
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

A Model Checker for Operator Precedence Languages∗

MICHELE CHIARI, TU Wien, Austria

DINO MANDRIOLI, DEIB, Politecnico di Milano, Italy

FRANCESCO PONTIGGIA, TU Wien, Austria

MATTEO PRADELLA, DEIB, Politecnico di Milano and IEIIT, Consiglio Nazionale delle Ricerche, Italy

The problem of extending model checking from finite state machines to procedural programs has fostered much research toward the
definition of temporal logics for reasoning on context-free structures. The most notable of such results are temporal logics on Nested
Words, such as CaRet and NWTL. Recently, Precedence Oriented Temporal Logic (POTL) has been introduced to specify and prove
properties of programs coded trough an Operator Precedence Language (OPL). POTL is complete w.r.t. the FO restriction of the MSO
logic previously defined as a logic fully equivalent to OPL. POTL increases NWTL’s expressive power in a perfectly parallel way as
OPLs are more powerful that nested words.

In this paper we produce a model checker, named POMC, for OPL programs to prove properties expressed in POTL. To the best of
our knowledge POMC is the first implemented and openly available model checker for proving tree-structured properties of recursive
procedural programs. We also report on the experimental evaluation we performed on POMC on a nontrivial benchmark.

CCS Concepts: • Software and its engineering→ Formal software verification; • Theory of computation→Modal and temporal
logics; Verification by model checking.

Additional Key Words and Phrases: Linear Temporal Logic, Precedence Oriented Temporal Logic, Operator Precedence Languages,
Model Checking, Visibly Pushdown Languages, Input-Driven Languages

ACM Reference Format:
Michele Chiari, Dino Mandrioli, Francesco Pontiggia, and Matteo Pradella. 2022. A Model Checker for Operator Precedence Languages.
1, 1 (June 2022), 67 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION

Model Checking is a well-established technique for the analysis of both hardware and software systems. In particular,
the specification of regular properties has been extensively studied. To this regard, Linear Temporal Logic (LTL) has
been introduced to express a large variety of safety and liveness linear time properties.

Operational models for the system under verification often paired with LTL specifications are Transition Systems (TSs)
and Finite-State Automata (FSAs) (generally Büchi automata) [12]. Frameworks based on these formalisms, such as

∗This paper is a revised and extended version of [25] and [73].

Authors’ addresses: Michele Chiari, michele.chiari@polimi.it, TU Wien, Treitlstraße, 3, Wien, Austria, 1040; Dino Mandrioli, dino.mandrioli@polimi.it,
DEIB, Politecnico di Milano, Via Ponzio 34/5, Milano, Italy, 20133; Francesco Pontiggia, francesco.pontiggia@tuwien.ac.at, TU Wien, Treitlstraße, 3, Wien,
Austria, 1040; Matteo Pradella, matteo.pradella@polimi.it, DEIB, Politecnico di Milano and IEIIT, Consiglio Nazionale delle Ricerche, Via Ponzio 34/5,
Milano, Italy, 20133.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2022 Association for Computing Machinery.
Manuscript submitted to ACM

Manuscript submitted to ACM 1

HTTPS://ORCID.ORG/0000-0001-7742-9233
HTTPS://ORCID.ORG/0000-0002-0945-5947
HTTPS://ORCID.ORG/0000-0003-2569-6238
HTTPS://ORCID.ORG/0000-0003-3039-1084
https://doi.org/XXXXXXX.XXXXXXX
https://orcid.org/0000-0001-7742-9233
https://orcid.org/0000-0002-0945-5947
https://orcid.org/0000-0003-2569-6238
https://orcid.org/0000-0003-3039-1084

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

2 Michele Chiari, Dino Mandrioli, Francesco Pontiggia, and Matteo Pradella

SPIN [50], affirmed themselves due to their ease in reasoning, the conciseness of their logics with respect to the automata
representation, and the efficiency of the model checking algorithms when implemented in practice.

However, when focusing on procedural programs, the presence of the stack of activation records constitutes a
non-negligible feature that FSAs cannot model. Therefore, more adequate abstract models of procedural programs are
represented by Boolean Programs [13], Pushdown Systems [18, 38] and Recursive State Machines [3]. For all these
stack-based formalisms problems such as state and configuration reachability as well as the more complex model
checking of regular specifications have been thoroughly studied [3, 4, 18, 20, 34, 38, 42, 55, 70, 80]. They are able to mock
up many relevant behaviors of real-world programs, expressible by means of Context-Free Languages (CFLs), rather
than regular languages. Unfortunately, the set of properties expressible with LTL corresponds only to the First-Order
Logic (FOL) definable fragment of regular languages. Hence, this logic is not suitable to formulate constraints on the
managing of the procedure stack.

Example interesting properties include Hoare-style pre/post conditions on procedure calls and returns, and stack-
inspection properties at a particular execution point [51]. To fill the gap, some efforts have been made to define logics
based on subclasses of CFLs. These subclasses, while being strictly more expressive than Regular Languages, retain
the same properties that allow to use them in automata-theoretic model checking. They are informally defined as
Structured CFLs [59], because the structure of the syntax tree of a sentence is built in the sentence itself, and in many
cases immediately visible.

A coherent approach in this direction is based on Visibly Pushdown Languages (VPLs) [9], a.k.a Input-Driven
Languages [64]. Two derived logics, namely CaRet [7] and its FO-complete successor Nested Words Temporal Logic
(NWTL) [2], allow to reason about program traces structured as Nested Words [10]. Such execution traces consist of
the usual LTL linear ordering of events augmented with a matching relation between procedure calls and returns. In
this regard, they are the first logics equipped with temporal modalities explicitly referring to the nested structure of
CFLs [4]. Through them, it is possible to express requirements regarding the mentioned context-free behaviors [4].
System models are represented by Visibly Pushdown Automata (VPAs), the automata class of VPLs. To complete the
view, a 𝜇-calculus based on VPLs extends model checking to branching-time semantics in [6], while [19] introduces a
temporal logic capturing the whole class of VPLs.

On the practical side, the work on tools is not as rich as the theoretical one. Libraries such as VPAlib [66],
VPAchecker [76], OpenNWA [33] and Symbolic Automata [31] only implement operations such as union, intersection,
universality/inclusion/emptiness check for VPAs or Nested Words Automata (NWAs), but have no model checking
capabilities. PAL [22] uses nested-word based monitors to express program specifications, and a tool based on blast [47]
implements its runtime monitoring and model checking. PAL follows the paradigm of program monitors, and is not
—strictly speaking— a temporal logic. [68, 69] describe a tool for model checking programs against CaRet specifications.
Since its purpose is malware detection, it targets program binaries directly by modeling them as Pushdown Systems.

VPLs have some theoretical limitations as well. While being more expressive than Parenthesis Languages [62],
the matching relation is essentially constrained to be one-to-one. As a consequence, they fail to reason about those
behaviors in which a single event must be put into relation with multiple ones. Such behaviors occur in programming
languages that feature exceptions and exception handling, or in programs with control flow operators that allow the
explicit management (or reification) of the current continuation (such as call/cc). In such contexts, a single event may
cause the termination (or re-instantiation) of multiple procedures on the stack, by causing the pop (or the push) of the
corresponding activation frames.

