page. During the computation, if an error occurs when the automaton
is at a nesting level h strictly less than K then the automaton assigns a weight
K − h to the transition; otherwise the weight is 1. When the automaton reaches
the end of the string it computes the average of the weights and, if it is above T
it produces an overall weight +∞, which is considered intolerable.

Figure 3(a) shows a weighted OPA which implements the above policy in
the simple case where K = 2. The automaton’s alphabet is OT, which means
open tag, CT, which means closed tag, e which means error; the figure adopts the
same graphical notation as in Figure 2 with the addition that weights are given
in brackets at transitions. The OPM is depicted in Figure 3(b). Notice that pop
transitions carry no weight, thus the automaton is restricted. Also, the input is
accepted only if at most one open tag remains unmatched: in such a case the
automaton ends in q′0 instead of q0.

We leave to the reader’s imagination the many variations of the above basic
version of the wOPA; e.g., making the weights depending on the type of the
error, possibly including unrecoverable errors producing either an immediate +∞
weight or just the rejection of the input. Notice also that the above automaton is
deterministic, which makes the additive operation of the monoid useless; several
nondeterministic versions of the automaton could be designed, e.g., to represent
unpredictable weights of the errors or unpredictable reactions by the system to

12 M. Droste, S. Dück, D. Mandrioli, and M. Pradella

q0

q′0

q1

q′1

q′′1

q2

q0

e(2)

OT(0)

q0

q0 e(1) q1

CT(0)

OT(0)

q1

OT(0)
e(1)

CT(0)

q2

(a)

OT CT e

OT l .
= l

CT m m m
e m m m

(b)

Fig. 3. A rwOPA processing tagged strings with errors.

the occurrence of some error. In such a case the sup monoid operation would
formalize a worst-case evaluation among the accepting runs.

Example 12. We consider now the modeling of procedure calls with exception
handling. The symbols call and ret are used to represent the calling of and
the return from a procedure, respectively; hd stands for the installation of an
exception handler, while tr is used for throwing exceptions. The automaton
and its matrix are depicted in Figure 4: state qu stands for the application
running in user mode, while qhu stands for user mode with exception handler
installed; analogously, qs stands for supervisor mode, and qhs supervisor mode
with exception handler installed; qkill is an error state, reached when a throw is
issued in supervisor mode, with weight −∞: in that case the application gets
killed.

Only throws have weights; unhandled throws have weights that are greater
than handled throws; exceptions in supervisor mode have greater weights. With
a valuation monoid with discounting, i.e. (R̄+, sup,discλ,−∞), greater weights
are associated with the first exceptions, if present, while subsequent exceptions
are deemed less and less important.

Now we move from general valuation functions to the special case of semirings.

Example 13. We model a system that manages calls and returns in a traditional
LIFO policy but discards all pending calls if an interrupt occurs4. The automaton

4 A similar motivation inspired the extension of VPL as colored nested words by [1].

Weighted Automata and Logics for Operator Precedence Languages 13

qu qhu

qs qhsqkill
tr(−∞)

call(0)
tr(5)

ret(0)

qu

hd(0)

qu

call(0)
hd(0)
tr(1)

ret(0)

qhu

call(0)
qhu

call(0) qu

hd(0)

qs

call(0)

qs

ret(0)

call(0)
hd(0)
tr(10)

qhs

ret(0)

call ret hd tr

call l .
= l m

ret m m l m
hd l m l l
tr m m m m

Fig. 4. A rwOPA modeling exception handling.

Apolicy given in Figure 5 formalizes a system where the penalties for unmatched
calls may change nondeterministically within intervals delimited by the special
symbol $. Precisely, the symbol $ marks intervals during which sequences of calls,
returns, and interrupts occur; “normally” unmatched calls are not penalized, but
there is a special, nondeterministically chosen interval during which they are
penalized; the global weight assigned to an input sequence is the maximum over
all nondeterministic runs that are possible when recognizing the sequence.

Here, the alphabet is Σ = {call, ret, itr, $}, and the OPM M is reported in
Figure 5. As semiring, we take Rmax = (R ∪ {−∞},max,+,−∞, 0).

Then, JApolicyK(w) equals the maximal number of pending calls between two
consecutive $.

Apolicy can be easily modified/enriched to formalize several variations of its
policy: e.g., different policies could be associated with different intervals, different
weights could be assigned to different types of calls and/or interrupts, different
policies could also be defined by choosing different semirings, etc.

Example 14. The next automaton Alog, depicted in Figure 6, chooses non-deter-
ministically between logging everything and logging only ‘important’ information,
e.g., only interrupts (this could be a system dependent on energy, WiFi, ...).
Notice that, unlike the previous examples, in this case assigning nontrivial weights
to pop transitions is crucial.

Let Σ = {call, ret, itr}, and define M as in Figure 5. We employ the semiring
(FinΣ′ ,∪, ◦, ∅, {ε}) of all finite languages over Σ′ = {c, r, p, i}. Then, JAlogK(w)
yields all possible logs on w.

14 M. Droste, S. Dück, D. Mandrioli, and M. Pradella

q0 q1 q2

$(0)
itr(0)
call(0)

ret(0)

q0

$(0)

call(1)

ret(−1)

itr(0)

q0, q1

$(0)

$(0), call(0)
ret(0)

itr(0)

q0, q1, q2

call ret itr $

call l .
= m l

ret m m m l
itr m l l
$ m m m

Fig. 5. The rwOPA Apolicy penalizing unmatched calls.

q0 q1

call(c)
itr(i) ret(r)

q0(p)

call(ε)

call(ε)

call(ε)
itr(i) ret(ε)

q0(ε), q1(ε)

Fig. 6. The wOPA Alog nondeterministically writes logs at different levels of detail.

As hinted at by our last example, the following two propositions show that in
general, wOPA are more expressive than rwOPA.

Proposition 15. There exists an OP alphabet (Σ,M), a semiring K, and a
weighted language S : (Σ+,M)→ K such that S is recognizable but not strictly
recognizable.

Proof. Let Σ = {c, r}, clc, and c
.
= r. Consider the semiring Fin{a,b} of all finite

languages over {a, b} together with union and concatenation. Let S : (Σ+,M)→
Fin{a,b} be the following weighted language

S(w) =

{
{anban} , if w = cnr for some n ∈ N
∅ , otherwise

.

Then, we can define a wOPA which only reads cnr, assigns the weight {a} to
every push and pop, and the weight {b} to the one shift, and therefore accepts
S, as in Figure 7.

Now, we show with a pumping argument that there exists no rwOPA which
recognizes S. Assume there is an rwOPA A with JAK = S. Note that for all
n ∈ N, the structure of cnr is fixed as cl cl ...l c

.
= r. Let ρ be an accepting

run of A on cnr with wt(ρ) = {anban}. Then, the transitions of ρ consist of n
pushes, followed by a shift, followed by n pops and can be written as

q0
c−→ q1

c−→ ...
c−→ qn−1

c−→ qn
r
99K qn+1

qn−1
=⇒ qn+2

qn−2
=⇒ ...

q1
=⇒ q2n

q0
=⇒ q2n+1 .

Weighted Automata and Logics for Operator Precedence Languages 15

q0 q1

c({a})

r({b})

q1({a})

Fig. 7. The wOPA recognizing S with S(w) = {anban}, if w = cnr, n ∈ N, and
S(w) = 0, otherwise.

Both the number of states and the amount of pairs of states are bounded. If n is
sufficiently large, there exist two pop transitions pop(q, p, r) and pop(q′, p′, r′) in
this sequence such that q = q′ and p = p′. This means that we have a loop in
the pop transitions going from state q to q′ = q. Furthermore, the corresponding
push to the first transition of this loop was invoked when the automaton was
in state p′, while the corresponding push to the last pop was invoked in state
p. Since p = p′, we also have a loop at the corresponding pushes. Then, the run
where we skip both loops in the pops and in the pushes is an accepting run for
cn−kr, for some k ∈ N \ {0}.

Since the weight of all pops is trivial, the weight of the pop-loop is ε. If the
weight of the push-loop is also ε, then we have an accepting run for cn−kr of
weight {anban}, a contradiction. If the weight of the push-loop is not trivial,
then by a simple case distinction it has to be either {ai} for some i ∈ N \ {0} or
it has to contain the b. In the first case, the run without both loops has weight
{an−iban} or {anban−i}, in the second case it has weight {aj}, for some j ∈ N.
The weights of all these runs are not of the form an−kban−k, a contradiction. ut

Proposition 15 uses a semiring as a special instance of a valuation monoid to
show that in general and for a fixed weight structure, wOPA are more expressive
than rwOPA. However, the proof relies on the non-commutativity of the semiring
Fin{a,b}. On the other hand, in Section 8, we will show that for commutative
semirings, rwOPA are equally expressive as wOPA. Notably, the same is not true
for commutative valuation monoids, i.e. valuation monoids that do not depend
on the order of the input, as the following result shows.

Proposition 16. There exists an OP alphabet (Σ,M), a commutative valuation
monoid D, and a weighted language S : (Σ+,M)→ K such that S is recognizable
but not strictly recognizable.

Proof. Let D = (N, sup,Val,−∞), with Val(d1, .., dn) = mz, where m is the
minimum of d1 to dn and z is the number of occurrences of m in d1 to dn. This
valuation function is based upon an idea of Andreas Maletti.

Let Σ = {c, r}, c l c, and c
.
= r. Let S : (Σ+,M) → N be the following

weighted language

S(w) =

{
2n+ 1 , if w = cnr for some n ∈ N
0 , otherwise

.

16 M. Droste, S. Dück, D. Mandrioli, and M. Pradella

We can define a wOPA which only reads cnr, assigns the weight {1} to every
push, shift, or pop, and therefore accepts S, as in Figure 8. Note that every run
of an wOPA on cnr consists of n pushes, one shift and n pops.

q0 q1

c(1)

r(1)

q1(1)

Fig. 8. The wOPA recognizing S with S(w) = 2n+ 1, if w = cnr, n ∈ N, and S(w) = 0,
otherwise.

