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Abstract—In this paper we present a technique to model
different aspects of the same system with different for-
malisms, while keeping the various models tightly integrated
with one another. In a multi-paradigm approach to modeling,
formalisms with different natures are used in combination
to describe complementary parts and aspects of the system.
This can have a beneficial impact on the modeling activity, as
different paradigms can be better suited to describe different
aspects of complex systems. While each paradigm provides
a different view on the many facets of the system, it is
of paramount importance that a coherent comprehensive
model emerges from the combination of the various partial
descriptions. Our approach leverages the flexibility provided
by a bounded satisfiability checker to encode the verification
problem of the integrated model in the Boolean satisfiability
(SAT) problem; this allows users to carry out formal verifica-
tion activities both on the whole model and on parts thereof.
The effectiveness of the approach is illustrated through the
example of a monitoring system.

Keywords: Metric temporal logic, timed Petri nets, timed
automata, discretization, dense time, bounded model check-
ing.

I. INTRODUCTION

Modeling paradigms come in many different flavors:
graphical or textual; executable or not; formal, informal,
or semi-formal; more or less abstract; with different levels
of expressiveness, naturalness, conciseness, etc. Notations
for the design of real-time systems, in addition, include a
notion of time, whose features add a further element of
differentiation [1].

A common broad categorization of modeling notations
separates between operational and descriptive paradigms
[2]. Operational notations (e.g., Statecharts, finite state
automata, Petri nets) represent systems through the no-
tions of state and transition (or event); system behavior
consists in evolutions from state to state, triggered by
event occurrences. Descriptive paradigms, instead (e.g.,
temporal logics, descriptive logics, algebraic formalisms)
model systems by declaring their fundamental properties.

The distinction between operational and descriptive
models is, like with most classifications, neither rigid nor
sharp. Nonetheless, it is often useful in practice to guide
the developer in the choice of notation based on what
is being modeled and what are the ultimate goals (and
requirements) of the modeling endeavor. In fact, opera-
tional and descriptive notations have different — and often
complementary — strengths and weaknesses. Operational
models, for instance, are often easier to understand by
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experts of domains other than computer science (mechan-
ical engineers, control engineers, etc.), which makes them
a good design vehicle in the development of complex
systems involving components of many different natures.
Also, once an operational model has been built, it is typi-
cally straightforward to execute, simulate, animate, or test
it. On the other hand, descriptive notations are the most
natural choice when writing partial models of systems,
because one can build the description incrementally by
listing the (partial) known properties one at a time.

When modeling timed systems, the choice of the time
domain is a crucial one, and it can significantly impact on
the features of the model [2]. For example, a dense time
model is typically needed to represent true asynchrony.
Discrete time, instead, is usually more amenable to auto-
mated verification, and it is at the basis of a number of
quite mature techniques and tools that are used in practice
to verify systems.

In this paper we present a technique to model different
aspects of the same system with different formalisms,
while keeping the various models tightly integrated with
one another. In this approach, modelers can pick their
preferred modeling technique and paradigm (e.g., oper-
ational or descriptive, continuous or discrete) depending
on the particular facet or component of the system to
be described. Integration of the separate snippets in a
unique model is made possible by providing a common
formal semantics to the different formalisms involved. Our
approach leverages the flexibility provided by a bounded
satisfiability checker to encode the verification problem of
the integrated model in the Boolean satisfiability (SAT)
problem; this allows users to carry out formal verification
activities both on the whole model and on parts thereof.

The technique presented in this paper hinges on Metric
Temporal Logic (MTL) to provide a common semantic
foundation to the integrated formalisms, and on the results
presented in [3] to integrate continuous- and discrete-
time MTL fragments into a unique formal description.
Operational formalisms are introduced in the framework
by providing suitable MTL formalizations, that can then
be discretized according to the same technique. While this
idea is straightforward in principle, putting it into practice
is challenging for several basic reasons. For example,
formalizing the semantics of some operational formalisms
with an appealing, mostly intuitive, graphical syntax can
be tricky, as several semantic subtleties that are “implicit”



in the original model must be properly understood and
resolved when translating them into a logic language (see,
for example, [4] and [5]). In addition, not any MTL
axiomatization is amenable to the discretization techniques
of [6], as syntactically different MTL descriptions yielding
the same underlying semantics provide discretization of
wildly different “qualities”. Crafting suitable MTL de-
scriptions has proved demanding, delicate, and crucially
dependent on the features of the operational formalism at
hand. In this respect, our previous work [7] focused on a
variant of Timed Automata (TA), a typical “synchronous”
operational formalism. The present paper develops in-
stead an axiomatization of Timed Petri Nets (TPN), an
“asynchronous” operational formalism, integrates all three
formalisms (MTL, TA, and TPN) into a unique framework,
and evaluates an implementation of the framework on a
monitoring system example.

The paper is structured as follows. Section I-A briefly
discusses some related works. Section II introduces the
relevant results on which our approach is based: MTL,
timed automata and their MTL-based semantics, and the
discretization technique for continuous-time MTL for-
mulas. Section III presents the (continuous-time) MTL
semantics of timed Petri nets and its discretization. Section
IV shows how the various formalisms can be used to
describe different aspects and parts of an example system;
moreover, it reports on some verification tests on the same
system. Finally, Section V provides a brief assessment of
the experimental results and outlines some future work in
this line of research.

A. Related Work

Combining different modeling paradigms in a single
framework for verification purposes is not a novel con-
cept. In fact, there is a rich literature on dual-language
approaches, which combine an operational formalism and
a descriptive formalism into one analysis framework [2].
The operational notation is used to describe the system
dynamics, whereas the properties to be checked are ex-
pressed through the descriptive notation. Model-checking
techniques [8] are a widely-used example of a dual-
language approach to formal verification. Dual-language
frameworks, however, usually adopt a rigid stance, in
that one formalism is used to describe the system, while
another is used for the properties to be verified. In this
work we propose a flexible framework in which different
paradigms can be mixed for different design purposes: sys-
tem modeling, property specification, and also verification.