Manuscript submitted to ACM

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

A Model Checker for Operator Precedence Languages 3

To model-check such behaviors the more powerful formalisms of Operator Precedence Languages (OPLs) and related
logics have been proposed. OPLs —and their generating Operator Precedence Grammars (OPGs)— are a historical
subfamily of CFLs invented by Robert Floyd [39] to support efficient parsing. They are general enough to formalize
most syntactic constructs of mainstream programming languages [16, 32] including those mentioned above that cannot
be expressed as VPLs. In fact, OPLs strictly include VPLs but, despite the increased expressive power, they are still
closed under Boolean operations, concatenation, and Kleene *; thus, inclusion is decidable for them (since emptiness is
decidable for any CFL) [29, 59]. Alongside, a class of automata accepting the OPL family has been given, namely Operator
Precedence Automata (OPAs), together with their “𝜔-counterpart” i.e., Operator Precedence Büchi Automata (𝜔OPBAs)
accepting infinite (or 𝜔-) Operator Precedence words [58].

On the logic side, a Monadic Second-Order (MSO) logic equivalent to OPAs and OPGs has been defined [58] and on
its basis the logic called Precedence Oriented Temporal Logic (POTL) has been presented which is complete w.r.t. the
First-Order (FO) restriction of the MSO logic [27]1; thus, POTL gains in expressive power w.r.t. NWTL in a perfectly
parallel way as OPLs gain over VPLs.

Consider also that recently FO-definability of OPLs has been proved equivalent to the aperiodicity —or non-counting—
property [60] as it happens for regular languages [63], a non-trivial and somewhat surprising result since the same
does not hold for tree-languages [49, 78]. Whereas in the realm of finite state machines aperiodicity is not enjoyed in
many practical cases —for instance, various hardware devices are counters modulo some integer 𝑘 > 1— it is quite
unusual to find counting features in normal programming languages: thus, POTL has a potential application breadth
even larger than LTL has for regular languages.

This paper offers the final step needed to model-check structured programs against structured properties. Its main
contributions are:

• A tableaux-construction procedure formodel checking POTL, which yields nondeterministic automata. Although
the technicalities of the construction are much more involved than the corresponding construction for LTL and
even that for NWTL, its size is at most singly exponential in the formula’s length, and is thus not asymptotically
greater than that of LTL, CaRet and NWTL.

• An implementation of this procedure in a tool called Precedence Oriented Model Checker (POMC) [23]. POMC is
able to build the correspondingOPA (or𝜔OPBA) of a POTL formula, and is equippedwith both a Reachability (for
OPAs) and a Fair Cycle Detection algorithm (for 𝜔OPBAs) module; hence constitutes a full explicit-state model
checker for POTL. To the best of our knowledge, POMC is the only publicly-available tool for temporal logics
capable of expressing context-free properties. For user-friendliness, POMC is equipped with a domain-specific
language called MiniProc. Programs written in MiniProc are then internally translated into the automaton
representation through an operational semantics.

• An extensive evaluation of the complexity of the model checking algorithm in practice, to assess the trade-off
between the greater expressive power of OPL-based model checking and its complexity.

An earlier version of POMC has been awarded the Functional, Reusable and Available badges by the CAV 2021 Artifact
Evaluation Committee.

The paper is organized as follows: Section 2 recalls some background on OPLs; POTL is introduced in Section 3;
the model checking procedure on finite words is given in Section 4, while the case of 𝜔-words is studied in Section 5;
Section 6 supplies some implementation details of POMC; Section 7 presents the benchmark adopted to evaluate the

1On the contrary, an earlier temporal logic for OPLs [25] is not FO-complete.

Manuscript submitted to ACM

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

4 Michele Chiari, Dino Mandrioli, Francesco Pontiggia, and Matteo Pradella

features and performances of POMC, the main results of experiments carried over, and a —qualitative more than
quantitative— comparison with related tools. Finally, Section 8 summarizes our results in the context of previous
literature and delineates some potential future works. To make the reading more fluid and to help focusing on the
essentials a few technical details have been postponed to suitable appendices.

2 OPERATOR PRECEDENCE LANGUAGES

Operator Precedence Languages (OPLs) were originally defined through their generating grammars [39]: Operator
Precedence Grammars (OPGs) are a special class of Context-Free Grammars (CFGs) in operator normal form —i.e., gram-
mars in which right-hand sides (rhs’s) of production rules contain no consecutive non-terminals2—. As a consequence,
in the Syntax Trees (STs) generated by such grammars the children of any node never exhibit two consecutive internal
nodes.

The distinguishing feature of OPGs is that they define three Precedence Relations (PRs) between pairs of input symbols
which drive the deterministic parsing and therefore the construction of a unique ST, if any, associated with an input
string. For this reason we consider OPLs a kind of input-driven languages, but larger then the original ones by K.
Mehlhorn [64] (later known as VPLs [10]). The three PRs are denoted by the symbols ⋖, �,⋗ and are respectively
named yields precedence, equal in precedence, and takes precedence. They graphically resemble the traditional arithmetic
relations but do not share their typical ordering and equivalence properties; we kept them for “historical reasons”, but
we recommend the reader not to be confused by the similarity.

Intuitively, given two input characters 𝑎, 𝑏 belonging to a grammar’s terminal alphabet, separated by at most one
non-terminal, 𝑎 ⋖ 𝑏 iff, in some grammar derivation, 𝑏 is the first terminal character of a grammar’s rhs following
𝑎 whether or not the grammar rule contains a non-terminal character before 𝑏 (for this reasons we also say that
non-terminal characters are “transparent” in OPL parsing); 𝑎 � 𝑏 iff 𝑎 and 𝑏 occur consecutively in some rhs, possibly
separated by one non-terminal; 𝑎⋗𝑏 iff 𝑎 is the last terminal in a rhs —whether followed or not by a non-terminal—, and
𝑏 follows that rhs in some derivation. The following example provides a first intuition of how a set of unique PRs drives
the parsing of a string of terminal characters in a deterministic way; subsequently the above concepts are formalized.

Example 2.1. Consider the alphabet of terminal symbols Σcall = {call, ret, han, exc, stm}: as the chosen identifiers
suggest, call represents the fact that a procedure call occurs, ret represents the fact that a procedure terminates normally
and returns to its caller, exc that an exception is raised, han that an exception handler is installed, and stm represents a
statement that does not affect the stack, such as an assignment. We want to implement a policy such that an exception
aborts all the pending calls up to the point where an appropriate handler is found in the stack, if any; after that,
execution is resumed normally. Calls and returns, as well as possible pairing of handlers and exceptions are managed
according to the usual LIFO policy. The alphabet symbols are written in boldface for reasons that will be explained later
but are irrelevant for this example.

The above policy is implemented by the PRs described in Fig. 1 which displays the PRs through a square matrix,
called Operator Precedence Matrix (OPM), where the element of row 𝑖 and column 𝑗 is the PR between the symbol
labeling row 𝑖 and that of column 𝑗 . We also add the special symbol # which is used as a string delimiter and state the
convention that it yields precedence to all symbols in Σcall, and that all symbols in Σcall take precedence over it.