Next, we show that there exists no rwOPA which recognizes S. Let A be
an rwOPA with JAK = S, in particular JAK(cnr) = 2n + 1. Since we take the
supremum of weights of all runs, at least one run ρ for cnr has to yield the weight
2n+ 1 and no run should yield a larger weight. Also, note that every run of A
on cnr uses n+ 1 weights. We denote the weights of ρ by dρ1 to dρn+1

.
Let Wmax be the maximal weight that occurs in A and consider n = Wmax!.

Then, by the definition of D, we have

2n+ 1 = JAK(cnr) = Val(dρ1 , ..., dρn , dρn+1
)

By the definition of Val, we know that

2n+ 1 = Val(dρ1 , ..., dρn , dρn+1) = mρ · zρ

where, mρ and zρ are as above. Since zρ ≤ n+ 1, we get mρ ≥ 2. Furthermore,
since mρ ≤ Wmax, we know that mρ |n due to the choice of n. But then mρ

cannot divide 2n+ 1, a contradiction. ut

We note that in general, we assume a fixed weight structure. If on the other hand,
we are allowed to modify the valuation monoid, it is possible to encode parts
of the automaton in the valuation monoid. This leads to the fact that given a
wOPA A over a valuation monoid D, we can construct a valuation monoid D′
such that there exists a rwOPA over D′ with the same behavior as A.

In the following section, we will study the connection between weighted nested
word languages (weighted VPL) and weighted OPL.

4 Weighted OPL strictly include Weighted VPL

In this section, we show that restricted weighted OPL are a generalization of
weighted visibly pushdown languages. We shortly recall the important definitions.

Let in the following Σcall, Σint, Σret be three disjoint alphabets, and Σ̂ =
Σcall ∪Σint ∪Σret be a visibly pushdown alphabet. A visibly pushdown automaton

Weighted Automata and Logics for Operator Precedence Languages 17

(VPA) over Σ̂ is a pushdown automaton which pushes or pops exactly one symbol
whenever it reads a call or return symbol, respectively, or uses no operation on
the stack, otherwise. In [2], words over Σ̂ are interpreted as nested words and
their automata models are nested word automata (NWA).

In [9], it was shown that for every VPA, there exists an equivalent operator
precedence grammar which in turn can be transformed into an equivalent OPA.
This proof uses the complete OPM of Figure 9.

Σcall Σret Σint

Σcall l .
= l

Σret m m m

Σint m m m

Fig. 9. OPM for VPL

In [33] and [19] weighted extensions of NWA were introduced. These add
semiring weights at every transition again depending on the information what
symbols are calls, internals, or returns. In [11], we find a respective extension
to infinite nested words that is using weights from a valuation monoid. We can
apply these concepts in our setting as follows.

We say a weighted nested word automaton (wNWA) over Σ̂ and over a
valuation monoid D is an NWA that at every transition applies a weight of D.
Then, the weight of a run is computed as previously by the valuation function of
D. Finally, the behavior of a wNWA is a function assigning to every non-empty
word over Σ̂ the sum over the weights of all accepting runs of this word. We
denote by wVPL the class of all such behaviors.

Note that every non-empty nested word has a representation as a word over
a visibly pushdown alphabet Σ̂ and can be interpreted as a compatible word
of (Σ+,M), where M is the OPM of Figure 9. Therefore, we can interpret the
behavior of a wNWA over Σ̂ as a weighted language (Σ+,M)→ D.

Theorem 17. Let D be a valuation monoid, Σ̂ be a visibly pushdown alphabet,
and M be the OPM of Figure 9. Then for every wNWA A, there exists an rwOPA
B with JAK(w) = JBK(w) for all w ∈ (Σ+,M).

We give an intuition for this result as follows. Note that although sharing some
similarities, pushes, shifts, and pops for OPA are not the same as calls, internals,
and returns for NWA. Indeed, a return forces a pop of the NWA that also
‘consumes’ the current symbol, while a pop of an OPA just pops the stack and
leaves the current symbol untouched. This observation remains true for (r)wOPA
and wNWA.

18 M. Droste, S. Dück, D. Mandrioli, and M. Pradella

After studying Figure 9, this leads to the important observation that every
symbol of Σret and therefore every pop transition of a NWA is simulated not by
a pop, but by a shift transition of an OPA followed by a pop.

We give a short demonstrating example: Let Σint = {a}, Σcall = {〈c},
Σret = {r〉}, w = a〈car〉. Then every run of an NWA for this word looks
like this

q0
a−−−−−−→ q1

〈c−−→ q2
a−−−−−−→ q3

r〉−−−−−−→ q4 .

Every run of an OPA (using the OPM of Figure 9) looks as follows:

q0
a−→ q′1 ⇒ q1

〈c−→ q2
a−→ q′3 ⇒ q3

r〉
99K q′4 ⇒ q4 ,

where the return was substituted (by the OPM, not by a choice of ours) by a
shift followed by a pop.

It follows that we can simulate a weighted call by a weighted push, a weighted
internal by a weighted push together with a pop, and a weighted return by a
weighted shift together with a pop. Therefore, we may indeed omit weights at
pop transitions.

Proof (of Theorem 17). Let A = (Q, I, F, (δcall, δint, δret), (wtcall,wtint,wtret))
be a wNWA over Σ̂ and a valuation monoid D. We construct an rwOPA B =
(Q′, I ′, F ′, (δpush, δshift, δpop), (wt′push,wt′shift) over (Σ,M) and D. We set Q′ =
Q ∪ (Q×Q), I ′ = I, and F ′ = F . We define the relations δpush, δshift, δpop, and
the functions wt′push and wt′shift as follows.

We let δpush contain all triples (q, a, r) with (q, a, r) ∈ δcall, and all triples
(q, a, (q, r)) with (q, a, r) ∈ δint. We set wt′push(q, a, r) = wtcall(q, a, r) and
wt′push(q, a, (q, r)) = wtint(q, a, r). Moreover, we let δshift contain all triples
(q, a, (p, r)) with (q, p, a, r) ∈ δret and set wt′shift(q, a, (p, r)) = wtret(q, p, a, r).
Furthermore, we let δpop contain all triples ((q, r), q, r) with (q, a, r) ∈ δint, and
all triples ((p, r), p, r) with (q, p, a, r) ∈ δret.

Then, a run analysis of A and B shows that JBK = JAK. ut

Together with the result that OPA are strictly more expressive than VPAs [9],
this shows that

wVPL (rwOPL .

In the semiring case, we get a complete picture of the expressive power of
these three classes of weighted languages:

wVPL (rwOPL (wOPL .

We also note that in the context of formal power series for semirings, wVPL
strictly contain recognizable power series and wOPL form a proper subset of
the class of algebraic power series, i.e., series recognized by weighted pushdown
automata [30].

Weighted Automata and Logics for Operator Precedence Languages 19

5 Closure Properties and a Nivat Theorem

In this section, we study closure properties of weighted OPA and restricted
weighted OPA. Then, we establish a connection between strictly recognizable
weighted languages and unweighted languages. We show that rwOPL are exactly
those weighted languages which can be derived from a restricted weighted OPA
with only one state, intersected with an unweighted OPL, and using an OPM-
preserving projection of the alphabet.

As usual, we define the sum S+T of two weighted languages S, T : (Σ+,M)→
D by means of a pointwise definition as follows:

(S + T)(w) = S(w) + T (w) for each w ∈ (Σ+,M) .

Furthermore, for a weighted language S : (Σ+,M) → D and an OPL L ⊆
(Σ+,M), we define a weighted language S ∩ L : (Σ+,M)→ D by

(S ∩ L)(w) =

{
S(w) , if w ∈ L
0 , otherwise

.

Proposition 18. The sum of two recognizable (resp. strictly recognizable) weighted
languages over (Σ,M) is again recognizable (resp. strictly recognizable).

Proof. We use a standard disjoint union of two (r)wOPA accepting the given
weighted language to obtain a (r)wOPA for the sum as follows.

Let A = (Q, I, F, δ,wt) and B = (Q′, I ′, F ′, δ′,wt′) be two wOPA over (Σ,M)
and D, and assume without loss of generality that Q and Q′ are disjoint. We
construct a wOPA C = (Q′′, I ′′, F ′′, δ′′,wt′′) over (Σ,M) and D by defining
Q′′ = Q ∪ Q′, I ′′ = I ∪ I ′, F ′′ = F ∪ F ′, δ′′ = δ ∪ δ′. The weight function is
defined by

wt′′(t) =

{
wt(t) , if t ∈ δ
wt′(t) , if t ∈ δ′ .

Note that in the case of rwOPA, the weight functions wt, wt′, and wt′′ are defined
only for pushes and shifts. Then, JCK = JAK + JBK. Furthermore, if A and B are
restricted, then so is C. ut

Proposition 19. Let S : (Σ+,M)→ D be a recognizable (resp. strictly recogniz-
able) weighted language and L ⊆ (Σ+,M) an OPL. Then, the weighted language
S ∩ L is recognizable (resp. strictly recognizable).

Proof. We use a product construction of automata.
Let A = (Q, I, F, δ,wt) be a wOPA over (Σ,M) and D with JAK = S and

let B = (Q′, q′0, F
′, δ′) be a deterministic OPA over (Σ,M) with L(B) = L. We

construct a wOPA C = (Q′′, I ′′, F ′′, δ′′,wt′′) over (Σ,M) and D, with JCK = S∩L,
as follows. We let Q′′ = Q×Q′, I ′′ = I × {q′0}, F ′′ = F × F ′, and

δ′′push = {((q, q′), a, (r, r′)) | (q, a, r) ∈ δpush and δ′push(q′, a) = r′} ,
δ′′shift = {((q, q′), a, (r, r′)) | (q, a, r) ∈ δshift and δ′shift(q

′, a) = r′} ,
δ′′pop = {((q, q′), (p, p′), (r, r′)) | (q, p, r) ∈ δpop and δ′pop(q′, p′) = r′} .