Modeling using different paradigms is a staple of UML
[9]. In fact, the UML modeling language is actually a
blend of different notations (message sequence charts,
statecharts, OCL formulas, etc.) with different character-
istics. The UML framework provides means to describe
the same (software) systems from different, possibly com-
plementary, perspectives. However, the standard language
is devoid of mechanisms to guarantee that an integrated
global view emerges from the various documents or that,
in other words, the union of the different views yields a

precise, coherent model.

Some work has been devoted to the (structural) transfor-
mation between models to re-use verification techniques
for different paradigms and to achieve a unified semantics,
similarly to the approach of this paper. Cassez and Roux
[10] provide a structural translation of TPN into TA that
allows one to piggy-back the efficient model-checking
tools for TA. Our approach is complementary to [10] and
similar works! in several ways. First, our transformations
are targeted to a discretization framework: on the one
hand, this allows a more lightweight verification process as
well as the inclusion of discrete-time components within
the global model; on the other hand, discretization intro-
duces incompleteness that might reduce its effectiveness.
Second, we leverage on a descriptive notation (MTL)
rather than an operational one. This allows the seamless
integration of operational and descriptive components,
whereas the transformation of [10] stays within the model-
checking paradigm where the system is modeled within the
operational domain and the verified properties are modeled
with a descriptive notation. Also, state-of-the-art of tools
for model-checking of TA (and formalisms of similar
expressive power) do not support full real-time temporal
logics (such as TCTL) but only a subset of significantly
reduced expressive power. We claim that the model and
properties we consider in the example of Section IV are
rather sophisticated and deep—even after weighting in the
inherent limitations of our verification technique.

For the sake of brevity, we omit a description of related
works on the discretization of continuous-time models.
The interested reader can refer to [6] for a discussion of
this topic.

II. BACKGROUND
A. Continuous- and discrete-time real-time behaviors

We represent the concept of trace (or run) of some real-
time system through the notion of behavior. Given a time
domain T and a finite set P of atomic propositions, a
behavior b is a mapping b : T — 2% which associates
with every time instant ¢ € T the set b(¢) of propositions
that hold at ¢. By denotes the set of all behaviors over
T (for an implicit fixed set of propositions). Depending
on whether T is a discrete, dense, or continuous set, we
call a behavior over T discrete-, dense-, or continuous-
time respectively. In this paper, we assume the natural
numbers IN as discrete time domain and the nonnegative
real numbers R>¢ as dense and continuous time domain.

Over continuous-time domains, it is customary to con-
sider only physically meaningful behaviors, namely those
respecting the so-called non-Zeno property. A continuous-
time behavior b is non-Zeno if the sequence of disconti-
nuity points of b has no accumulation points. For a non-
Zeno behavior b, the notions of values to the left and
to the right of any discontinuity point ¢ > 0 are well-
defined; we denote them as b~ (¢) and b (¢), respectively.
When a proposition p € P is such that p € b~ (t) <

ISee the related work section of [10] for more examples of transfor-
mational approaches.



p & bT(t) (i.e., p switches its truth value around t),
we say that p is “triggered” at ¢. In order to ensure
reducibility between continuous and discrete time, we
consider non-Zeno behaviors with a stronger constraint,
called non-Berkeleyness. A continuous-time behavior b is
non-Berkeley for some positive constant § € R if,
for all ¢ € T, there exists a closed interval [u,u + 9]
of size ¢ such that ¢ € [u,u + J] and b is constant
throughout [u, u+ ¢]. Notice that a non-Berkeley behavior
(for any ¢) is non-Zeno a fortiori. The set of all non-
Berkeley continuous-time behaviors for 6 > 0 is denoted
by Bi C Br.,- In the following we assume behaviors to
be non-Berkeley, unless explicitly stated otherwise.

From a purely semantic point of view, one can consider
the model of a (real-time) system simply as a set of
behaviors [11][2] over some time domain T and sets of
propositions. In practice, however, systems are modeled
through some suitable notation: in this paper we consider
a mixture of MTL formulas [12], [13], TA [14], and TPN
[15]. Given an MTL formula, a TA, or a TPN %, and
a behavior b, b = v denotes that b represents a system
evolution which satisfies all the constraints imposed by
Y. If b = 4 for some b € By, ¢ is called T-satisfiable;
if b =1 for all b € By, ¢ is called T-valid. Similarly,
if b |= 1 for some b € ch, 1 is called x%-satisfiable; if
b = for all b € B2, ¢ is called x°-valid.

B. Descriptive notation: MTL

Let P be a finite (non-empty) set of atomic propositions
and J be the set of all (possibly unbounded) intervals of
the time domain T with rational endpoints. We abbreviate
intervals with expressions such as = d, < d, > d, for
[d,d], (0,d), and [d, +00), respectively.

The following grammar defines the syntax of (proposi-
tional) MTL, where I € J and p € P.

¢:=p| 20| o1 A2 | Up(dr,d2) | S(91, p2)

The basic temporal operator of MTL is the bounded
until U;(¢1, ¢2) (and its past counterpart bounded since
S;) which says that ¢; holds until ¢, holds, with the
additional constraint that ¢ must hold within interval I.
Throughout the paper we omit the explicit treatment of
past operators (i.e., S; and derived) as it can be trivially
obtained from that of the corresponding future operators.