Let us now see how the OPM of Fig. 1, named 𝑀call, drives the construction of a unique ST associated to a string
on the alphabet Σcall through a typical bottom-up parsing algorithm. We will see that the shape of the obtained ST

2Every CFG can be effectively transformed into an equivalent one in operator form [46].

Manuscript submitted to ACM

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

A Model Checker for Operator Precedence Languages 5

call ret han exc stm
call ⋖ � ⋖ ⋗ ⋖
ret ⋗ ⋗ ⋗ ⋗ ⋗
han ⋖ ⋗ ⋖ � ⋖
exc ⋗ ⋗ ⋗ ⋗ ⋗
stm ⋗ ⋗ ⋗ ⋗ ⋗

Fig. 1. The OPM𝑀call.

0 # ⋖ call ⋖ han ⋖ call ⋖ call ⋖ call ⋗ exc ⋗ call � ret ⋗ call � ret ⋗ ret ⋗ #
1 # ⋖ call ⋖ han ⋖ call ⋖ call 𝑁 ⋗ exc ⋗ call � ret ⋗ call � ret ⋗ ret ⋗ #
2 # ⋖ call ⋖ han ⋖ call 𝑁 ⋗ exc ⋗ call � ret ⋗ call � ret ⋗ ret ⋗ #
3 # ⋖ call ⋖ han � 𝑁 exc ⋗ call � ret ⋗ call � ret ⋗ ret ⋗ #
4 # ⋖ call ⋖ 𝑁 call � ret ⋗ call � ret ⋗ ret ⋗ #
5 # ⋖ call ⋖ 𝑁 call � ret ⋗ ret ⋗ #
6 # ⋖ call � 𝑁 ret ⋗ #
7 # � 𝑁 #

Fig. 2. The sequence of bottom-up reductions during the parsing of 𝑤ex .

depends only on the OPM and not on the particular grammar exhibiting the OPM. Consider the sample word𝑤ex = call
han call call call exc call ret call ret ret. First, add the delimiter # at its boundaries and write all precedence relations
between consecutive characters, according to𝑀call. The result is row 0 of Fig. 2.

Then, select all innermost patterns of the form 𝑎 ⋖ 𝑐1 � · · · � 𝑐ℓ ⋗ 𝑏. In row 0 of Fig. 2 the only such pattern is the
underscored call enclosed within the pair (⋖,⋗). This means that the ST we are going to build, if it exists, must contain
an internal node with the terminal character call as its only child. We mark this fact by replacing the pattern ⋖call⋗
with a dummy non-terminal character, say 𝑁 —i.e., we reduce call to 𝑁—. The result is row 1 of Fig. 2.

Next, we apply the same labeling to row 1 by simply ignoring the presence of the dummy symbol 𝑁 and we find a
new candidate for reduction, namely the pattern ⋖call 𝑁⋗. Notice that there is no doubt on building the candidate rhs
as ⋖call 𝑁⋗: if we reduced just the call and replaced it by a new 𝑁 , we would produce two adjacent internal nodes,
which is impossible since the ST must be generated by a grammar in operator normal form.

By skipping the obvious reduction of row 2, we come to row 3. This time the terminal characters to be reduced, again,
underscored, are two, with an � and an 𝑁 in between. This means that they embrace a subtree of the whole ST whose
root is the node represented by the dummy symbol 𝑁 . By executing the new reduction leading from row 3 to 4 we
produce a new 𝑁 immediately to the left of a call which is matched by an equal in precedence ret. Then, the procedure
is repeated until the final row 7 is obtained, where, by convention we state the � relation between the two delimiters.

Given that each reduction applied in Fig. 2 corresponds to a derivation step of a grammar and to the expansion of an
internal node of the corresponding ST, it is immediate to realize that the ST of𝑤ex is the one depicted in Fig. 3, where
the terminal symbols have been numbered according to their occurrence —including the conventional numbering of
the delimiters— for future convenience, and labeling internal nodes has been omitted as useless.

Manuscript submitted to ACM

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

6 Michele Chiari, Dino Mandrioli, Francesco Pontiggia, and Matteo Pradella

·

call1 ·

·

·

han2 ·

call3 ·

call4 ·

call5

exc6

call7 ret8

call9 ret10

ret11

#0 #12

Fig. 3. The ST corresponding to word 𝑤ex . Dots represent non-terminals.

The tree of Fig. 3 emphasizes the main difference between various types of parenthesis-like languages, such as VPLs,
and OPLs: whereas in the former ones every open parenthesis is consumed by the only corresponding closed one3, in
our example a call can be matched by the appropriate ret but can also be “aborted” by an exc which in turn aborts all
pending calls until its corresponding han —if any— is found.

Remark. The examples adopted in this paper are inspired by the important feature of exception-handling which is typical
of most real-life programming languages but cannot be well-defined in terms of VPLs. Exception-handling, however, is
not the only programming language feature that can be expressed in OPLs but not in less powerful formalisms [58].
Furthermore, although “hierarchies of exceptions” can be managed, e.g., in colored VPLs [8] and in higher-order recursion

schemes [44], OPLs allow to express non-hierarchically typed exceptions too.

Thus, an OPM defines a universe of strings on the given alphabet that can be parsed according to it and assigns
a unique ST —with unlabeled internal nodes— to each one of them. Such a universe is the whole Σ∗ iff the OPM is

complete, i.e. it has no empty cells, including those of the implicit row and column referring to the delimiters. In the
early literature about OPLs, e.g., [30, 39] OPGs sharing a given OPM were used to define restricted languages w.r.t.
the universe defined by the OPM and their algebraic properties have been investigated. Later on, the same operation
has been defined by using different formalisms such as pushdown automata, monadic second order logic, and suitable
extensions of regular expressions. In this paper we refer to the use automata and temporal logic, which are typical of
model checking. As a side remark we mention that, in general, it may happen that in the same string there are several
patterns ready to be reduced, without generating any ambiguity; this could enable the implementation of parallel
parsing algorithms (see e.g., [16]) which however is not an issue of interest in this paper.

We now state the basics of OPLs needed for this paper in a formal way. Let Σ be a finite alphabet, and 𝜀 the empty
string. We use the special symbol # ∉ Σ to mark the beginning and the end of any string.

Definition 2.2. An Operator Precedence Matrix (OPM)𝑀 over Σ is a partial function (Σ ∪ {#})2 → {⋖, �,⋗}, that, for
each ordered pair (𝑎, 𝑏), defines the precedence relation 𝑀 (𝑎, 𝑏) holding between 𝑎 and 𝑏. If the function is total we say
that M is complete. We call the pair (Σ, 𝑀) an Operator Precedence (OP) alphabet. By convention, the initial # yields
precedence to other symbols, and other symbols take precedence on the ending #.
3To be precise, VPLs allow for unmatched closed parentheses but only at the beginning of a string and unmatched open ones at the end.

Manuscript submitted to ACM

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

A Model Checker for Operator Precedence Languages 7

If𝑀 (𝑎, 𝑏) = 𝜋 , where 𝜋 ∈ {⋖, �,⋗}, we write 𝑎 𝜋 𝑏. For 𝑢, 𝑣 ∈ (Σ ∪ {#})+ we write 𝑢 𝜋 𝑣 if 𝑢 = 𝑥𝑎 and 𝑣 = 𝑏𝑦 with
𝑎 𝜋 𝑏.