20 M. Droste, S. Dück, D. Mandrioli, and M. Pradella

Then, we define the weights of C by letting

wt′′push((q, q′), a, (r, r′)) = wtpush(q, a, r) ,

wt′′shift((q, q
′), a, (r, r′)) = wtshift(q, a, r) ,

wt′′pop((q, q′), (p, p′), (r, r′)) = wtpop(q, p, r) .

Let ρ be a run of C. Then, we refer with ρ�Q (resp. ρ�Q′) to the run of A (resp.
B) that can be obtained from ρ by projecting each state occurrence to its first
(resp. second) component.

Note that for given a word w, the automata A, B, and C have to use pushes,
shifts, and pops at the same positions. Hence, every accepting run ρ of C on w
defines exactly one accepting run ρ�Q of A and exactly one accepting run ρ�Q′ of
B on w with matching weights, and vice versa. We obtain

JCK(w) =
∑

ρ∈acc(C,w)

wt′′(ρ)

=
∑

ρ, such that
ρ�Q∈acc(A,w)
ρ�Q′∈acc(B,w)

wt′′(ρ)

=

{∑
ρ∈acc(A,w) wt(ρ) , if the run of B on w is accepting

0 , otherwise

= (S ∩ L)(w) .

Hence, JCK = S ∩ L. Furthermore, if A and B are restricted, then by using the
same construction without wt′′pop, we get a restricted wOPA C with JCK = S ∩ L.

ut

Next, we show that recognizable weighted languages are closed under pro-
jections which preserve the OPM. For two OP alphabets (Σ,M), (Γ,M ′) and a
mapping h : Σ → Γ , we write h : (Σ,M)→ (Γ,M ′) and say h is OPM-preserving
if for all • ∈ {l, .=,m}, we have a • b if and only if h(a) • h(b). We can extend
such an h to a function h : (Σ+,M) → (Γ+,M ′) as follows. Given a word
w = (a1a2...an) ∈ (Σ+,M), we define h(w) = h(a1a2...an) = h(a1)h(a2)...h(an).

Let D be a valuation monoid and S : (Σ+,M)→ D be a weighted language.
Then, we define h(S) : (Γ+,M ′)→ D for each v ∈ (Γ+,M ′) by

h(S)(v) =
∑

w∈(Σ+,M)
h(w)=v

S(w) . (1)

Proposition 20. Let D be a valuation monoid, S : (Σ+,M)→ D a recognizable
(resp. strictly recognizable) weighted language, and h : Σ → Γ an OPM-preserving
projection. Then, h(S) : (Γ+,M ′) → D is recognizable (resp. strictly recogniz-
able).

Weighted Automata and Logics for Operator Precedence Languages 21

Proof. We follow an idea of [21] and its application in [19] and [11]. Let A =
(Q, I, F, δ,wt) be a wOPA over (Σ,M) and D with JAK = S. We construct the
wOPA B = (Q′, I ′, F ′, δ′,wt′) over (Γ,M ′) and D as follows.

The main idea is that B simulates all runs of A by always remembering the
last symbol that was read in a run of A. We set Q′ = Q × Σ, I ′ = I × {a0}
for some fixed a0 ∈ Σ, and F ′ = F × Σ. We define the transition relations
δ′ = (δ′push, δ

′
shift, δ

′
pop) as

δ′push = {((q, a), b, (q′, a′)) | (q, a′, q′) ∈ δpush and b = h(a′)} ,
δ′shift = {((q, a), b, (q′, a′)) | (q, a′, q′) ∈ δshift and b = h(a′)} ,
δ′pop = {((q, a), (q′, a′), (q′′, a)) | (q, q′, q′′) ∈ δpop} .

Then, the weight functions are defined by

wt′push((q, a), h(a′), (q′, a′)) = wtpush(q, a′, q′) ,

wt′shift((q, a), h(a′), (q′, a′)) = wtshift(q, a
′, q′) ,

wt′pop((q, a), (q′, a′), (q′′, a′′)) = wtpop(q, q′, q′′) .

Analogously to [19] and [11], this implies that for every run ρ of A on w, there
exists exactly one run ρ′ of B on v with h(w) = v and wt(ρ) = wt′(ρ′). One
difference to previous works is that a pop of a wOPA is not consuming the symbol.
Therefore, we have to make sure to not change the symbol that we are currently
remembering while processing a pop.

It follows that JBK(v) = h(JAK)(v), so h(S) = JBK is recognizable. Furthermore,
if A is restricted, then so is B. ut

Let h : Σ′ → Σ be a map between two alphabets. Given an OP alphabet
(Σ,M), we define h−1(M) by setting h−1(M)a′b′ = Mh(a′)h(b′) for all a′, b′ ∈ Σ′.
Then h : (Σ′, h−1(M)) → (Σ,M) is OPM-preserving and for every weighted
language S : (Σ′+, h−1(M))→ D, we get a weighted language h(S) : (Σ+,M)→
D, as above.

Let N (Σ,M,D) comprise all weighted languages S : (Σ+,M)→ D for which
there exist an alphabet Σ′, a map h : Σ′ → Σ, a one-state rwOPA B over
(Σ′, h−1(M)) and D, and an OPL L over (Σ′, h−1(M)) such that S = h(JBK∩L).

Now, we show that every strictly recognizable weighted language can be
decomposed into the fragments introduced above.

Proposition 21. Let S : (Σ+,M)→ D be a weighted language. If S is strictly
recognizable, then S is in N (Σ,M,D).

Proof. We follow some ideas of [16] and [18].

Let A = (Q, I, F, δ,wt) be a rwOPA over (Σ,M) and D with JAK = S. We
set Σ′ = Q×Σ ×Q as the extended alphabet. The intuition is that Σ′ consists
of the push and the shift transitions of A. Let h be the projection of Σ′ to Σ
and let M ′ = h−1(M).

22 M. Droste, S. Dück, D. Mandrioli, and M. Pradella

Let L ⊆ (Σ′+,M ′) be the language consisting of all words w′ over the extended
alphabet such that h(w′) has an accepting run of A which uses at every position
the push, resp. the shift transition defined by the symbol of Σ′ at this position.

We construct the unweighted OPA A′ = (Q′, I ′, F ′, δ′) over (Σ′,M ′), accept-
ing L, as follows. We set Q′ = Q, I ′ = I, F ′ = F , and define δ′ as follows

δ′push = { (q, (q, a, p), p) | (q, a, p) ∈ δpush } ,

δ′shift = { (q, (q, a, p), p) | (q, a, p) ∈ δshift } ,

δ′pop = δpop .

Hence, A′ has an accepting run on a word w′ ∈ (Σ′+,M ′) if and only if A has
an accepting run on h(w′), using the push and shift transitions defined by w′.

We construct the one-state rwOPA B = (Q′′, I ′′, F ′′, δ′′,wt′′) over (Σ′,M ′)
and D as follows. We set Q′′ = I ′′ = F ′′ = {q}, δ′′push = δ′′shift = {(q, a′, q) | a′ ∈
Σ′}, and δ′′pop = {(q, q, q)}. We define the weight function wt′′ for a′ ∈ Σ′ as
follows

wt′′push(q, a′, q) = wtpush(a′)

wt′′shift(q, a
′, q) = wtshift(a

′)

Now, let w = a1...an ∈ (Σ+,M), let ρ be a run of A on w, and let w′ = h(w) ∈
(Σ′+,M ′). Then, the rwOPA B has exactly one run on w′. In the following, we
denote this run with ρw′ .

We denote by wtA(ρ, w, i), resp. wtB(ρw′ , w
′, i), the weight of the push or

shift transition used by the run ρ, resp. ρw′ , at position i. Since A and B are
restricted, we have

wt(ρ) = Val((wtA(ρ, w, i))i=1,...,|w|)

wt′′(ρw′) = Val((wtB(ρw′ , w
′, i))i=1,...,|w|) .

Weighted Automata and Logics for Operator Precedence Languages 23

Furthermore, following the definition of B, for all h(w′) = w and for all i ∈
{1, ..., n}, we have wtB(ρw′ , w

′, i) = wtA(ρ, w, i). It follows that

h(JBK ∩ L)(w) =
∑

w′∈(Σ′+,M ′)
h(w′)=w

(JBK ∩ L)(w′)

=
∑

w′∈L(A′)
h(w′)=w

JBK(w′)

=
∑

w′∈L(A′)
h(w′)=w

wt′′(ρw′)

=
∑

w′∈L(A′)
h(w′)=w

Val((wtB(ρw′ , w
′, i))i=1,...,|w|)

=
∑

ρ∈acc(A,w)

Val((wtA(ρ, w, i))i=1,...,|w|)

=
∑

ρ∈acc(A,w)

wt(ρ)

= JAK(w) = S(w) .

Hence, S = h(JBK ∩ L), thus S ∈ N (Σ,M,D). ut

Using this proposition and the above closure properties of recognizable weighted
languages, we get the following Nivat-Theorem for weighted operator precedence
automata.

Theorem 22. Let D be a valuation monoid and S : (Σ+,M)→ D be a weighted
language. Then S is strictly recognizable if and only if S ∈ N (Σ,M,D).

Proof. The “only if”-part is immediate by Proposition 21.
For the converse, let Σ′ be an alphabet, h : Σ′ → Σ, L ⊆ (Σ′+, h−1(M)) be

an OPL, B a one-state rwOPA, and S = h(JBK∩L). Then, Proposition 19 shows
that JBK ∩ L is strictly recognizable. Now, Proposition 20 yields the result. ut

6 Weighted MSO-Logic for OPL

In this section we will make use of the following theorem from [32].

Theorem 23. A language L over (Σ,M) is an OPL iff L is MSO-definable.

In the definition of our weighted MSO-logic, we will use modified ideas from
Droste and Gastin [13], also incorporating the distinction between an unweighted
(boolean) and a weighted part by Bollig and Gastin [5], and the introduction of
a weighted “if-then-else” operator by Gastin and Monmege [27].

24 M. Droste, S. Dück, D. Mandrioli, and M. Pradella

Definition 24. Given a valuation monoid D, we define the weighted logic
MSO(D, (Σ,M)), short MSO(D), as

ϕ ::= d | ϕ⊕ ϕ | β ?ϕ : ϕ |
⊕

x ϕ |
⊕

X ϕ | Valx ϕ

where d ∈ D, β ∈ MSO, x, y are first-order variables; and X is a second order
variable.