The semantics of MTL is defined over behaviors,
parametrically with respect to the choice of the time
domain T. The semantics of Boolean connectives is
standard, and we do not report it here for brevity.
The definition of the until operator and of satisfiability
(b =1 ¢) are as follows:

b(t) =1 Uj(¢1,¢2) iff  there exists d € I such that:
b(t +d) Er ¢2
and, for all u € [0, d] it is
b(t+u) =r ¢
bEr ¢ iff forall ¢ € T: b(t) =p ¢
For an MTL formula ¢, let 74 be the set of all non-null,

finite interval bounds appearing in ¢. Dy, is defined as the
set of positive values J such that any interval bound in Jy
is an integer if divided by 6.

OPERATOR = DEFINITION
R, (¢1,¢2) = U, (—é1, ~¢d2)
T,(f1,02) = =S;(m¢1,2)
Oi(9) = U, (T,9)
Or(e) = Si(T,9)
E}(d)) = R](J-’ ?)
O = T,(L.9)
Q(d)) = U(()7+oo) (¢’ T) N (—\QS A R(()ﬂLoo) (¢7 J—))
O@) = Sty @ TIV(ESAT )(6,1))
Olp) = d A QO(e)
O(¢) ¢ A O(¢)
Atprgsy = JO@IA(¢2vOW) if T =R
O=1(81) A Qg 1y(¢2) i T=NN
_ 1 ANO_s(p2) if T=Rxg
Aon o) = {¢1A<>_1(¢2) it T =N
ANC) = A(=9, ¢)
A(9) = A(=¢, 9)
o) = A(P) V A(—9)
a(‘i’) = A(¢a ¢) Vv A(_‘(Jbﬁ _‘qb)
Ue) = A(P)V A(—9)
Alw(g) = AU 0,400) (@) A Do, 400) ()

Table 1
MTL DERIVED TEMPORAL OPERATORS

It is customary to introduce a number of derived op-
erators, to be used as shorthands in writing specification
formulas. We assume a number of standard abbreviations
such as 1, T,V,=,<; when I = (0,00), we drop the
subscript interval in temporal operators. All other derived
operators used in this paper are listed in Table I (6 €
R~ is a parameter used in the discretization techniques,
discussed shortly). In the following we describe briefly
and informally the purpose of such derived operators,
focusing on future ones (the meaning of past operators
is symmetric).

A few common derived temporal operators such as
R;,¢;,0; are defined with the usual meaning: R; (re-
lease) is the dual of the until operator; ¢ ;(¢) means that ¢
happens within time interval I in the future; [J;(¢) means
that ¢ holds throughout the whole interval I in the future.

O(¢) and O(¢) are useful over continuous time only,
and describe ¢ holding throughout some unspecified non-
empty interval in the future; more precisely, if ¢ is the
current instant, there is some t' > t such that ¢ holds
over (t,t'), where the interval is left-open for () and left-
closed for O).

A and A describe different types of transitions. Namely,
A(¢1, ¢2) describes a switch from ¢; to ¢o, irrespective
of which value holds at the current instant, whereas
A(¢1,d2) describes a switch from ¢; to ¢ such that
¢1 holds at the current instant and ¢ will hold in the
immediate future. Note that if A(¢q,¢2) holds at some
instant ¢, A(¢1,¢2) holds over (¢ — d,t) in non-Berkeley
behaviors. A(¢) and A(¢) are shorthands for transitions
of a single item.

2 and  are “trigger” operators: 2(¢) denotes a transition
of ¢ from false to true, or vice versa, where the value



of ¢ at the current instant is unspecified, whereas (¢)
describes that a similar transition occurs within § instants.
It is also convenient to introduce the “dual” operators 2
and {, which describe a “non-transition” of its argument.
More precisely, 2(¢) (resp. 2(¢)) says that the truth value
of ¢ (whichever it is) does not change from the immediate
past to the immediate future (resp. the current instant to
the immediate future).

Finally, Alw(¢) expresses the invariance of ¢. Since
b =1 Alw(¢) iff b =1 ¢, for any behavior b, Alw(¢) can
be expressed without nesting of temporal operators if ¢ is
flat, through the global satisfiability semantics introduced
beforehand.

C. Operational notations: Timed Petri Nets

For lack of space, in the following we omit a formal
presentation of TA, which have been introduced in the
framework in previous work [7], to focus on TPN, whose
introduction in the integrated framework is one of the con-
tributions of this paper. Section IV informally illustrates
the syntax and semantics of TA on an example, with a
level of detail sufficient to understand its role within the
framework.

A Timed Petri Net (TPN) is a tuple N =
(P,T,F, My, a, ) where: P is a finite set of places; T
is a finite set of rransitions; F C (P x T)U (T x P) is
the flow relation; My : P — IN is the initial marking;
a: T — Q> gives the earliest firing times of transitions;
and B : T — Q>o U {oo} gives the latest firing times of
transitions.

In general, a mapping M : P — IN is called a marking
of N. Givena € PUT, let ea = {b | bFa} and ae = {b |
aF'b} denote the preset and postset of a, respectively. We
assume that every node ¢ € PUT has a nonempty preset
or a nonempty postset (or both); this is clearly without
loss of generality.

The semantics of TPN is usually given as sequences
of transition firings and place markings; see [15], [16] for
formal definitions. Correspondingly, a TPN is called k-safe
for k € IN iff for every reachable marking M itis M (p) <
k for all p € P. A TPN that is k-safe for some k € IN is
called bounded. A discretizable MTL axiomatization of a
nontrivial subclass of TPN is presented in Section III.

D. Discrete-time approximations of continuous-time spec-
ifications

This section provides an overview of the results in
[6] that will be used as a basis for the developments
of this paper. The technique is based on two approxi-
mation functions for MTL formulas, called under- and
over-approximation. The under-approximation function 25
maps continuous-time MTL formulas to discrete-time for-
mulas such that the non-validity of the latter implies
the non-validity of the former, over behaviors in Bi; in
other words €25 preserves validity from continuous to
discrete time. The over-approximation function Os maps
continuous-time MTL formulas to discrete-time MTL for-
mulas such that the validity of the latter implies the

validity of the former, over behaviors in Bi; in other words
Os preserves counterexamples from continuous to discrete
time. We have the following fundamental verification
result, which constitutes the basis of the whole verification
framework in the paper.