The next concept of chain makes the connection between OP relations and ST structure explicit, through brackets.

Definition 2.3. A simple chain 𝑐0 [𝑐1𝑐2 . . . 𝑐ℓ]𝑐ℓ+1 is a string 𝑐0𝑐1𝑐2 . . . 𝑐ℓ𝑐ℓ+1, such that: 𝑐0, 𝑐ℓ+1 ∈ Σ ∪ {#}, 𝑐𝑖 ∈ Σ for
every 𝑖 = 1, 2, . . . ℓ (ℓ ≥ 1), and 𝑐0 ⋖ 𝑐1 � 𝑐2 . . . 𝑐ℓ−1 � 𝑐ℓ ⋗ 𝑐ℓ+1.

A composed chain is a string 𝑐0𝑠0𝑐1𝑠1𝑐2 . . . 𝑐ℓ𝑠ℓ𝑐ℓ+1, where 𝑐0 [𝑐1𝑐2 . . . 𝑐ℓ]𝑐ℓ+1 is a simple chain, and 𝑠𝑖 ∈ Σ∗ is either the
empty string or is such that 𝑐𝑖 [𝑠𝑖]𝑐𝑖+1 is a chain (simple or composed), for every 𝑖 = 0, 1, . . . , ℓ (ℓ ≥ 1). Such a composed
chain will be written as 𝑐0 [𝑠0𝑐1𝑠1𝑐2 . . . 𝑐ℓ𝑠ℓ]𝑐ℓ+1 . In a chain, simple or composed, 𝑐0 is called its left context and 𝑐ℓ+1 its
right context; the string of characters between them is called its body.

A finite word 𝑤 over Σ is compatible with an OPM 𝑀 iff for each pair of letters 𝑐, 𝑑 , consecutive in 𝑤 , 𝑀 (𝑐, 𝑑) is
defined and, for each substring 𝑥 of #𝑤# which is a chain of the form 𝑎 [𝑦]𝑏 ,𝑀 (𝑎, 𝑏) is defined. For a given OP alphabet
(Σ, 𝑀) the set of all words compatible with𝑀 is called the universe of the OP alphabet.

The chain below is the chain defined by the OPM𝑀call of Fig. 1 for the word𝑤ex . It shows the natural isomorphism
between STs with unlabeled internal nodes (see Fig. 3) and chains.

#[call[[[han[call[call[call]]]exc]call ret]call ret]ret]#

Note that, in composed chains, consecutive inner chains, if any, are always separated by at least one input symbol:
this is due to the fact that OPL strings are generated by grammars in operator normal form.

Next, we introduce operator precedence automata as pushdown machines suitable to carve specific OPLs within the
universe of an OP alphabet.

Definition 2.4. An Operator Precedence Automaton (OPA) is a tuple A = (Σ, 𝑀,𝑄, 𝐼, 𝐹 , 𝛿) where: (Σ, 𝑀) is an OP
alphabet,𝑄 is a finite set of states (disjoint from Σ), 𝐼 ⊆ 𝑄 is the set of initial states, 𝐹 ⊆ 𝑄 is the set of final states, 𝛿 is a
triple of transition relations 𝛿shift ⊆ 𝑄 × Σ ×𝑄 , 𝛿push ⊆ 𝑄 × Σ ×𝑄 , and 𝛿pop ⊆ 𝑄 ×𝑄 ×𝑄 .

An OPA is deterministic iff 𝐼 is a singleton, and all three components of 𝛿 are —possibly partial— functions.

To define the semantics of OPAs, we need some new notations. Letters 𝑝, 𝑞, 𝑝𝑖 , 𝑞𝑖 , . . . denote states in 𝑄 . We use
𝑞0

𝑎−→ 𝑞1 for (𝑞0, 𝑎, 𝑞1) ∈ 𝛿push, 𝑞0
𝑎
d 𝑞1 for (𝑞0, 𝑎, 𝑞1) ∈ 𝛿shift , 𝑞0

𝑞2
=⇒ 𝑞1 for (𝑞0, 𝑞2, 𝑞1) ∈ 𝛿pop , and 𝑞0

𝑤; 𝑞1, if the
automaton can read 𝑤 ∈ Σ∗ going from 𝑞0 to 𝑞1. Let Γ be Σ ×𝑄 and Γ′ = Γ ∪ {⊥} be the stack alphabet; we denote
symbols in Γ as [𝑎, 𝑞]. We set 𝑠𝑚𝑏 ([𝑎, 𝑞]) = 𝑎, 𝑠𝑚𝑏 (⊥) = #, and 𝑠𝑡 ([𝑎, 𝑞]) = 𝑞. For a stack content 𝛾 = 𝛾𝑛 . . . 𝛾1⊥, with
𝛾𝑖 ∈ Γ , 𝑛 ≥ 0, we set 𝑠𝑚𝑏 (𝛾) = 𝑠𝑚𝑏 (𝛾𝑛) if 𝑛 ≥ 1, and 𝑠𝑚𝑏 (𝛾) = # if 𝑛 = 0.

A configuration of an OPA is a triple 𝑐 = ⟨𝑤, 𝑞, 𝛾⟩, where𝑤 ∈ Σ∗#, 𝑞 ∈ 𝑄 , and 𝛾 ∈ Γ∗⊥. A computation or run is a
finite sequence 𝑐0 ⊢ 𝑐1 ⊢ . . . ⊢ 𝑐𝑛 of moves or transitions 𝑐𝑖 ⊢ 𝑐𝑖+1. There are three kinds of moves, depending on the PR
between the symbol on top of the stack and the next input symbol:

push move if 𝑠𝑚𝑏 (𝛾) ⋖ 𝑎 then ⟨𝑎𝑥, 𝑝, 𝛾⟩ ⊢ ⟨𝑥, 𝑞, [𝑎, 𝑝]𝛾⟩, with (𝑝, 𝑎, 𝑞) ∈ 𝛿push;
shift move if 𝑎 � 𝑏 then ⟨𝑏𝑥, 𝑞, [𝑎, 𝑝]𝛾⟩ ⊢ ⟨𝑥, 𝑟, [𝑏, 𝑝]𝛾⟩, with (𝑞,𝑏, 𝑟) ∈ 𝛿shift ;
pop move if 𝑎 ⋗ 𝑏 then ⟨𝑏𝑥, 𝑞, [𝑎, 𝑝]𝛾⟩ ⊢ ⟨𝑏𝑥, 𝑟, 𝛾⟩, with (𝑞, 𝑝, 𝑟) ∈ 𝛿pop .

Shift and pop moves are not performed when the stack contains only ⊥. Push moves put a new element on top of the
stack consisting of the input symbol together with the current state of the OPA. Shift moves update the top element of
the stack by changing its input symbol only. Pop moves remove the element on top of the stack, and update the state

Manuscript submitted to ACM

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

8 Michele Chiari, Dino Mandrioli, Francesco Pontiggia, and Matteo Pradella

of the OPA according to 𝛿pop on the basis of the current state and the state in the removed stack symbol. They do
not consume the input symbol, which is used only as a look-ahead to establish the ⋗ relation. The OPA accepts the
language 𝐿(A) = {𝑥 ∈ Σ∗ | ⟨𝑥#, 𝑞𝐼 , ⊥⟩ ⊢∗ ⟨#, 𝑞𝐹 , ⊥⟩, 𝑞𝐼 ∈ 𝐼 , 𝑞𝐹 ∈ 𝐹 } .