We call β boolean and ϕ weighted formulas. Let w ∈ (Σ+,M) and ϕ ∈ MSO(D).
Following classical approaches for logics, we denote by [w] = {1, ..., |w|} the set
of all positions of w. Let free(ϕ) be the set of all free variables in ϕ, and let V be
a finite set of variables containing free(ϕ). A (V, w)-assignment σ is a function
assigning to every first-order variable of V an element of [w] and to every second
order variable a subset of [w]. We define σ[x→ i] as the (V ∪ {x}, w)-assignment
mapping x to i and coinciding with σ on all variables different from x. The
assignment σ[X → I] is defined analogously.

Consider the extended alphabet ΣV = Σ × {0, 1}V together with its natural
OPM MV defined such that for all (a, s), (b, t) ∈ ΣV and all • ∈ {l, .=,m}, we
have (a, s) • (b, t) if and only if a • b.

We identify a pair (w, σ) consisting of a word w and an assignment σ with
a word (w, σ) over (ΣV ,MV) as follows. For every position p ∈ [w], the second
component of the symbol of the word (w, σ) at position p is the vector that
carries a 1 at the entry corresponding to variable x (resp. X) if σ(x) = p (resp.
p ∈ σ(X)).

A word over ΣV is called valid, if every first-order variable is assigned to
exactly one position. Being valid is a recognizable property which can be checked
by an OPA.

We define the semantics of ϕ ∈ MSO(D) as a function JϕKV : (Σ+
V ,MV)→ D

inductively for all valid (w, σ) ∈ (Σ+
V ,MV), as seen in Figure 10. If (w, σ) is not

valid, we set JϕKV(w, σ) = 0. We write JϕK for JϕKfree(ϕ). If ϕ contains no free
variables, ϕ is a sentence and JϕK : (Σ+,M)→ D.

JkKV(w, σ) = k for all k ∈ K
Jϕ⊕ ψKV(w, σ) = JϕKV(w, σ) + JψKV(w, σ)

Jβ ?ϕ : ψKV(w, σ) =

{
JϕKV(w, σ) , if (w, σ) |= β

JψKV(w, σ) , otherwise

J
⊕

x ϕKV(w, σ) =
∑

i∈|w|
JϕKV∪{x}(w, σ[x→ i])

J
⊕

X ϕKV(w, σ) =
∑

I⊆|w|
JϕKV∪{X}(w, σ[X → I])

JValx ϕKV(w, σ) = Val((JϕKV∪{x}(w, σ[x→ i]))i∈|w|)

Fig. 10. Semantics

Weighted Automata and Logics for Operator Precedence Languages 25

Example 25. Let us return to the automaton Apolicy over the semiring Rmax =
(R ∪ {−∞},max,+,−∞, 0) as depicted in Figure 5. First, we define a boolean
formula which states that if a return is present in a position x, then there must
be a matching call:

α(x) = Labret(x)→ ∃y(y y x ∧ Labcall(y)) .

The following boolean formula β defines three subsets of string positions,X0, X1, X2,
representing, respectively, the string portions where unmatched calls are not
penalized, namely X0, X2, and the portion where they are, namely X1.

β(x) = (x ∈ X0 ↔ (α(x) ∧ ∃y∃z(y > x ∧ z > x ∧ y 6= z ∧ Lab$(y) ∧ Lab$(z))))

∧
(
x ∈ X1 ↔

(
α(x) ∧ ∃y∃z

(
y ≤ x ≤ z ∧ y 6= z ∧ Lab$(y) ∧ Lab$(z)
∧((x 6= y ∧ x 6= z)→ ¬Lab$(x))

)))
∧ (x ∈ X2 ↔ (α(x) ∧ ∃y∃z(y < x ∧ z < x ∧ y 6= z ∧ Lab$(y) ∧ Lab$(z)))) .

Further, we describe positions in X0 or X2 by the following boolean formula β0,2

β0,2(x) = (x ∈ X0 ∨ x ∈ X2) ∧ (Labcall(x) ∨ Labret(x) ∨ Labitr(x)) .

Then, the weight assignment is formalized by

ϕ = β0,2(x) ? 0 :

(x ∈ X1 ∧ Labcall(x)) ? 1 :

(x ∈ X1 ∧ Labret(x)) ?−1 :

(x ∈ X1 ∧ Labitr(x)) ? 0 :

Lab$(x) ? 0 : −∞ ,

which assigns weight 0 to calls, returns, and interrupts outside portion X1; and
weights 1,−1, 0 to calls, returns, and interrupts, respectively, within portion X1.

Then, the formula

ψ = Valx(β ?ϕ : −∞)

defines the weight assigned by Apolicy to an input string through a single nonde-
terministic run. Finally, the formula

χ =
⊕
X0

⊕
X1

⊕
X2

ψ

defines the global weight of every string in an equivalent way as the one defined
by Apolicy.

Lemma 26. Let ϕ ∈ MSO(D) and let V be a finite set of variables with free(ϕ) ⊆
V. Then, JϕKV(w, σ) = JϕK(w, σ�free(ϕ)) for each valid (w, σ) ∈ (Σ+

V ,M). In
particular, JϕK is recognizable (resp. strictly recognizable) iff JϕKV is recognizable
(resp. strictly recognizable).

26 M. Droste, S. Dück, D. Mandrioli, and M. Pradella

Proof. This is shown by means of Proposition 20 analogously to Proposition 3.3
of [13]. ut

As shown by [13] in the case of words, the full weighted logic is strictly more
powerful than weighted automata. A similar example also applies here. Therefore,
in the following, we restrict our logic in an appropriate way. The main idea for
this is to allow only functions with finitely many different values (step functions)
after a Val-quantifier.

Definition 27. We define the set of almost boolean formulas ψ of MSO(D) by
the following grammar

ψ ::= d | ψ ⊕ ψ | β ?ψ : ψ ,

where d ∈ D and β is a boolean formula of MSO(D).

Definition 28. Let ϕ ∈ MSO(D). We call ϕ restricted if for all subformulas
Valx ψ of ϕ, ψ is almost boolean.

In Example 25, the formula β is boolean, the formulas ϕ are almost boolean, and
ψ and χ are restricted.

First, we study almost boolean formulas. The following propositions show
that they are describing precisely a certain form of rwOPA’s behaviors, which
we call OPL step functions. We adapt ideas from [17] and [27].

Definition 29. For d ∈ D, we denote by d : (Σ+,M)→ D the weighted language
assigning the weight d to every word w, i.e. d(w) = d.

Then, a weighted language S is called an OPL step function, if it has a
representation

S =

n∑
i=1

di ∩ Li ,

where Li are OPL forming a partition of (Σ+,M) and di ∈ D for each i ∈
{1, ..., n}; so S(w) = di iff w ∈ Li, for each i ∈ {1, ..., n}.

Lemma 30. The set of all OPL step functions is closed under +.

Proof. Let S =
∑k
i=1 di ∩ Li and S′ =

∑`
j=1 d

′
j ∩ L′j be OPL step functions.

Then the following holds

S + S′ =

k∑
i=1

∑̀
j=1

(di + d′j) ∩ (Li ∩ L′j) .

Since (Li ∩ L′j) are also OPL and form a partition of (Σ+,M), it follows that
S + S′ is also an OPL step function. ut

Proposition 31. (a) For every almost boolean formula ϕ, JϕK is an OPL step
function.

Weighted Automata and Logics for Operator Precedence Languages 27

(b) If S is an OPL step function, then there exists an almost boolean sentence ϕ
such that S = JϕK.

Proof. (a) We show the first statement by structural induction on ϕ.
If ϕ = d, where d ∈ K, then JdK = d∩(Σ+,M) is an OPL step function.
In the following, let ϕ1 and ϕ2 be almost boolean formulas such that Jϕ1K

and Jϕ2K are OPL step functions. Let V = free(ϕ1)∪ free(ϕ2). Then, it follows
from Lemma 26 that Jϕ1KV and Jϕ2KV are also OPL step functions.

Thus, Jϕ1 ⊕ ϕ2K = Jϕ1KV + Jϕ2KV is an OPL step function by Lemma 30.
Now, let ϕ = β ?ϕ1 : ϕ2, where β is a boolean formula of MSO(D), V =

free(β)∪ free(ϕ1)∪ free(ϕ2) and Jϕ1KV =
∑k
i=1 di∩Li and Jϕ2KV =

∑`
j=1 d

′
j∩L′j

are again OPL step functions. Then

Jβ ?ϕ1 : ϕ2K =

k∑
i=1

di ∩ (Li ∩ LV(β)) +
∑̀
j=1

d′j ∩ (L′j ∩ LV(¬β))

is also an OPL step function since the languages LV(β) and LV(¬β) are OPL
due to Theorem 23.

(b) Given an OPL step function S =
∑n
i=1 di ∩ Li, we use Theorem 23 to

get sentences βi with LV(βi) = Li. Then, the second statement follows from

setting ϕ =
n
⊕
i=1

(βi ? di : 0) and the fact that the OPL (Li)1≤i≤n form a partition

of (Σ+,M). ut

Proposition 32. Let S be an OPL step function. Then S is strictly recognizable.

Proof. Let S =
∑n
i=1 di ∩ Li, with n ∈ N, d1, ..., dn ∈ D, and L1, ..., Ln OPL

forming a partition of (Σ+,M). It is easy to construct a two state rwOPA
recognizing the constant weighted language JdiK which assigns the weight di to
every word. Hence, JdiK∩Li is strictly recognizable by Proposition 19. Therefore,
by Proposition 18, S is strictly recognizable. ut

7 Characterization of Weighted OPL

In this section, we prove that recognizable weighted languages can be characterized
by our restricted weighted logic. We start with necessary closure properties.

Lemma 33 (Closure under weighted disjunction). Let ϕ and ψ be two
formulas of MSO(D) such that JϕK and JψK are recognizable (resp. strictly recog-
nizable). Then, Jϕ⊕ ψK is recognizable (resp. strictly recognizable).