Proposition 1 (Approximations [6]): For any MTL for-
mulas ¢1,¢2, and for any & € Dy, N Dy,: (1) if
ot o Alw(Qs (1)) = Alw(Ogs (¢2)) is IN-valid, then
Alw(¢1) = Alw(pz) is x°-valid; and (2) if ¢~
Alw(Os (¢1)) = Alw(Qs5(¢2)) is not IN-valid, then
Alw(é1) = Alw(¢2) is not x°-valid.

Proposition 1 suggests the following verification ap-
proach for MTL. Assume first a system modeled as an
(arbitrarily complex) MTL formula ¢*¥*; in order to verify
whether another MTL formula /PP holds for all runs of
the system, we should check the validity of the derived
MTL formula Alw(¢)%%) = Alw(¢)P™P). If ¥** and PP
were formalized using continuous time, we would build
the two discrete-time formulas ¢+, ¢~ of Proposition 1
and infer the validity of the continuous-time formula from
the results of a discrete-time validity checking. The tech-
nique is incomplete as, in particular, when approximation
¢™T is not valid and approximation ¢~ is valid nothing
can be inferred about the validity of the property in the
original system over continuous time.

Consider now another notation A/ (e.g., TA or TPN):
if we can characterize the continuous-time semantics of
any system described with A/ by means of a set of MTL
formulas, then we can reduce the (continuous-time) verifi-
cation problem for A to the (continuous-time) verification
problem for MTL, and solve the latter as outlined in the
previous paragraph.

There are, however, several practical hurdles that make
this approach not straightforward to achieve. First, the
application of the over- and under- approximations of [6]
requires MTL formulas written in a particular form, which
do not nest temporal operators. Although in principle every
formula can be transformed in the required form (possibly
with the addition of a finite number of fresh propositional
variables), not every transformation is effective. That is,
equivalent continuous-time formulas can yield dramati-
cally different — in terms of efficacy and completeness —
approximated discrete-time formulas. The axiomatization
of operational formalisms (such as TA and TPN) can be
tricky and requires different sets of axioms, according to
whether they will undergo under- or over- approximation.
In fact, as briefly explained also in Section III, the shape
of formulas expressing necessary and sufficient conditions
for state change in operational formalisms can be such
that under- and over- approximation transformations yield
discrete-time counterparts that are trivially (un)satisfiable,
hence of little use for verification purposes. For this
reason, Section III introduces different axiomatizations
for TPN, which are however shown to be continuous-
time equivalent, hence the intended semantics is captured
correctly in all situations. The application in practice of
the MTL verification technique will use the “best” set of
axioms in every case.



III. DISCRETIZABLE MTL AXIOMATIZATIONS OF TPN

It is not too hard to devise a general, continuous-
time axiomatization of the semantics of a non-trivial
subclass of TPN. However, this axiomatization—for rea-
sons that are similar to those discussed in [7] for the
TA axiomatization—yields a poor discretized counterpart
when the technique of Section II-D is applied. Then, we
outline two formulations that, when interpreted over non-
Berkeley behaviors, are equivalent to the general one, but
which yield better discretizations for verification purposes.
Omitted details as well as the general axiomatization can
be found in [16].

The axiomatization of TPN presented in this paper
imposes that, in every marking, a place can contain at most
one token. As a consequence, it captures all evolutions
of any TPN that is 1-safe; however, it is also capable of
describing, for a TPN that is not 1-safe (i.e., which has
reachable markings such that at least one place contains
more than one token) the sequences of markings in which
every place has at most one token. For 1-safe TPN (either
by construction or by imposition) any marking M is
completely described by the subset of places that are
marked in M, which simplifies their formalization. We
remark, however, that extending the axiomatization to
include generic bounded TPN would be routine.

A. Generic axiomatization

The continuous-time semantics of a 1-safe TPN N =
(P, T, F, My, c,3) can be described through the set of
propositions P = p U € U 7, where = {u, | p € P},
e={e | p€ P}and 7 = {1, | u € T'}. Intuitively, at any
time ¢ in a behavior b, 1, € b(t) denotes that place p is
marked; 7, being “triggered” (see Section II) at ¢ denotes
that transition w fires at ¢; and ¢, being triggered at ¢
denotes that place p undergoes a “zero-time unmarking”,
that is, p is both unmarked and marked at the same instant
(hence does not change the number of contained tokens),
as it will be defined shortly.2 Then, b is a run of TPN N,
and we write b |=gr., IV, iff the conditions listed below
hold. -

Initialization. 5(0) = ¢UT, and there exists a transition
instant tg,,¢ > 0 such that: b(¢) = b(0) for all 0 < ¢t <
tstart and b1 (tspars) = e UT U UpeMo p (i.e., the places
in the initial marking become marked at ts,.t). This is
captured by the following axiom:

at 0: /\pep “p A 0[0’25] (/\peMo Mp)
NO (/\pep & A Nuer Tu)

Marking. For all instants ¢ such that j,, becomes true
in t we say that p becomes marked. Correspondingly, there
exists a transition v € ep such that: (i) 7, is triggered at ¢,
(ii) for no other transition u’ € ep (other than wu itself) 7,

)

2The dual “zero-time markings” (in which a place p is both marked
and unmarked at the same instant, and hence remains empty) do not occur
over non-Berkeley behaviors since, over these behaviors, transitions
cannot fire in the same instant in which they are enabled.

is triggered at ¢, and (iii) for no transition u” € pe 7(u")
is triggered at ¢. This corresponds to the following axiom,
which is introduced for every place p such that p ¢ M,
(the axiom for places such that p € M is similar).