Definition 2.5. Let A be an OPA. We call a support for the simple chain 𝑐0 [𝑐1𝑐2 . . . 𝑐ℓ]𝑐ℓ+1 any path in A of the form
𝑞0

𝑐1−→ 𝑞1 d . . . d 𝑞ℓ−1
𝑐ℓd 𝑞ℓ

𝑞0
=⇒ 𝑞ℓ+1. The label of the last (and only) pop is exactly 𝑞0, i.e. the first state of the path;

this pop is executed because of relation 𝑐ℓ ⋗ 𝑐ℓ+1.
We call a support for the composed chain 𝑐0 [𝑠0𝑐1𝑠1𝑐2 . . . 𝑐ℓ𝑠ℓ]𝑐ℓ+1 any path in A of the form

𝑞0
𝑠0; 𝑞′0

𝑐1−→ 𝑞1
𝑠1; 𝑞′1

𝑐2d . . .
𝑐ℓd 𝑞ℓ

𝑠ℓ; 𝑞′ℓ
𝑞′0
=⇒ 𝑞ℓ+1

where, for every 𝑖 = 0, 1, . . . , ℓ : if 𝑠𝑖 ≠ 𝜀, then 𝑞𝑖
𝑠𝑖; 𝑞′𝑖 is a support for the chain

𝑐𝑖 [𝑠𝑖]𝑐𝑖+1 , else 𝑞′𝑖 = 𝑞𝑖 .

Consider theOPAA(Σ, 𝑀) = (Σ, 𝑀, {𝑞}, {𝑞}, {𝑞}, 𝛿𝑚𝑎𝑥)where𝛿𝑚𝑎𝑥
push (𝑞, 𝑐) = 𝛿𝑚𝑎𝑥

shift (𝑞, 𝑐) = 𝑞,∀𝑐 ∈ Σ, and𝛿𝑚𝑎𝑥
pop (𝑞, 𝑞) =

𝑞. We call it the OP Max-Automaton over (Σ, 𝑀). For a max-automaton, each chain has a support; thus, a max-automaton
accepts exactly the universe of the OP alphabet. If 𝑎 [𝑠]𝑏 is a chain over (Σ, 𝑀), A(Σ, 𝑀) performs the computation ⟨𝑠𝑏,
𝑞, [𝑎, 𝑞]𝛾⟩ ⊢∗ ⟨𝑏, 𝑞,𝛾⟩, and there exists a support like the one above with 𝑠 = 𝑠0𝑐1 . . . 𝑐ℓ𝑠ℓ . This corresponds to the parsing
of the string 𝑠0𝑐1 . . . 𝑐ℓ𝑠ℓ within the context 𝑎, 𝑏, which contains all information needed to build the subtree whose
frontier is that string. If𝑀 is complete, the language accepted by A(Σ, 𝑀) is Σ∗. With reference to the OPM𝑀call of
Fig. 1, the string ret call han is accepted by the max-automaton with structure defined by the chain #[[ret]call[han]]#.
This string cannot be interpreted as a normal program trace: later, we will show how we can build OPAs that only
accept strings that make sense as program traces.

In conclusion, given an OP alphabet, the OPM𝑀 assigns a unique structure to any compatible string in Σ∗; unlike
VPLs, such a structure is not visible in the string, and must be built by means of a non-trivial parsing algorithm. An
OPA defined on the OP alphabet selects an appropriate subset within the universe of the OP alphabet. OPAs form a
Boolean algebra whose universal element is the max-automaton. The language classes recognized by deterministic and
non-deterministic OPAs coincide. For a more complete description of the OPL family and of its relations with other
CFLs we refer the reader to [59].

2.1 Operator Precedence 𝜔-Languages

All definitions regarding OPLs are extended to infinite words in the usual way, but with a few distinctions [58].
Given a set of characters Δ, by Δ𝜔 we mean the set of all infinite words made of characters in Δ.
Given an OP-alphabet (Σ, 𝑀), an 𝜔-word𝑤 ∈ Σ𝜔 is compatible with𝑀 if every prefix of𝑤 is compatible with𝑀 .

OP 𝜔-words are not terminated by the delimiter #.
An 𝜔-word may contain never-ending chains of the form 𝑐0 ⋖ 𝑐1 � 𝑐2 � · · · , where the ⋖ relation between 𝑐0 and 𝑐1

is never closed by a corresponding ⋗. Such chains are called open chains and may be simple or composed. A composed
open chain may contain both open and closed subchains. Of course, a closed chain cannot contain an open one. A
terminal symbol 𝑎 ∈ Σ is pending if it is part of the body of an open chain and of no closed chains.

OPA classes accepting the whole class of Operator Precedence 𝜔-Languages (𝜔OPLs) can be defined by augmenting
Definition 2.4 with Büchi or Muller acceptance conditions. In this paper, we only consider the former one.

Definition 2.6 (Operator Precedence Büchi Automaton (𝜔OPBA)). Let an 𝜔OPBA A, its configurations and moves be
defined as for OPAs accepting finite strings.
Manuscript submitted to ACM

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

A Model Checker for Operator Precedence Languages 9

An infinite run on an 𝜔-word 𝑤 is an infinite sequence 𝜌 = ⟨𝑥0 = 𝑤,𝑞0, 𝛾0⟩ ⊢ ⟨𝑥1, 𝑞1, 𝛾1⟩ ⊢ Define the set of
states that occur infinitely often in 𝜌 as

Inf (𝜌) = {𝑞 ∈ 𝑄 | there exist infinitely many positions 𝑖 s.t. ⟨𝑥𝑖 , 𝑞,𝛾𝑖 ⟩ ∈ 𝜌}.

A run 𝜌 is successful iff there exists a state 𝑞𝑓 ∈ 𝐹 such that 𝑞𝑓 ∈ Inf (𝜌). A accepts𝑤 ∈ Σ𝜔 iff there is a successful run
of A on𝑤 . The 𝜔-language recognized by A is 𝐿(A) = {𝑤 ∈ Σ𝜔 | A accepts𝑤}.

Unlike OPAs, 𝜔OPBAs do not require the stack to be empty for word acceptance: when reading an open chain, the
stack symbol pushed when the first character of the body of its underlying simple chain is read remains into the stack
forever; it is at most updated by shift moves.

The most important closure properties of OPLs are preserved by 𝜔OPLs, which form a Boolean algebra and are
closed under concatenation of an OPL with an 𝜔OPL [58]. The equivalence between deterministic and nondeterministic
automata is lost in the infinite case, which is unsurprising, since it also happens for regular 𝜔-languages and 𝜔VPLs.

In our model-checking procedures, we will need a slight variation on 𝜔OPBAs:

Definition 2.7 (Generalized 𝜔OPBA). A generalized 𝜔OPBA is a tuple A = (Σ, 𝑀,𝑄, 𝐼, F, 𝛿), where Σ, 𝑀,𝑄, 𝐼, 𝛿 are the
same as in Definition 2.4, and F ⊆ P(𝑄) is the set of sets of Büchi-final states.