Proof. We put V = free(ϕ)∪ free(ψ). Then, Jϕ⊕ψK = JϕKV+JψKV is recognizable
(resp. strictly recognizable) by Lemma 26 and Proposition 18. ut

Lemma 34 (Closure under
⊕

x,
⊕

X). Let ϕ be a formula of MSO(D) such
that JϕK is recognizable (resp. strictly recognizable). Then, J

⊕
x ϕK and J

⊕
X ϕK

are recognizable (resp. strictly recognizable).

28 M. Droste, S. Dück, D. Mandrioli, and M. Pradella

Proof (Compare [13], Lemma 4.3). Let X ∈ {x,X} and V = free(
⊕
X ϕ). We

define π : (Σ+
V∪{X},M) → (Σ+

V ,M) by π(w, σ) = (w, σ�V) for any (w, σ) ∈
(Σ+
V∪{X},M). Then, for (w, γ) ∈ (Σ+

V ,M), the following holds

J
⊕

XϕK(w, γ) =
∑

I⊆{1,...,|w|}

JϕKV∪{X}(w, γ[X → I])

=
∑

(w,σ)∈π−1(w,γ)

JϕKV∪{X}(w, σ)

= π(JϕKV∪{X})(w, γ) .

Analogously, we show that J
⊕

x ϕK(w, γ) = π(JϕKV∪{x})(w, γ) for all (w, γ) ∈
(Σ+
V ,M). By Lemma 26, JϕKV∪{X} is recognizable because free(ϕ) ⊆ V ∪ {X}.

Then, J
⊕
X ϕK is recognizable by Proposition 20. ut

Proposition 35 (Closure under restricted Valx). Let ϕ be an almost boolean
formula of MSO(D). Then, JValx ϕK is strictly recognizable.

Proof. We use ideas of [13] and the extensions in [19] and [11] with the following
intuition.

In the first part, we write JϕK as OPL step function
∑m
j=1 dj ∩Lj and encode

the information to which language (w, σ[x→ i]) belongs in a specially extended
language L̃. Then we construct an MSO-formula for this language. Therefore, by
Theorem 23, we get a deterministic OPA recognizing L̃. In the second part, we
add the weights dj to this automaton and return to our original alphabet.

More detailed, let ϕ ∈ MSO(D, (Σ,M)) be almost boolean. We define V =
free(Valx ϕ) and W = free(ϕ) ∪ {x}. We consider the extended alphabets ΣV
and ΣW together with their natural OPMs MV and MW . By Proposition 31,
JϕK is an OPL step function. Let JϕK =

∑m
j=1 dj ∩ Lj where Lj is an OPL over

(ΣW ,MW) for all j ∈ {1, ...,m} and (Lj)j is a partition of (Σ+
W ,MW). By the

semantics of the valuation quantifier, we get

JValxϕK(w, σ) = Val((JϕKW(w, σ[x→ i]))i∈[w])

= Val((dg(i))i∈[w]),

where g(i) =

1 , if (w, σ[x→ i]) ∈ L1

...
m , if (w, σ[x→ i]) ∈ Lm

, for all i ∈ [w] . (2)

Now, in the first part, we encode the information to which language (w, σ[x→ i])
belongs in a specially extended language L̃ and construct an MSO-formula for
this language. We define the extended alphabet Σ̃ = Σ × {1, ...,m}, together
with its natural OPM M̃ (which only refers to Σ), and we identify triples (w, g, σ)
with words over (Σ̃V , M̃V), so:

(Σ̃+
V , M̃V) = {(w, g, σ) | (w, σ) ∈ (Σ+

V ,MV) and g ∈ {1, ...,m}[w]} .

Weighted Automata and Logics for Operator Precedence Languages 29

We define the languages L̃, L̃j , L̃
′
j ⊆ (Σ̃+

V , M̃V) as follows:

L̃ =

{
(w, g, σ)

∣∣∣∣∣ (w, σ) ∈ (Σ+
V ,MV) is valid and

for all i ∈ [w], j ∈ {1, ...,m} : g(i) = j ⇒ (w, σ[x→ i]) ∈ Lj

}
,

L̃j =

{
(w, g, σ)

∣∣∣∣∣ (w, σ) ∈ (Σ+
V ,MV) is valid and

for all i ∈ [w] : g(i) = j ⇒ (w, σ[x→ i]) ∈ Lj

}
,

L̃′j = { (w, g, σ) | for all i ∈ [w] : g(i) = j ⇒ (w, σ[x→ i]) ∈ Lj } .

Then, L̃ =
⋂m
j=1 L̃j . Hence, in order to show that L̃ is an OPL, it suffices to

show that each L̃j is an OPL. By a standard procedure, compare [13], we obtain

a formula ϕ̃j ∈ MSO(Σ̃V , M̃V) with L(ϕ̃j) = L̃′j . Therefore, by Theorem 23, L̃′j
is an OPL. It is straightforward to define an OPA accepting ÑV , the language of
all valid words. By closure under intersection, L̃j = L̃′j ∩ ÑV is also an OPL and

so is L̃. Hence, there exists a deterministic OPA Ã = (Q, q0, F, δ̃) recognizing L̃.

In the second part, we add weights to Ã as follows. We construct the wOPA
A = (Q, I, F, δ,wt) over (ΣV ,MV) and D by setting the weight of every transition
of Ã which is labeled with j at the second coordinate to dj .

That is, we keep the states, the initial state, and the accepting states, and
for δ = (δpush, δshift, δpop) and all q, q′, p ∈ Q and (a, j, s) ∈ Σ̃V , we define

δpush(q, (a, s), q′) =

{
dj , if (q, (a, j, s), q′) ∈ δ̃push
0 , otherwise

δshift(q, (a, s), q
′) =

{
dj , if (q, (a, j, s), q′) ∈ δ̃shift
0 , otherwise

.

Since Ã is deterministic, for every (w, g, σ) ∈ L̃, there exists exactly one accepting
run r̃ of Ã. On the other hand, for every (w, g, σ) /∈ L̃, there is no accepting
run of Ã. Since (Lj) is a partition of (Σ+

W ,MW), for every (w, σ) ∈ (ΣV ,MV),

there exists exactly one g with (w, g, σ) ∈ L̃. Thus, every (w, σ) ∈ (ΣV ,MV) has
exactly one run r of A determined by the run r̃ of (w, g, σ) of Ã. We denote with
wtA(r, (w, σ), i) the weight assigned by the run r of A on (w, σ) at position i,
which is always the weight of the push or shift transition at this position. Then
by definition of A and L̃, for all i ∈ [w], we have

g(i) = j ⇒ wtA(r, (w, σ), i) = dj ∧ (w, σ[x→ i]) ∈ Lj .

By formula (2), we have

JϕKW(w, σ[x→ i]) = dj = wtA(r, (w, σ), i) .

30 M. Droste, S. Dück, D. Mandrioli, and M. Pradella

Hence, for the behavior of the automaton A, we obtain

JAK(w, σ) =
∑

r′∈acc(A,w)

wt(r′)

= Val((wtA(r, (w, σ), i))i=1,...,|w|)

= Val((JϕKW(w, σ[x→ i]))i=1,...,|w|)

= JValx ϕK(w, σ) .

Thus, A recognizes JValx ϕK. ut

The following proposition is a summary of the previous results.

Proposition 36. For every restricted MSO(D)-sentence ϕ, there exists an rwOPA
A with JAK = JϕK.

Proof. We use structural induction on ϕ. If ϕ is an almost boolean formula, then
by Proposition 31, JϕK is an OPL step function. By Proposition 32, every OPL
step function is strictly recognizable. Closure under ⊕ is dealt with by Lemma
33.

If ϕ = β ?ψ : θ and V = free(β)∪ free(ψ)∪ free(θ), then we have Jβ ?ψ : θK =
JψKV ∩ LV(β) + JθKV ∩ LV(¬β), which is strictly recognizable by Lemma 26 and
Propositions 18 and 19.

The sum quantifications
⊕

x and
⊕

X are dealt with by Lemma 34. Since
ϕ is restricted, we know that for every subformula Valx ψ, the formula ψ is an
almost boolean formula. Therefore, we can apply Proposition 35 to obtain that
JValx ψK is strictly recognizable.

The next proposition shows that the converse also holds.

Proposition 37. For every rwOPA A, there exists a restricted MSO(D)-sentence
ϕ with JAK = JϕK.

Proof. The rationale adopted to build ϕ from A integrates the approach followed
in [13, 19] with the one of [32]. On the one hand we need second order variables
suitable to “carry” weights; on the other hand, unlike previous non-OP cases
which are managed through real-time automata, an OPA can perform several
transitions while remaining in the same position. Thus, we introduce the following
second order variables: Xpush

p,a,q represents the set of positions where A performs a

push move from state p, reading symbol a and reaching state q; Xshift
p,a,q has the

same meaning as Xpush
p,a,q for a shift operation; Xpop

p,q,r represents the set of positions
of the symbol that is on top of the stack when A performs a pop transition from
state p, with q on top of the stack, reaching r.

Let V consist of all variables Xpush
p,a,q, X

shift
p,a,q, and Xpop

p,q,r such that a ∈ Σ,
p, q, r ∈ Q and (p, a, q) ∈ δpush resp. δshift, resp. (p, q, r) ∈ δpop. Since Σ and Q
are finite, there is an enumeration X̄ = (X1, .., Xm) of all variables of V. We
denote by X̄push, X̄shift, and X̄pop enumerations over only the respective set of
second order variables.

Weighted Automata and Logics for Operator Precedence Languages 31

• Xpop
3,1,3

• Xpop
3,1,3

• Xpop
3,0,3

• Xpop
3,3,3

• Xpop
1,0,1 • Xpop

1,0,1 • Xpop
3,2,3 • Xpop

3,2,3

Xpush
0,n,1 Xpush

1,+,0 Xpush
0,n,1 Xpush

1,×,0 Xpush
0,(,2 Xpush

2,n,3 Xpush
3,+,2 Xpush

2,n,3 Xshift
3,),3

n + n × (n + n)

0 1 2 3 4 5 6 7 8 9 10

Fig. 11. The string of Figure 1 with the second order variables evidenced for the
automaton of Figure 2. The symbol • marks the positions of the symbols that precede
the push corresponding to the bound pop transition.