B00) #Vacop (U5 A Aupucap 1)) )
A uepe UT)

Unmarking. For all instants ¢ such that p, becomes
false in ¢ we say that p becomes unmarked. Correspond-
ingly, there exists a transition v € pe such that: (i) 7, is
triggered at ¢, (ii) for no other transition u’ € pe (other
than w itself) 7,/ is triggered at ¢, and (iii) for no transition
u” € op T(u) is triggered at t.

A(_‘NP) :>\/u6po (QSTU) A /\u’;ﬁuepo é(TU/)> (3)
N /\ueop 22(7—114)

Enabling. For all instants ¢ such that 7, is triggered at
t, all places p € eu must have been marked continuously
over (t — a(u),t) without any zero-time unmarkings of
the same places occurring.

Utw) =

= —
Opp Nep) A D(O,a(u))(:u’p A€p)
/\peou o \/

— «—
O(MP A _‘EP) AU (0,0z(u))(/u‘P A _'GP) (4)
Bound. For all instants ¢ such that 7, has not been
triggered anywhere over (t—((u),t) and all places p € eu
have been marked continuously, one of the following must
occur: (i) one of such p’s becomes unmarked at ¢, (ii) 7, is
triggered at ¢, or (iii) all such p’s are still marked in b (¢)
and some p € eu undergoes a zero-time unmarking (i.e.,
€p 1s triggered at ¢t). This is formalized by introducing two
axioms for each transition v € T'. Here we report only one
of them; the other one is similar, but switches 7,, with =7,
(and vice-versa).

=
H .60 (Tu AyAve Mp) =

Vpeor(ttp V O—1tp))
v
Tosn(er) = =& VO(—ep)
\/pEou A

- _
O 0.8 (mep) = €V Olep)
vV

=Ty V 6(—|Tu) )

Effect. For all instants ¢ such that 7, is triggered at ¢,
every place p € eu either becomes unmarked or undergoes
a zero-time unmarking, and every place p € wue either
becomes marked or undergoes a zero-time unmarking.

E(Tu) = /\p€ot ( A(_'lup) \ 22(610) ) (6)
A /\pet. ( A(Np) \ 22(ep) )



Zero-time unmarking. For all instants ¢ such that
€p is triggered at ¢t we say that p undergoes a zero-
time unmarking. Correspondingly, there exist transitions
ug € op and uy, € pe such that 7(u,) is triggered, 7(uyp)
is triggered, and for no other transition v’ € epUpe (other
than u,, up) 7 is triggered.

zz(Tua) A /\u’;éuaeopzz(Tu’)
wep) = \/ A (7)

vaon \ UTuy) N Aurzuyepe UTwr)

Finally, given a TPN N, the MTL formula 5 formal-
izing N is the conjunction of axioms (1-7) instantiated for
each place and transition of N.

B. Axiomatizations for approximations

As also discussed in [7], operator A yields very weak
under-approximations when used to the left-hand side of
implications. It turns out that the under—@proximation of
A(p1, ¢2) is the discrete-time formula Dl 37 (d1) A ¢o.
B)r a proposition x, A(x) is then the unsatisfiable formula
Uo,1(—z) A x; correspondingly all implications with
such formulas as antecedent are trivially true and do
not constrain in any way the discrete-time system. The
approximations can be significantly improved by using the
more constraining A in place of A. One can check that
the under-approximation of A(z) is A(x) itself, which
describes a discrete-time transition with —z holding at
the current instant and x holding at the next instant.
Correspondingly, all instances of /\ are changed into
instances of A in (1-7) yielding a new set of axioms.
For example, the formulas (8-10) below are substituted
for axioms (2), (4), (6).

A1) = Vaueay (70 A Nurpucap 7)) (g
AMuep (7)

(Tw) =
Hp N €p A ﬁ(o)a(u)%)(,up A €p) ©)
. v
tp A —€p A D(O,a(u)—é)(:up A —e€p)
W) = /\pe.t ( A(ﬁ/‘p) \ 2(617) ) (10)

/\/\peto ( A(pp) VUep) )

It can be shown [16] that (2), (4), (6) are equivalent
to (8—10) over behaviors ch that are non-Berkeley for 9,
and similarly for the other formulas, not reported here. We
call 1/11%‘5 the MTL formula formalizing TPN N which is
equivalent to ¥ over behaviors Bi (.e., w?\zﬁ =ps PN),
and which yields a useful under-approximation.

Similar problems occur when over-approximations of
formulas (1-7) are computed. Suitable equivalent (over
non-Berkeley behaviors) formulations of axioms (1-7) can
then be defined [16], in order to be able to use them fruit-
fully in the verification phase when over-approximations
are needed. We call w](\),“ the resulting MTL formalization
for a given TPN N.

The new formulas are used to compute the approxi-
mations Os (1/}1(\),5 ) and Qs (2/1]%5 ) for model fragments

described through TPN, according to the technique sum-
marized in Section II-D.

C. Quality of discrete-time approximations

Proposition 1 guarantees that over-approximations pre-
serve counterexamples and under-approximations preserve
validity. It does not say anything about the quality (or
completeness) of such approximations; in particular an
over-approximation can preserve counterexamples trivially
by being contradictory (i.e., inconsistent), and an under-
approximation can preserve validity trivially by being
identically valid.