The semantics of configurations, moves and runs are defined as for 𝜔OPBAs. The acceptance condition is, again,
different: a run 𝜌 on an 𝜔-word is successful iff for all 𝐹𝑖 ∈ F there exists a state 𝑞𝑖 ∈ 𝐹𝑖 such that 𝑞𝑖 ∈ Inf (𝜌).

Generalized 𝜔OPBA can be translated to normal 𝜔OPBA polynomially:

Theorem 2.8. Let A = (Σ, 𝑀,𝑄, 𝐼, F, 𝛿) be a generalized 𝜔OPBA. It is possible to build an 𝜔OPBA A′ with |𝑄 | · |F|
states such that 𝐿(A′) = 𝐿(A).

The proof uses a classic construction based on counters [54], and is thus omitted. Since the translation from simple
to generalized 𝜔OPBAs is trivial, the two classes are equivalent and enjoy the same closure properties.

A more complete treatment of OPLs’ properties and parsing algorithms can be found in [43, 59]; 𝜔OPLs are treated
in-depth in [58].

2.2 Modeling Procedural Programs by means of OPA

We now introduce the MiniProc language, which allows the programmer to express algorithms in a more customary
style than the automata-theoretic OPA. MiniProc retains the most important features of traditional C-like programming
languages; special attention is devoted to the exception handling mechanism and its consequences in the managing of
the stack, which is a distinguishing feature of OPLs. With our tool POMC, the user has the choice of expressing their
algorithms as OPAs or as MiniProc programs; in the latter case our tool automatically “compiles” MiniProc into the
OPA formalism to be checked against the logic specification language POTL.

Fig. 4a shows the MiniProc syntax while Fig. 4b presents a first example of MiniProc program that will be exploited
in Example 2.9.

A program starts with global variable declarations. MiniProc supports finite-width integer variables, both signed
and unsigned, and arrays. Then, a sequence of functions is defined, the first one being the entry-point to the program.
Functions may have positional parameters, passed by value (default) or by value-result (by adding &). Function bodies
consist of semicolon-separated local variable declarations and statements. Assignments, while loops and ifs have the
usual semantics. The token * means nondeterminism: when used in a guard, it means that both branches can be taken

Manuscript submitted to ACM

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

10 Michele Chiari, Dino Mandrioli, Francesco Pontiggia, and Matteo Pradella

PROGRAM := [DECL; ...] FUNCTION [FUNCTION ...]
DECL := TYPE IDENTIFIER [, IDENTIFIER ...]
TYPE := bool | uINT | sINT | uINT[INT] | sINT[INT]
FUNCTION := IDENTIFIER ([FARG, ...]) { [DECL; ...] STMT; [STMT; ...] }
FARG := TYPE IDENTIFIER | TYPE & IDENTIFIER
STMT := LVALUE = BEXPR

| LVALUE = *
| while (GUARD) { [STMT; ...] }
| if (GUARD) { [STMT; ...] } else { [STMT; ...] }
| try { [STMT; ...] } catch { [STMT; ...] }
| IDENTIFIER([EXPR, ...])
| throw

GUARD := * | EXPR
LVALUE := IDENTIFIER | IDENTIFIER[EXPR]
EXPR := EXPR || CONJ | CONJ
CONJ := CONJ && BTERM | BTERM
BTERM := IEXPR COMP IEXPR | IEXPR
COMP := == | != | < | <= | > | >=
IEXPR := IEXPR + PEXPR | IEXPR - PEXPR | PEXPR
PEXPR := PEXPR * ITERM | PEXPR / ITERM | ITERM
ITERM := !ITERM | (EXPR) | IDENTIFIER | IDENTIFIER[EXPR] | LITERAL
LITERAL := [+|-] INT[u|s]INT | true | false

(a) MiniProc syntax.

pA() {
bool foo;
foo = true;
try { pB(foo); }
catch { pErr(); pErr(); }

}
pB(bool bar) {

if (bar) { pC(); }
else {}

}
pC() {

if (*) { throw; }
else { pC(); }

}
pErr() {}

(b) A MiniProc program.

Fig. 4. MiniProc syntax and a MiniProc program. In the syntax, non-terminals are uppercase, and keywords lowercase. Parts in
square brackets are optional, and ellipses mean that the enclosing group can be repeated zero or more times. An IDENTIFIER is any
sequence of letters, numbers, or characters ‘.’, ‘:’ and ‘_’, starting with a letter or an underscore. An INT is an unsigned integer literal.

nondeterministically; when used in an assignment, it means the assigned variable may take any value allowed by its
type. The try-catch statement executes the catch block whenever an exception is thrown by any statement in the
try block (or any function it calls). Exceptions are raised by the throw statement, and they are not typed (i.e., there
is no way to distinguish different kinds of exceptions). Functions can be called by prepending their name to actual
parameters surrounded by parentheses. Integer expressions can be composed with the usual arithmetic operators, and
Boolean operators, which automatically convert integers to Booleans (0 means false, ≠ 0 true). All integer literals must
be prepended to their type (e.g., 42u8 is the value 42 represented as an 8-bit unsigned integer).

OPAs —or 𝜔OPBAs— semantically equivalent to MiniProc programs are automatically generated by POMC by
following a path inspired by previous similar translations of the literature, e.g., [4].

The automaton’s alphabet is that of OPM𝑀call, whose symbols are paired with identifiers of the MiniProc language
in such a way that there is a one-to-one correspondence between the automaton’s alphabet and the statements of the
program. Precisely, the assignment to a variable corresponds to symbol stm possibly paired with the identifier of the
assigned variable, the call of a procedure corresponds to symbol call paired with the procedure identifier (notice that a
procedure call may occur also as part of a catch block); the end of any procedure (syntactically its final }) corresponds
to ret paired with the procedure identifier; the installation of a handler —the try part of try-catch block— corresponds
to the han symbol paired with the identifier of the procedure in the scope of which the handler is declared.

Besides symbols in Σcall, transitions are also labeled with all variable identifiers that are in the scope of the statement
they represent and that are true in that moment. For integer variables, we use the common convention that considers

Manuscript submitted to ACM

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

A Model Checker for Operator Precedence Languages 11

them “true” when they are non-zero. Note that, if a variable can take multiple values (e.g., because of a ‘*’ assignment),
a different execution path for each one of the possible values is created.

Finally, the throw statement corresponds to the exc symbol with no further labels since exceptions are not typed
in MiniProc. The PRs of the new alphabet are the same as 𝑀call, simply “forgetting” the additional identifiers4. The
construction of the OPAs is performed in two phases as in the similar cases of the literature.

First, an extended OPA is generated, in which every state corresponds to a position of the MiniProc program reached
during its execution, and transitions are labeled by the statement whose execution they represent and, possibly, by
Boolean expression guards that must be true for them to be performed. A shift transition labeled “dummy exc”, with
appropriate target state, is also added to represent the exit from a try-catch block in a symmetric way as the return
from a procedure call, i.e., when the scope of the handler is closed without generating a corresponding exception.
Pop transitions represent the “completion” of a statement but do not necessarily mean that the MiniProc interpreter
deallocates anything from its stack: e.g., the pop transition that follows the reading of a ret does mean that an activation
record is popped out from the MiniProc stack, but even an assignment statement is represented by a push transition
immediately followed by a pop one in the OPA.