We introduce the shortcuts Tree, Nexti, Qi, and Treep,q, originally defined in
[32], reported and adapted here for convenience:

x ◦ y :=
∨

a,b∈Σ,Ma,b=◦

Laba(x) ∧ Labb(y), for ◦ ∈ {l, .=,m}

Tree(x, z, v, y) := xy y ∧

 (x+ 1 = z ∨ xy z) ∧ ¬∃t(z < t < y ∧ xy t)
∧

(v + 1 = y ∨ v y y) ∧ ¬∃t(x < t < v ∧ ty y)

In other words, Tree holds among the four positions (x, z, v, y) iff, at the time
when a pop transition is executed: x (resp. y) is the rightmost leaf at the left
(resp. the leftmost at the right) of the subtree whose scanning (and construction
if used as a parser) is completed by the OPA through the current transition;
z and y are the leftmost and rightmost terminal characters of the right hand
side of the grammar production that is reduced by the pop transition of the
OPA [32]. For instance, with reference to Figures 1 and 11, Tree(5, 7, 7, 9) and
Tree(4, 5, 9, 10) hold.

Succq(x, y) := (x+ 1 = y) ∧
∨

p∈Q,a∈Σ
(x ∈ Xpush

p,a,q ∨ x ∈ Xshift
p,a,q ∨min(x))

I.e., y is the position adjacent to x, Laba(y) holds and, while reading a, the OPA
reaches state q, either through a push or through a shift move.

Nextr(x, y) := ∃z∃v.

Tree(x, z, v, y) ∧
∨

p,q∈Q
v ∈ Xpop

p,q,r

32 M. Droste, S. Dück, D. Mandrioli, and M. Pradella

I.e., Nextr(x, y) holds when a pop move reduces a subtree enclosed between
positions x and y reaching state r.

Qi(x, y) := Succi(x, y) ∨Nexti(x, y)

Finally,
Treei,j(x, z, v, y) := Tree(x, z, v, y) ∧Qi(v, y) ∧Qj(x, z)

refines the predicate Tree by making explicit that i and j are, respectively, the
current state and the state on top of the stack when the pop move is executed.

We now define the unweighted formula ψ to characterize all accepting runs

ψ = Partition(X̄push, X̄shift) ∧Unique(X̄pop) ∧ InitFinal

∧ Transpush ∧ Transshift ∧ Transpop .

Here, the subformula Partition will enforce the push and shift sets to be (together)
a partition of all positions. InitFinal controls the initial and the acceptance
condition and Transop the transitions of the run together with the labels. For
any number n of second order variables, the formulas below precisely define the
above predicates.

Partition(X1, ..., Xn) = ∀x.
∨

1≤i≤n

[
(x ∈ Xi) ∧

∧
1≤j≤n
i 6=j

¬(x ∈ Xj)
]
,

Unique(Xpop
1 , .., Xpop

n) = ∀x.
∧

1≤i≤n
1≤j≤n
i 6=j

¬(x ∈ Xpop
i ∧ x ∈ Xpop

j) ,

InitFinal = ∃x∃y∃x′∃y′.
[

min(x) ∧max(y) ∧ x+ 1 = x′ ∧ y′ + 1 = y

∧
∨

i∈I, q∈Q
a∈Σ

x′ ∈ Xpush
i,a,q

∧
∨

f∈F, q∈Q
a∈Σ

(y′ ∈ Xpush
q,a,f ∨ y

′ ∈ Xshift
q,a,f)

∧
∨
f∈F

(Nextf (x, y) ∧
∧
j 6=f

¬Nextj(x, y))
]
,

Transpush = ∀x.
∧

p,q∈Q,a∈Σ

(
x ∈ Xpush

p,a,q →
[

Laba(x) ∧ ∃z.(z l x ∧Qp(z, x))
])

Transshift = ∀x.
∧

p,q∈Q,a∈Σ

(
x ∈ Xshift

p,a,q →
[

Laba(x) ∧ ∃z.(z .
= x ∧Qp(z, x))

])
.

I.e., if x ∈ Xpush
p,a,q (resp. Xshift

p,a,q), the formula holds in a run where, reading
character a in position x, the automaton performs a push (resp. a shift) reaching
state q from p; this may occur when z l x (resp., z

.
= x) is immediately adjacent

Weighted Automata and Logics for Operator Precedence Languages 33

to x or after a subtree between positions z and x has been built. Notice that the
converse holds too of the above implications holds, due to the fact that the whole
set of string positions is partitioned into the two disjoint sets of X̄push, X̄shift.

Transpop = ∀v.
∧

p,q∈Q

([∨
r∈Q

v ∈ Xpop
p,q,r

]
↔
[
∃x∃y∃z.(Treep,q(x, z, v, y))

])
Thus, with arguments similar to Section 4.3 of [32], it can be shown that the
sentences satisfying ψ are exactly those recognized by the unweighted OPA
subjacent to A.

Now, we add weights to every position x with the following restricted weighted
formulas depending on our setting.

Now, we define

θ′(x) = ⊕
p,q∈Q

(
⊕
a∈Σ

(x ∈ Xpush
p,a,q ? wtpush(p, a, q) : 0)

⊕ ⊕
a∈Σ

(x ∈ Xshift
p,a,q ? wtshift(p, a, q) : 0)

)
.

Then, we multiply up all weights of the encountered transitions using the
valuation function as follows

θ = ψ ? Valxθ
′(x) : 0 .

Since the subformulas of θ′ are almost boolean, θ′ is almost boolean. Further-
more, ψ is boolean, thus θ is a restricted formula.

Finally, we define

ϕ =
⊕

X1

⊕
X2
...
⊕

Xm
θ .

This implies JϕK(w) = JAK(w), for all w ∈ (Σ+,M). Therefore, ϕ is our required
sentence with JAK = JϕK. ut

The following theorem summarizes the main results of this section.

Theorem 38. Let D be a valuation monoid and S : (Σ+,M)→ D a weighted
language. The following are equivalent:

(i) S = JAK for some rwOPA.
(ii) S = JϕK for some restricted sentence ϕ of MSO(D).

Theorem 38 documents a further step in the path of generalizing a series of
results beyond the barrier of regular and structured –or visible– CFLs. Up to a
few years ago, major properties of regular languages, such as closure with respect
to all main language operations, decidability results, logic characterization, and,
in this case, weighted language versions, could be extended to several classes of
structured CFLs, among which the VPL one certainly obtained much attention.
OPLs further generalize the above results not only in terms of strict inclusion, but
mainly because they are not visible, in the sense explained in the introduction, nor

34 M. Droste, S. Dück, D. Mandrioli, and M. Pradella

are they necessarily real-time: this allows them to cover important applications
that could not be adequately modeled through more restricted classes.

Note that since every semiring is also a valuation monoid, Theorem 38 can
also be applied to semirings. In this case, however, the product of the semiring is
only taken into account as the valuation function. In the following section, we
will take a closer look at the semiring case where we additionally include the
binary product in the weighted logic.

8 The Semiring Case

In this section, we study semirings. Since they are a special case of valuation
monoids, the previous results still hold for semirings. However, we can strengthen
some of the results in this special case and, additionally, we can show that a
weighted logic extended with the additional semiring-operation, the product,
is still as expressive as (restricted) weighted OPA. In the following, let K =
(K,+, ·, 0, 1) be a semiring.

We start by revisiting the comparison of the expressive power of wOPA (that
have pop-weights) and rwOPA (that have no pop-weights). Since in the semiring
case, applying no pop weights is the same as applying only trivial pop weights,
we immediately see that rwOPL ⊂ wOPL. We now study in which cases this
relation is strict.

We already saw in Section 3, Proposition 15 that there exists a non-commutative
semiring over which wOPA are strictly more expressive than rwOPA. We also
proved in Proposition 16 that the same is true for commutative valuation monoids.
However, in the special case of commutative semirings, we can show with the
following result that rwOPA are as expressive as wOPA, and therefore can be
seen as a kind of normal form for wOPA.

Theorem 39. Let K be a commutative semiring and (Σ,M) an OP alphabet.
Let A be a wOPA. Then, there exists an rwOPA B with JAK = JBK.

Proof. Let A = (Q, I, F, δ,wt) be a wOPA over (Σ,M) and K. Note that for
every pop transition of a wOPA, there exists exactly one push transition. We
construct an rwOPA B over the state set Q′ = Q ×Q ×Q and with the same
behavior as A with the following idea in mind. In the first state component of Q′,
B simulates A. In the second and third state component of Q′, the automaton B
preemptively guesses the states q and r of the pop transition (q, p, r) of A which
corresponds to the next push transition following after this configuration. This
enables us to transfer the weight from the pop transition to the correct push
transition.

The detailed construction of B = (Q′, I ′, F ′, δ′,wt′) over (Σ,M) and K is the
following. If Q is the empty set, then JAK ≡ 0 is trivially strictly recognizable.
If Q is nonempty, let q ∈ Q be a fixed state and set Q′ = Q × Q × Q, I ′ =

Weighted Automata and Logics for Operator Precedence Languages 35

{(q1, q2, q3) | q1 ∈ I, q2, q3 ∈ Q}, F ′ = {(q1, q, q) | q1 ∈ F}, and

δ′push = {((q1, q2, q3), a, (r1, r2, r3)) | (q1, a, r1) ∈ δpush and (q2, q1, q3) ∈ δpop}
δ′shift = {((q1, q2, q3), a, (r1, q2, q3)) | (q1, a, r1) ∈ δshift}
δ′pop = {((q1, q2, q3), (p1, p2, p3), (r1, q2, q3)) | (q1, p1, r1) ∈ δpop, p2 = q1, p3 = r1}

Here, every push of B controls that the previously guessed q2 and q3 can be used
by a pop transition of A going from q2 to q3 with q1 on top of the stack. Every
pop controls that the symbols on top of the stack are exactly the ones used at
this pop. Since the second and third state component are guessed for the next
push, they are passed on whenever we read a shift or pop. The second and third
component pushed at the first position of a word are guessed by an initial state.
At the last push, which therefore has no following push and will propagate the
second and third component to the end of the run, the automaton B has to guess
the distinguished state used in the final states.