In order to make sure this is not the case, a set of
constraints must be introduced that guarantees no degen-
erate behaviors are modeled in the approximations. These
constraints derive from the shape of the intervals appearing
in the approximations computed from formulas (8—10) and
similar ones. In particular, we should check that, for every
transition v with dense-time firing interval [o(u), 5(u)]:

o Non-emptiness. Metric intervals are non-empty; that
is a(u) > 30 from the under-approximation and
B(u) > 24 from the over-approximation.

o Consistency. For each approximation, the minimum
enabling interval is smaller than the maximum en-
abling interval. Correspondingly, we have the con-
straints B(u) > a(u) — 24 from the formulas of the
under-approximation and 3(u) > «(u) + 2§ from
those of the over-approximation.

The constraints can be summarized as «(u) > 30 and
B(u) > a(u)+20. In our examples, we will consider only
non-degenerate TPN satisfying these constraints.

IV. MULTI-PARADIGM MODELING AND VERIFICATION
AT WORK

The multi-paradigm modeling technique presented in
this paper is supported by the Zot bounded satisfiabil-
ity checker [17][18], for which we implemented various
plugins to deal with the various allowed formalisms. The
tool includes presently plugins for dense- and discrete-
time MTL formulas [6], TA [7], and TPN (using the for-
malization presented in Section III). The plugins provide
primitives through which users can define the system to
be analyzed as a mixture of TA, dense- and discrete-time
MTL formulas, and TPN. The properties to be verified
for the system can also be described as a combination
of fragments written using the aforementioned formal
languages.

The tool then automatically builds, for the dense-time
fragments of the system and of the property to be analyzed,
the two discrete-time approximation formulas of Proposi-
tion 1. These formulas, possibly in conjunction with other
user-supplied discrete-time MTL formulas, are checked
for validity over time IN; the results of the validity check
allows one to infer the validity of the integrated model,
according to Proposition 1.
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Figure 1.

Zot performs the discrete-time validity check by en-
coding formulas as a Boolean satisfiability (SAT) problem,
which is put into conjunctive normal form (CNF), and then
fed to a standard SAT solving engine (such as MiniSat,
zChaff, or MiraXT).

A. An Example of Multi-paradigm Modeling and Verifica-
tion

We demonstrate how the modeling and verification tech-
nique presented in this paper works in practice through an
example consisting of a fragment of a realistic monitoring
system, which could be part of a larger supervision and
control system.

System model. The monitoring subsystem is composed
of three identical sensors, a middle component that is in
charge of acquiring and pre-processing the data from the
sensors, and a data management component that further
elaborates the data (e.g., to select appropriate control
actions). For reasons of dependability (by redundancy),
the three sensors measure the same quantity (whose nature
is of no relevance in this example). Each one of them
senses independently the measured quantity at a certain
rate which is in general aperiodic; however, while the
acquisition rate can vary, the distance between consecutive
acquisitions must always be no less than 7'/2 and no more
than 7" time units. Each sensor keeps track of only the last
measurement, hence every new sensed value replaces the
one stored by the sensor.

The data acquisition component retrieves data from the
three sensors in a “pull” fashion. More precisely, when all
three sensors have a fresh measurement available, with a
delay of at least 7'/10 units, but of no more than 7'/5
time units, the data acquisition component collects the
three values from the sensors (which then become stale,
as they have been acquired). After having retrieved the
three measurements, the component processes them (e.g.,
it computes a derived measurement as the average of the
sensed values); the process takes between 7'/5 and T'/2
time units.

After having computed the derived measurement, the
data acquisition component sends it to the data man-
ager, this time using a “push” policy which requires
an acknowledgement of the data reception by the latter.

collect2_en,

e

able collect3_enable

Fragment of monitoring system modeled through a timed Petri net.

The data acquisition component tries to send data to the
data manager at most twice. If both attempts at data
transmission fail (for example because a timeout for the
reception acknowledgement by the data manager expires,
or because the latter signals a reception error) the data
transmission terminates with an error.

First, we model the mechanism through which the three
sensors collect data from the field and the data acquisition
component retrieves them for the pre-processing phase.
This fragment of the model is described through a timed
Petri net, and is depicted in Figure 1.

Let us point out that, in a multiple-paradigm framework,
the reasons that lead to the choice of a notation instead of
another often include a certain degree of arbitrariness. In
this case, we chose to model the data acquisition part of
the system through a TPN since we felt that the inherent
asynchrony of the formalism [2] was a natural fit for the
asynchrony with which the three sensors collect data from
the field; of course, different modelers might have made
different choices.

A further fragment of the formal model of the moni-
toring system is shown in Figure 2. It represents, through
the TA variant discussed in [7], the transmission protocol
that the data acquisition component uses to send refined
values to the data manager.’

Figure 2. Fragment of data acquisition system modeled through a timed
automaton.

For this second fragment of the system, the formalism of

3 As remarked in [7], since, in our formalization, the definition of clock
constraints forbids the introduction of exact constraints such as A = T5,
such constraints represent a shorthand for the valid clock constraint 7o <
A<T+6.



timed automata was chosen because it was deemed capable
of representing the timing constraints on the protocol in
a more natural way, especially for what concerns the
constraint on the overall duration of the process.

Finally, MTL formulas are added to “bridge the gap”
between the operational components shown in Figures 1
and 2. This is achieved by the two following formulas,
which define, respectively, that the transmission procedure
can begin only if a pre-processed measurement value has
been produced by the data acquisition component in the
last 7'/2 time units (11) and that, if the system is not in
the middle of a data transmission (i.e., it is idle) and a
new datum is being processed, a transmission will start
within 7'/2 time units (12).

try = K(O’T/Q](data_retrieved) (11)
data_retrieved Aidle = <>(0,T/2](tr}’) (12)

Notice that the automata of Figures 1 and 2 are defined
over a continuous time. This choice for the time domain
of these two system fragments is justified by the fact that
they deal with parts of the system interacting with physical
elements (measured quantities, transmission channel), for
which a continuous time seems better suited.