Then, the extended OPA is translated into a normal one. The key point here consists in enumerating all feasible
variable assignments for each state, and by labeling transitions with Boolean variables that hold when they are triggered.
This clearly exposes to the risk of a typical state-space explosion. On the other hand, however, some clean-up is
performed, e.g., by eliminating (parts corresponding to) unfeasible branches of the code.

More details of the above construction will be shown in the following Example 2.9.
It should be now clear that the obtained OPA is equivalent to the original MiniProc program in the sense that the

language it accepts is isomorphic to the successful runs of the MiniProc interpreter, and the sentences it rejects are
isomorphic to the runs resulting into some error, whenever its execution terminates.

A problem arises, however, when MiniProc runs do not terminate. OPAs in fact, always terminate by definition since
they need input explicitly terminated by a #, and the OPM is such that either they halt because some PR is not defined or
they always reach the final #. Thus, when the MiniProc program does not terminate, the corresponding input string for
the OPA becomes an 𝜔-string. The obvious consequence is that OPAs can be used only to check properties of programs
that we know a priori to terminate. In the opposite case we must resort to 𝜔OPBAs, which, however, work only on
𝜔-languages whose sentences are all infinite.

Many properties, therefore, typically just termination itself, could not be checked neither using OPA nor using
𝜔OPBAs. In such cases we resort to a fairly typical solution: we transform a MiniProc program that exhibits both finite
and infinite behaviors into an automaton that only accepts infinite traces, by creating an 𝜔OPBA such that traces
produced by a terminating MiniProc program are transformed into non-terminating ones by adding stuttering states
after the return statement of the main procedure. These stuttering states are linked by transitions that actually read
dummy input symbols: we chose to add an infinite sequence of calls and returns of a dummy function, but other choices
are possible (e.g., a dummy stm, or a new symbol). In this way, to check termination, we can check reachability of the
ret statement of the main function. With this construction, all properties checked on such an 𝜔OPBA are checked on
both finite and infinite traces of the original MiniProc program, and we can use appropriate formulas to restrict them to
only finite or infinite ones.

4As already anticipated in Example 2.1, the purpose of using the boldface character for some labels will be fully clarified in Section 3.

Manuscript submitted to ACM

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

12 Michele Chiari, Dino Mandrioli, Francesco Pontiggia, and Matteo Pradella

M0 A0 A1 A2 B0 B1 A3 A4 A5 A6 M1

B2 C0

C1

B3 A8 A9 A10 E0 E1

A11

call
p𝐴

stm foo=true

A0 han call p𝐵
¬bar

bar=foo

ret
p𝐵

A2 exc
dummy

A1 ret
p𝐴

M0

call p𝐵 bar
bar=foo

call
p𝐶

call p𝐶

call p𝐶

call
p𝐶

C1
B2 A2 exc A1 call

p𝐸𝑟𝑟
ret

p𝐸𝑟𝑟
A10call

p𝐸𝑟𝑟

A11

(a) Extended OPA.

M0 A0 A1 A2 B2 C0

C1

B3 A8 A9 A10 E0

E1 A11A5A6M1

call
p𝐴

stm foo

A0 han p𝐴
foo

ret p𝐴
foo

M0

call p𝐵
bar

call
p𝐶

call p𝐶

call p𝐶

call
p𝐶

C1
B2 A2 exc A1 call

p𝐸𝑟𝑟
ret p𝐸𝑟𝑟

A10

call
p𝐸𝑟𝑟

A11

(b) Final OPA.

Fig. 5. The two steps of OPA generation from the code of Fig. 4b.

Next, we give two examples with complementary purposes: Example 2.9 aims at illustrating the main features of
extended OPAs, their translation into normal OPAs, and their typical managing of the stack that allows for popping
several items without reading any input character —the non-real-time behavior that increases OPLs’ expressive power
w.r.t. other pushdown automata for structured languages.

Example 2.10 exploits the well-known algorithm Quicksort to argue that the OPL formalism is general enough to
express even sophisticated algorithms in a natural way and to hint that the MiniProc language can easily evolve into a
complete programming language. More arguments to support such a claim can be found in previous literature, e.g., [59].
Both examples are exploited in Section 7 as the core of the benchmark we adopted to evaluate the performances of our
model-checking tool POMC.

Example 2.9. Fig. 5a shows the extended OPA derived from the code in Fig. 4b. The stack semantics of the two models
coincide: a symbol is pushed for every function call (call), and popped after the corresponding return (ret) or exception
(exc). Handlers (han) are paired with the exception they catch by a shift move updating the same symbol; a dummy
exception is placed after the try body to uninstall the handler, whereas a simple exc is generated in correspondence of
an explicit throw statement. Assignments are denoted by a stm, which causes a push immediately followed by a pop.
𝑀call defines the context-free structure of the word, which is strictly linked with the programming language semantics:
the ⋖ PR causes nesting (e.g., calls can be nested into other calls), and the � PR implies a one-to-one relation, e.g.,
between a call and the ret of the same function, and a han and the exc it catches.

The resulting OPA is in Fig. 5b. The assignment of true to foo is propagated forward from state A0, and the branch
from A2 to B0 and B2 is removed, because B0 is unreachable. The last part of the OPA generation leads to a worst-case
model size exponential in the number of non-deterministic assignments (not shown in the example for brevity). However,
as we shall see in Section 7, it performs well in many practical cases, because only feasible states are generated.
Manuscript submitted to ACM

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

A Model Checker for Operator Precedence Languages 13

program:
bool sorted;
u3[4] a;

main() {
sorted = false;
a[0s4] = *;
a[1s4] = *;
a[2s4] = *;
a[3s4] = *;
qs(0s4, 3s4);

}

swapElements(s4 swapLeft, s4 swapRight) {
u3 tmp;

tmp = a[swapLeft];
a[swapLeft] = a[swapRight];
a[swapRight] = tmp;
sorted = a[0s4] <= a[1s4]

&& a[1s4] <= a[2s4]
&& a[2s4] <= a[3s4];

}

qs(s4 left, s4 right) {
s4 lo, hi;
u3 piv;

if (left < right) {
piv = a[right];
lo = left;
hi = right;
while (lo <= hi) {

if (a[hi] > piv){
hi = hi - 1s4;

} else {
swapElements(lo, hi);
lo = lo + 1s4;

}
}
qs(left, hi);
qs(lo, right);

} else {}
}

Fig. 6. The “Buggy”Quicksort algorithm in MiniProc.

When an OPA is generated, the set of final states only contains the last state of the “main” module (M1 in the
example). When an 𝜔OPBA is generated, all states are marked as final. If the MiniProc program contains an actual
infinite loop, this will result in an accepting loop in the 𝜔OPBA. An accepting stuttering state is also added at the end
of the 𝜔OPBA, so that finite behaviors can be modeled too. Thus, the 𝜔OPBA accepts all possible traces of the program;
the desirable ones will be discriminated by the requirement to be checked.