Therefore, B has exactly one accepting run (of the same length) for every
accepting run of A, and vice versa. Finally, we define the transition weights as
follows.

wt′push((q1, q2, q3), a, (r1, r2, r3)) = wtpush(q1, a, r1) · wtpop(q2, q1, q3)

wt′shift((q1, q2, q3), a, (r1, r2, r3)) = wtshift(q1, a, r1)

Then, the runs of A simulated by B have exactly the same weights but in a
different order. Since K is commutative, it follows that JAK = JBK. ut

In the following, we study additional closure results concerning the product of a
semiring and we show how to strengthen our main result in the case of semirings
to comprise logical sentences that include the product.

We define the Hadamard product S � T of two weighted languages S, T :
(Σ+,M)→ K by letting

(S � T)(w) = S(w) · T (w) for each w ∈ (Σ+,M) .

We prove that restricted weighted languages and weighted languages are closed
under multiplication with weights and, in the case of commutative semirings, are
closed under the product in general, as follows.

Proposition 40. Let S : (Σ+,M) → K be a recognizable (resp. strictly recog-
nizable) weighted language and k ∈ K. Then JkK�S is recognizable (resp. strictly
recognizable).

Proof. Let A = (Q, I, F, δ,wt) be an (r)wOPA such that JAK = S. Then, we
construct an (r)wOPA B = (Q′, I ′, F, δ′,wt′) as follows.

We set Q = Q∪ I ′ and I ′ = {q′I | qI ∈ I}. The new transition relations δ′ and
weight functions wt′ consist of all transitions ofA with their respective weights and
the following additional transitions: For every push transition (qI , a, q) of δpush, we
add a push transition (q′I , a, q) to δ′push with wt′push(q′I , a, q) = k ·wtpush(qI , a, q).

36 M. Droste, S. Dück, D. Mandrioli, and M. Pradella

Note that every run of an (w)OPA has to start with a push transition.
Therefore, the two automata have the same respective runs, but B is exactly once
in a state q′I ∈ I. This together with the weight assignment ensures that B uses
the same weights as A except at the very first transition of every run which is
multiplied by k from the left. In particular, we do not change the weight of any
pop transition. It follows that JBK = JkK� S. Also, if A is restricted, so is B. ut

Proposition 41. Let K be a semiring and A and B two wOPA such that all
weights of A commute with all weights of B. Then, JAK� JBK is recognizable. If,
additionally, A and B are restricted, then JAK� JBK is strictly recognizable.

Proof. We use a standard product construction over two wOPA as follows. Note
that in contrast to the case of classical product constructions, the pop transitions
of a wOPA do not consume a symbol.

Let A = (Q, I, F, δ,wt) and B = (Q′, I ′, F ′, δ′,wt′) be two wOPA. We
construct a wOPA P as P = (Q × Q′, I × I ′, F × F ′, δP ,wtP) where δP =
(δPpush, δ

P
shift, δ

P
pop) and set

δPpush = {((q, q′), a, (r, r′)) | (q, a, r) ∈ δpush and (q′, a, r′) ∈ δ′push} ,
δPshift = {((q, q′), a, (r, r′)) | (q, a, r) ∈ δshift and (q′, a, r′) ∈ δ′shift} ,
δPpop = {((q, q′), (p, p′), (r, r′)) | (q, p, r) ∈ δpop and (q′, p′, r′) ∈ δ′pop} ,

and

wtPpush((q, q′), a, (r, r′)) = wt′push(q, a, r) · wt′′push(q′, a, r′) ,

wtPshift((q, q
′), a, (r, r′)) = wt′shift(q, a, r) · wt′′shift(q

′, a, r′) ,

wtPpop((q, q′), (p, p′), (r, r′)) = wt′pop(q, p, r) · wt′′pop(q′, p′, r′) .

Then with the same arguments as in the proof of Proposition 19 and using the
commutativity of the weights of A and B and the distributivity of K, it follows
for all w ∈ (Σ+,M)

JPK(w) =
∑

ρ∈acc(P,w)

wtP(ρ)

=
∑

ρ, such that
ρ�Q∈acc(A,w)
ρ�Q′∈acc(B,w)

wtP(ρ)

=
(∑
ρ�Q∈acc(A,w)

wt(ρ�Q)
)
·
(∑
ρ�Q′∈acc(B,w)

wt′(ρ�Q′)
)

= JAK(w) · JBK(w) .

Thus, JPK = JAK� JBK. Further, if A and B are restricted, then by leaving out
wtPpop, the wOPA P is also restricted. ut

Weighted Automata and Logics for Operator Precedence Languages 37

Note that Proposition 41 can be sharpened by saying that the product of two
recognizable (strictly recognizable) series recognized by the automata JAK and
JBK is again recognizable (strictly recognizable) over the subsemiring generated
by the weights of JAK and JBK.

To include the product into the weighted logic, we make the following adjust-
ments to MSO(K).

Definition 42. Given a semiring K = (K,+, ·, 0, 1), we add the following two
weighted formulas to get the logic MSO⊗(K); ϕ ::= β and ϕ ::= ϕ⊗ ϕ, where β
is a boolean formula. They have the following semantics

JβKV(w, σ) =

{
1 , if (w, σ) |= β
0 , otherwise

Jϕ⊗ ψKV(w, σ) = JϕKV(w, σ) · JψKV(w, σ) .

Note that JβK = Jβ ? 1 : 0K and Jβ ?ψ : θK = J(ψ ⊗ β) ⊕ (θ ⊗ ¬β)K. Then, a
respective version of Lemma 26 for MSO⊗(K) can be shown analogously.

Furthermore, we adjust the necessary restrictions on our logic as follows.

Definition 43. Let ϕ ∈ MSO⊗(K). We denote by const(ϕ) all weights of K
occurring in ϕ.

We call ϕ ⊗-restricted if for all subformulas ψ ⊗ θ of ϕ either ψ is almost
boolean or const(ψ) and const(θ) commute elementwise.

We call ϕ restricted if it is ⊗-restricted and for all subformulas Valx ψ of ϕ,
ψ is almost boolean.

Notice that the formulas ψ and χ of Example 25 can be interpreted as formulas
of MSO⊗(K). In this case, they are restricted even if K is not commutative.

Proposition 44 (Closure under restricted weighted conjunction). Let
ψ ⊗ θ be a subformula of a ⊗-restricted formula ϕ of MSO⊗(K) such that JψK
and JθK are recognizable (resp. strictly recognizable). Then, Jψ⊗ θK is recognizable
(resp. strictly recognizable) over the subsemiring of K generated by the constants
occurring in ψ and θ.

Proof. Since ϕ is ⊗-restricted, either ψ is almost boolean or the constants of
both formulas commute.

Case 1: Let us assume ψ is almost boolean. Then, we can write JψK as OPL
step function, i.e., JψK =

∑n
i=1 ki ∩ Li, where Li are OPL. So, the weighted lan-

guage Jψ⊗θK equals a sum of weighted languages of the form (Jki⊗θK∩Li). Then,
by Proposition 40, Jki⊗ θK is a recognizable (resp. strictly recognizable) weighted
language. Therefore, (Jki ⊗ θK ∩ Li) is recognizable (resp. strictly recognizable)
by Proposition 19. Hence, Jψ ⊗ θK is (strictly) recognizable by Proposition 18.

Case 2: Let us assume that the constants of ψ and θ commute. Then,
Proposition 41 yields the claim. ut

The formulas and operators of MSO(D) are part of MSO⊗(K) and the previous
closure results Lemma 33, 34, and Proposition 35 can be shown for MSO⊗(K)
analogously to the proofs for MSO(D). Therefore, we are now ready to prove the
following.

38 M. Droste, S. Dück, D. Mandrioli, and M. Pradella

Proposition 45. For every restricted MSO⊗(K)-sentence ϕ, there exists an
rwOPA A with JAK = JϕK.

Proof. We follow the proof of Proposition 36 and only have to additionally prove
closure under ⊗, which is dealt with by Proposition 44. ut

Proposition 46. Let K be a commutative semiring. Then for every wOPA A,
there exists a restricted MSO⊗(K)-sentence ϕ with JAK = JϕK.

Proof. We follow the proof of Proposition 37, but instead of using θ, we define

θ′(x) = ⊗
p,q∈Q

(
⊗
a∈Σ

(x ∈ Xpush
p,a,q ? wtpush(p, a, q) : 1)

⊗ ⊗
a∈Σ

(x ∈ Xshift
p,a,q ? wtshift(p, a, q) : 1)

⊗ ⊗
r∈Q

(x ∈ Xpop
p,q,r ? wtpop(p, q, r) : 1)

)
.

Note that in this case the valuation is a commutative product and this is indeed
crucial because the valuation quantifier (i.e. the product quantifier) of θ′ assigns
the pop weight at a different position than the occurrence of the respective pop
transition in the automaton. Using only one such quantifier, this is unavoidable,
since the number of pops at a given position is only bounded by the word length.

ut

We observe that both in the case of commutative and non-commutative semirings,
it follows directly from Proposition 37 that for every rwOPA A, there is a
restricted sentence of MSO⊗(K) with the same behavior as A. Together with
Proposition 45 and Proposition 46, this allows us to strengthen Theorem 38 in
the case of semirings as follows.

Theorem 47. Let K be a semiring and S : (Σ+,M)→ K a weighted language.

1. Then, the following are equivalent:
(i) S = JAK for some rwOPA.

(ii) S = JϕK for some restricted sentence ϕ of MSO⊗(K).
2. Let K be commutative. Then, the following are equivalent:

(i) S = JAK for some wOPA.
(ii) S = JϕK for some restricted sentence ϕ of MSO⊗(K).