Formulas (11-12), instead, describe a software syn-
chronization mechanism within the application, which is
more straightforwardly described with discrete time. As a
consequence, (11-12) are to be interpreted accordingly.

Finally, the model of the system to be verified is built
by conjoining the discrete-time approximations for the
fragments of Figures 1-2 and the discrete-time MTL
formulas (11-12). More precisely, if 1/)1%5 and 7,[1]?,5 are the
continuous-time MTL formulas capturing the semantics
of the net of Figure 1 (see Section III), 1/1%“ s 1/)25 are
the continuous-time MTL formulas for the automaton of
Figure 2, 9y, is the discrete-time formula ¢y, = (11)A(12),
and PP is the continuous-time property to be checked
for the system, then we have:

ot = Aw(Q5 (v3°) A (¥57) AvL) = Alw(O5 (4PP))
o= = Alw(05 (¥97) A 05 (¥S°) A vr ) = Alw(s (7))

Note that formula vy, which is to be interpreted over
discrete time, must not be approximated. Then, if ¢ is
IN-valid, we can draw some interesting conclusions.

First, if one implements a continuous-time system that
does not vary faster than the sampling time § (i.e., whose
behaviors are in Bi), which satisfies ¥y, ¥4, and a
continuous-time MTL formula ¢’ such that Qs (¢}) =
11, then property PP holds for this system.

More interestingly, it can be shown that, for any
continuous-time MTL formula ¢, the set of behaviors
satisfying Os (¢) is a subset of those satisfying s (¢)
(e, {b [0 Fn Os(9)} € {b | b Fn Q5(d)}). In
addition, given a discrete-time behavior b that satisfies
Os (@), from [6, Lemma 3] we have that any continuous-
time non-Berkeley behavior b’ for which b is a sampling

satisfies ¢. Then, any way one reconstructs a continuous-
time non-Berkeley behavior &' from a discrete-time one
that satisfies Oy (¢p), b’ satisfies ¢. This leads us to
conclude that, if one builds a discrete-time system (e.g., a
piece of software) which implements — that is, satisfies
— Oy 1/)25 , Os wg‘s , ¥, this satisfies discrete-time
property Og (¢PP); in addition, any way one uses a
discrete-time behavior of this system to reconstruct a
continuous-time, non-Berkeley behavior, the latter satisfies
YN, 1a, and PPP.

Finally, if ¢~ is not IN-valid, a discrete-time system im-
plementing O (wj(\),é ), Os (zﬁ% ), 1y, violates property
Qs (47°).

Verification. We used the system model presented
above to check a number of properties to validate the
effectiveness of our approach. Table IV-A shows the
results, and duration of the tests. More precisely, for each
test the table reports: the checked property; the values
of the timing parameters in the model (i.e., T1,75,T3,
T); the temporal bound k of the time domain (as Zot
is a bounded satisfiability checker, it considers all the
behaviors with period < k); the amount of time to perform
each phase of the verification, namely formula building
(including transformation into conjunctive normal form),
and propositional satisfiability checking; the results of the
tests.*

First, we checked some properties concerning the live-
ness of the data collection by a sensor X (with X €
{1,2,3}). More precisely, we analyzed whether property
(13) holds for the model.?

replaceX A new_dX =
O (0,7-+6) (replaceX A ~new_dX V —replaceX A new_dX)
N
replaceX A —new_dX =
O 0,7-+6)(replaceX A new_dX V —replaceX A —new_dX)
A
—replaceX A new_dX =
00,745 (-replaceX A —mew_dX V replaceX A new_dX)
N
—replaceX A —new_dX =
O 0,7-+61("replaceX A new_dX V replaceX A —mew_dX)
13)
Formula (13) states that triggering events of replaceX
and new_dX transitions must occur within 7"+ ¢ (with §
the sampling period) time instants in the future, i.e., that
either replaceX or new_dX must change value within the
next 7'+ ¢ time instants. The property does not hold in
general, since a firing of transition retrieve_d would reset
the time counters for transitions replaceX and new_dX.
This fact can be pointed out by checking ¢, with ¥)PP =
(13), which is unsatisfiable, as shown in Table IV-A.

4The verification tool and the complete model used for verification
can be found at http://home.dei.polimi.it/pradella. Tests
have been performed on a PC equipped with two Intel Xeon E5335 Quad-
Core Processor 2GHz, 16 Gb of RAM, and Gentoo GNU/Linux (kernel
2.6.29), using a single core for each test. Zot used GNU SBCL 1.0.28
and MiniSat 2.0 as SAT-solving engine.

SRecall that all properties to be proved are implicitly closed with the
Alw operator.



If the additional hypothesis that transition retrieve_d
does not fire along (0,7 + 4], (13) can however be shown
to hold. More precisely, if (13) is rewritten, as shown in
formula (14), by adding to the antecedents the condition
that predicate retrieve_d does not change in (0,7 + ¢]
(i.e., transition retrieve_d does not fire in that interval),
then the new ¢ is IN-valid (as Table IV-A shows), hence
(14) holds for the system.

Uo,7+5] (retrieve_d) A replaceX A new_dX =
O (0,7-+6) (replaceX A ~mew_dX V —replaceX A new_dX)
(0,746 (retrieve_d) A —replaceX A -new_dX =
O 0,7+6) ("replaceX A new_dX V —replaceX A new_dX)

O(o,7+6) (Tretrieve_d) A replaceX A -new_dX =
Qo,7+5] (replaceX A new_dX V —replaceX A —new_dX)
A A
Do, 744 (-retrieve_d) A —replaceX A —new_dX =
O 0,7+6)("replaceX A new_dX V —replaceX A new_dX)

(14)

Another liveness property is formalized by formula

(15), which states that a datum is retrieved (i.e., place
data_retrieved is marked) at least every % time units,

O

Property (15) cannot be established with our verification
technique as it falls in the incompleteness region (i.e.,
¢ is not valid and ¢~ is valid, as Table IV-A shows);
from the automated check we cannot draw a definitive
conclusion on the validity of the property for the system.
If, however, the temporal bound of formula (15) is slightly
relaxed as in formula (16), not only the verification is
conclusive, but it shows that the property in fact holds for
the system.

a1 (data_retrieved) (15)
2

)

O (0,27 (data_retrieved) (16)

Verification also shows that the original formula (15)
holds if the bound on transitions replaceX of the TPN is
changed to [%, T] (property (15°) in Table IV-A).