Theorem 47 also shows that the typical logical characterization of weighted
languages does not generalize in the same way to the whole class wOPL: for
non-rwOPL we need the extra hypothesis that K is commutative. This is due
to the fact that pop transitions are applied in the reverse order than that of
positions to which they refer (position v in formula Transpop). Notice, however,
that rwOPL allow for pop sequences whose length is not bounded by a constant;
thus, they too include languages that are neither real-time nor visible. This
remark naturally raises new intriguing questions which we will briefly address in
the conclusion.

Weighted Automata and Logics for Operator Precedence Languages 39

9 Conclusion

We introduced and investigated weighted operator precedence automata and a
corresponding weighted MSO logic. We employ weights from valuation monoids
that form a very general weight structure which not only includes all semirings
but also computations like average and discounting.

In our main results we show, for any valuation monoid, that wOPA with-
out pop weights generalize wVPA, they have the same expressive power as a
restricted weighted MSO logic; and, their behaviors can also be described as
homomorphic images of the behaviors of particularly simple wOPA reduced to
arbitrary unweighted OPA.

In the special case of commutative semirings, we are able to consolidate these
results to apply also to wOPA with arbitrary pop weights. Additionally, we also
prove that the same is not possible for commutative valuation monoids.

This raises the problems to find, for arbitrary semirings and for wOPA with
pop weights, both an expressively equivalent weighted MSO logic and a Nivat-type
result. In [20], very similar problems arose for weighted automata on unranked
trees and weighted MSO logic. In [14], the authors showed that with another
definition of the behavior of weighted unranked tree automata, an equivalence
result for the restricted weighted MSO logic could be derived. Is there another
definition of the behavior of wOPA (with pop weights) making them expressively
equivalent to our restricted weighted MSO logic?

In [32], operator precedence languages of infinite words were investigated and
shown to be practically important. Therefore, the problem arises to develop a
theory of wOPA on infinite words. In order to define their infinitary quantitative
behaviors, in previous works [17, 11], valuation monoids proved most helpful.

Finally, a new investigation field can be opened by exploiting the natural
suitability of OPL towards parallel elaboration [3]. Computing weights, in fact,
can be seen as a special case of semantic elaboration which can be performed
hand-in-hand with parsing. In this case too, we can expect different challenges
depending on whether the weight structure is a semiring, it is commutative, or
not and/or weights are attached to pop transitions too, which would be the
natural way to follow the traditional semantic evaluation through synthesized
attributes [29].

References

1. Alur, R., Fisman, D.: Colored nested words. In: Dediu, A.H., Janousek, J., Mart́ın-
Vide, C., Truthe, B. (eds.) Language and Automata Theory and Applications,
LATA 2016. LNCS, vol. 9618, pp. 143–155. Springer (2016)

2. Alur, R., Madhusudan, P.: Adding nesting structure to words. J. ACM 56(3),
16:1–16:43 (2009)

3. Barenghi, A., Crespi Reghizzi, S., Mandrioli, D., Panella, F., Pradella, M.: Parallel
parsing made practical. Sci. Comput. Program. 112(3), 195–226 (2015)

4. Berstel, J., Reutenauer, C.: Rational Series and Their Languages, EATCS Mono-
graphs in Theoretical Computer Science, vol. 12. Springer (1988)

40 M. Droste, S. Dück, D. Mandrioli, and M. Pradella

5. Bollig, B., Gastin, P.: Weighted versus probabilistic logics. In: Diekert, V., Nowotka,
D. (eds.) Developments in Language Theory, DLT 2009. LNCS, vol. 5583, pp. 18–38.
Springer (2009)

6. von Braunmühl, B., Verbeek, R.: Input-driven languages are recognized in log n
space. In: Proceedings of the Symposium on Fundamentals of Computation Theory.
LNCS, vol. 158, pp. 40–51. Springer (1983)

7. Büchi, J.R.: Weak second-order arithmetic and finite automata. Z. Math. Logik
und Grundlagen Math. 6, 66–92 (1960)

8. Choffrut, C., Malcher, A., Mereghetti, C., Palano, B.: First-order logics: some
characterizations and closure properties. Acta Inf. 49(4), 225–248 (2012)

9. Crespi Reghizzi, S., Mandrioli, D.: Operator precedence and the visibly pushdown
property. J. Comput. Syst. Sci. 78(6), 1837–1867 (2012)

10. Crespi Reghizzi, S., Mandrioli, D., Martin, D.F.: Algebraic properties of operator
precedence languages. Information and Control 37(2), 115–133 (1978)

11. Droste, M., Dück, S.: Weighted automata and logics for infinite nested words. Inf.
Comput. 253, 448–466 (2017)

12. Droste, M., Dück, S., Mandrioli, D., Pradella, M.: Weighted operator precedence
languages. In: Larsen, K.G., Bodlaender, H.L., Raskin, J. (eds.) Mathematical
Foundations of Computer Science, MFCS 2015. LIPIcs, vol. 83, pp. 31:1–31:15.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2017)

13. Droste, M., Gastin, P.: Weighted automata and weighted logics. Theor. Comput.
Sci. 380(1-2), 69–86 (2007), extended abstract in ICALP 2005

14. Droste, M., Heusel, D., Vogler, H.: Weighted unranked tree automata over tree
valuation monoids and their characterization by weighted logics. In: Maletti, A.
(ed.) Conference Algebraic Informatics, CAI 2015. LNCS, vol. 9270, pp. 90–102.
Springer (2015)

15. Droste, M., Kuich, W., Vogler, H. (eds.): Handbook of Weighted Automata. EATCS
Monographs in Theoretical Computer Science, Springer (2009)

16. Droste, M., Kuske, D.: Weighted automata. In: Pin, J.E. (ed.) Handbook: “Au-
tomata: from Mathematics to Applications”. Europ. Mathematical Soc. (to appear)

17. Droste, M., Meinecke, I.: Weighted automata and weighted MSO logics for average
and long-time behaviors. Inf. Comput. 220, 44–59 (2012)

18. Droste, M., Perevoshchikov, V.: A Nivat theorem for weighted timed automata
and weighted relative distance logic. In: Esparza, J., Fraigniaud, P., Husfeldt, T.,
Koutsoupias, E. (eds.) International Colloquium on Automata, Languages, and
Programming, ICALP 2014, Part II. LNCS, vol. 8573, pp. 171–182. Springer (2014)

19. Droste, M., Pibaljommee, B.: Weighted nested word automata and logics over
strong bimonoids. Int. J. Found. Comput. Sci. 25(5), 641–666 (2014)

20. Droste, M., Vogler, H.: Weighted tree automata and weighted logics. Theor. Comput.
Sci. 366(3), 228–247 (2006)

21. Droste, M., Vogler, H.: Weighted automata and multi-valued logics over arbitrary
bounded lattices. Theor. Comput. Sci. 418, 14–36 (2012)

22. Eilenberg, S.: Automata, Languages, and Machines, Pure and Applied Mathematics,
vol. 59-A. Academic Press (1974)

23. Elgot, C.C.: Decision problems of finite automata design and related arithmetics.
Trans. Am. Math. Soc. 98(1), 21–52 (1961)

24. Emerson, E.A.: Temporal and modal logic. In: Handbook of Theoretical Computer
Science, Volume B, pp. 995–1072. MIT Press (1990)

25. Fischer, M.J.: Some properties of precedence languages. In: STOC ’69: Proc. first
annual ACM Symp. on Theory of Computing. pp. 181–190. ACM, New York, NY,
USA (1969)

Weighted Automata and Logics for Operator Precedence Languages 41

26. Floyd, R.W.: Syntactic analysis and operator precedence. J. ACM 10(3), 316–333
(1963)

27. Gastin, P., Monmege, B.: A unifying survey on weighted logics and weighted
automata. Soft Comput. 22, 1047–1065 (2018), http://dx.doi.org/10.1007/s00500-
015-1952-6

28. Harrison, M.A.: Introduction to Formal Language Theory. Addison Wesley (1978)
29. Knuth, D.E.: Semantics of context-free languages. Mathematical Systems Theory

2(2), 127–145 (1968)
30. Kuich, W., Salomaa, A.: Semirings, Automata, Languages, EATCS Monographs in

Theoretical Computer Science, vol. 6. Springer (1986)
31. Lautemann, C., Schwentick, T., Thérien, D.: Logics for context-free languages. In:

Pacholski, L., Tiuryn, J. (eds.) Computer Science Logic, Selected Papers. LNCS,
vol. 933, pp. 205–216. Springer (1994)

32. Lonati, V., Mandrioli, D., Panella, F., Pradella, M.: Operator precedence languages:
Their automata-theoretic and logic characterization. SIAM J. Comput. 44(4), 1026–
1088 (2015)

33. Mathissen, C.: Weighted logics for nested words and algebraic formal power series.
Logical Methods in Computer Science 6(1) (2010), selected papers of ICALP 2008

34. McNaughton, R.: Parenthesis grammars. J. ACM 14(3), 490–500 (1967)
35. McNaughton, R., Papert, S.: Counter-free Automata. MIT Press, Cambridge, USA

(1971)
36. Mehlhorn, K.: Pebbling mountain ranges and its application of DCFL-recognition.

In: Automata, Languages and Programming, ICALP 1980. LNCS, vol. 85, pp.
422–435 (1980)

37. Nivat, M.: Transductions des langages de Chomsky. Ann. de l’Inst. Fourier 18,
339–455 (1968)

38. Salomaa, A., Soittola, M.: Automata-Theoretic Aspects of Formal Power Series.
Texts and Monographs in Computer Science, Springer (1978)

39. Schützenberger, M.P.: On the definition of a family of automata. Inf. Control 4(2-3),
245–270 (1961)

40. Thatcher, J.: Characterizing derivation trees of context-free grammars through a
generalization of finite automata theory. Journ. of Comp. and Syst.Sc. 1, 317–322
(1967)

41. Trakhtenbrot, B.A.: Finite automata and logic of monadic predicates (in Russian).
Doklady Akademii Nauk SSR 140, 326–329 (1961)