Formula (17) expresses the maximum delay between
sensor collect and data send. More precisely, if each sensor
has provided a measurement and transition retrieve_d
fires, then the timed automaton will enter state try within
T instants. The validity of this formula would allow us
to check that the two parts of the system modeled by the
TPN and by the TA are correctly “bridged” by axioms
(11) and (12). As Table IV-A shows, property (17) does
not hold; this occurs because, when place data_retrieved
is marked, the TA might not be in state idle.

data_retrieved = ¢ 7 (try) (17)

Axiom (12) states that a try state is entered within
T/2 if data_retrieved holds when idle holds. Then, a
deeper analysis on the timing constraints suggests that this
condition depends on the maximum transmission time 73
of the TA, which defines the maximum delay between
two consecutive occurrences of idle. If the system is

in data_retrieved and not in idle, then the next idle
state will be within 75 instants in the future; moreover,
data_retrived will be unmarked within 7'/2. This sug-
gests that the following property (18) is valid:

Oo,13] (data_retrieved) = 00,17 (try) (18)

This property also falls in the incompleteness region of
the verification technique. However, the following slight
relaxation of formula (18) can be proved to hold for the
system:

Do, 75+9) (data_retrieved) = <>(07T] (try) (19)

PR Ty, T, 15, T K Tort. TIME (h)  IN-VALID
13: ¢~ 3, 6, 18, 30 90 11.66 L
13: ¢~ 3,9, 36, 30 90 11.36 i
13: ¢~ 3,12,48,30 120 19.78 1
14: 9T 3, 6, 18, 30 90 2.76 T
14: ¢t 3,9, 36, 30 90 3.79 T
14: ¢t 3,12,48,30 120 6.5 T
15: 9T 3, 6, 18, 30 90 492 1
15: ¢~ 3, 6, 18, 30 90 9.49 T
15: ¢t 3,9, 36, 30 90 4.84 1
15: ¢~ 3,9, 36, 30 90 10.59 T
15: ¢t 3,12,48,30 120 13.09 1
15: ¢~ 3,12,48,30 120 23.19 T
16: T 3, 6, 18, 30 90 3.01 T
16: ¢ 3,9, 36, 30 90 4.02 T
15 ¢T 3, 6, 18, 30 90 6.47 T
17 ¢~ 3,6, 12, 30 75 4.68 i
17: ¢~ 3,3, 15,30 75 4.66 1
17: ¢~ 3,6, 18, 30 75 4.69 i
19: T 3, 6, 12, 30 75 2.41 T

Table 11

CHECKING PROPERTIES OF THE DATA MONITORING SYSTEM.

V. DISCUSSION AND CONCLUSION

In this paper we presented a technique to formally
model and verify systems using different paradigms for
different system parts. The technique hinges on MTL
axiomatizations of the different modeling notations, which
provide a common formal ground for the various modeling
languages, on which fully-automated verification tech-
niques are built. We provided an MTL axiomatization of a
subset of TPN, a typical asynchronous operational formal-
ism, and showed how models could be built by formally
combining together TPN and TA (a classic synchronous
operational notation, for which an axiomatization has been
provided in [7]). In addition, we showed how the approach
allows users to integrate in the same model parts described
through a continuous notion of time, and parts described
through a discrete notion of time.

Practical verification of systems modeled through the
multi-paradigm approach is possible through the Zot
bounded satisfiability checker, for which plugins support-
ing the various axiomatized notations have been built.

The technique has been validated on a non trivial
example of data monitoring system. The experimental
results show the feasibility of the approach, through which



we have been able to investigate the validity (or, in some
cases, the non validity) of some properties of the system.
As described in Section IV, the verification phase has
provided useful insights on the mechanisms and on the
timing features of the modeled system, which led us
to re-evaluate some of our initial beliefs on the system
properties.

It is clear from our experiments that, unsurprisingly,
the technique suffers from two main drawbacks: the in-
completeness of the verification approach by discretization
evidenced in [6], which prevented us, in some cases, to
get conclusive answers on some analyzed properties; and
the computational complexity of our method, which is
based on the direct translation of TPN and TAs into MTL
formulas, approximated into discrete ones, and then en-
coded into SAT. This makes proofs considerably lengthier
as the size of the domains, and especially of the temporal
one, increases, as evidenced by Table IV-A. Nevertheless,
we maintain that the results we obtained are promising,
and show the applicability of the technique on non trivial
systems. This claim is supported on the one hand by
the sophistication of the properties we have been able to
prove (or disprove): it is inevitable that verification over
continuous real-time has a high computational cost. On
the other hand, while incompleteness is a hurdle to the
full applicability of the technique, in practice it can be
mitigated quite well, usually by slightly relaxing the real-
time timing requirements under verification in a way that
does not usually alter the gist of what is being verified.

In our future research on this topic we plan to address
the two main drawbacks evidenced above. First, we will
work on extending the verification technique to expand its
range of applicability and reduce its region of incomplete-
ness. Also, we will study more efficient implementations
for the Zot plugins through which the various modeling
notations are added to the framework: we believe that more
direct (therefore more compact, both in the literals and
clause numbers) encodings into SAT of the TPN and TA
axiomatizations should significantly improve the efficiency
of the tool.
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