Example 2.10. Fig. 6 shows a recursive MiniProc implementation of the QuickSort algorithm. We show it to demon-
strate the syntax of MiniProc through a classic example, but we do not report the resulting 𝜔OPBA due to its size. In
Section 7, we will use this and other programs as benchmarks for our model checking tool.

The goal of Quicksort is to sort in-place an input array in ascending order with a divide-and-conquer strategy: at
every iteration, an element is chosen as the “pivot”, and the array is split in two subarrays which contain, respectively,
all the elements smaller than the pivot, and all the elements greater than the pivot. The two subarrays are recursively
sorted with the same strategy. The program employs two global variables: the array ‘a’ to be sorted, and Boolean
variable ‘sorted’, which indicates whether the array is sorted. The latter one is set and updated every time a swap
of cell values is performed. In the figure, the array is composed of 4 elements, but in Section 7 we study it on larger
and smaller arrays, too. ‘u3’ indicates that array elements are 3-bit unsigned integers, hence their domain is [0, 7]. The
main() procedure first assigns a nondeterministic value for each array cell, and then calls the QuickSort procedure
qs() on the array. qs() uses 5 local variables: left, right, lo, hi, piv. The first four contain array indices: they are
signed integers of 4 bits having domain [−7, 7] (their type name is ‘s4’). piv contains an array value, so it has the same
type as array cells. This procedure is taken from [37], where an equivalent C program is given. It is called “Buggy
Quicksort” because it enters an infinite loop when the array contains two cells with the same value, thus termination is
not guaranteed. In such a case, qs() will continue swapping and calling itself recursively on the same pair of cells. In

Manuscript submitted to ACM

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

14 Michele Chiari, Dino Mandrioli, Francesco Pontiggia, and Matteo Pradella

Section 7.2.2, we prove that the generated 𝜔OPBA has an accepting loop that pushes the same stack symbol at every
recursive call, growing the stack indefinitely.

3 PRECEDENCE ORIENTED TEMPORAL LOGIC

POTL is a linear-time temporal logic, which extends the classical LTL. We recall that the semantics of LTL [71] is
defined on a Dedekind-complete set of word positions𝑈 equipped with a total ordering, and monadic relations, called
Atomic Propositions (APs). In this paper, we consider a discrete timeline, hence 𝑈 = {0, 1, . . . , 𝑛}, with 𝑛 ∈ N, or𝑈 = N.
Each LTL formula 𝜑 is evaluated in a word position: we write (𝑤, 𝑖) |= 𝜑 to state that 𝜑 holds in position 𝑖 of word𝑤 .

Besides operators from propositional logic, LTL features modalities that define relations between positions; e.g., the
Next modality states that a formula holds in the subsequent position of the current one: (𝑤, 𝑖) |= #𝜑 iff (𝑤, 𝑖 + 1) |= 𝜑 ;
the Until modality states that there exists a linear path, made of consecutive positions and starting from the current one,
such that a formula 𝜓 holds in the last position of such path, and another formula 𝜑 holds in all previous positions.
Formally, (𝑤, 𝑖) |= 𝜑 U 𝜓 iff there exists 𝑗 ≥ 𝑖 s.t. (𝑤, 𝑗) |= 𝜓 , and for all 𝑗 ′, with 𝑖 ≤ 𝑗 ′ < 𝑗 , we have (𝑤, 𝑗 ′) |= 𝜑 .

The linear order, however, is not sufficient to express properties of more complex structures than the linear ones,
typically the tree-shaped ones, which are the natural domain of context-free languages. The history of logic formalisms
suitable to deal with CFLs somewhat parallels the path that lead from regular languages to tree-languages [77] or their
equivalent counterpart in terms of strings, i.e. parenthesis languages [62].

A first logic mechanism aimed at “walking through the structure of a context-free sentence” was proposed in [57]
and consists in a matching condition that relates the two extreme terminals of the rhs of a context-free grammar in
so-called double Greibach normal form, i.e. a grammar whose production rhs exhibit a terminal character at both ends:
in a sense such terminal characters play the role of explicit parentheses. [57] provides a logic language for general CFLs
based on such a relation which however fails to extend the decidability properties of logics for regular languages due to
lack of closure properties of CFLs. The matching condition was then resumed in [10] to define its MSO logic for VPLs
and the temporal logics CaRet [7] and NWTL [2].

OPLs are structured but not “visibly structured” as they lack explicit parentheses (see Section 2). Nevertheless, a
more sophisticated notion of matching relation has been introduced in [58] for OPLs by exploiting the fact that OPLs
remain input-driven thanks to the OPM. We name the new matching condition chain relation and define it here below.
We fix a finite set of atomic propositions 𝐴𝑃 , and an OPM𝑀𝐴𝑃 on P(𝐴𝑃).

A word structure —also called OP word for short— is the tuple (𝑈 , <, 𝑀𝐴𝑃 , 𝑃), where 𝑈 , <, and 𝑀𝐴𝑃 are as above,
and 𝑃 : 𝐴𝑃 → P(𝑈) is a function associating each atomic proposition with the set of positions where it holds, with
0, (𝑛 + 1) ∈ 𝑃 (#). For the time being, we consider just finite string languages; the necessary extensions needed to deal
with 𝜔-languages will be introduced in Section 3.2.

Definition 3.1 (Chain relation). The chain relation 𝜒 (𝑖, 𝑗) holds between two positions 𝑖, 𝑗 ∈ 𝑈 iff 𝑖 < 𝑗 − 1, and 𝑖 and
𝑗 are resp. the positions of the left and right contexts of the same chain (cf. Definition 2.3), according to𝑀𝐴𝑃 and the
labeling induced by 𝑃 .

In the following, given two positions 𝑖, 𝑗 and a PR 𝜋 , we write 𝑖 𝜋 𝑗 to say 𝑎 𝜋 𝑏, where 𝑎 = {p | 𝑖 ∈ 𝑃 (p)}, and
𝑏 = {p | 𝑗 ∈ 𝑃 (p)}. For notational convenience, we partition 𝐴𝑃 into structural labels, written in bold face, which define
a word’s structure, and normal labels, in round face, defining predicates holding in a position. Thus, an OPM𝑀 can be
defined on structural labels only, and𝑀𝐴𝑃 is obtained by inverse homomorphism of𝑀 on subsets of 𝐴𝑃 containing
exactly one of them.
Manuscript submitted to ACM

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

A Model Checker for Operator Precedence Languages 15

⋖ call ⋖ han ⋖ call ⋖ call ⋖ call ⋗ exc ⋗ call � ret ⋗ call � ret ⋗ ret ⋗
p𝐴 p𝐵 p𝐶 p𝐶 pErr pErr pErr pErr p𝐴

0 1 2 3 4 5 6 7 8 9 10 11 12

Fig. 7. The OP-word of which the string 𝑤ex of Example 2.1 is the homomorphic image. Chains are highlighted by arrows joining their
contexts; structural labels are in bold, and other atomic propositions are shown below them. p𝑙 means that a call or a ret is related to
procedure p𝑙 . First, procedure p𝐴 is called (pos. 1), and it installs an exception handler in pos. 2. Then, three nested procedures are
called, and the innermost one (p𝐶) throws an exception, which is caught by the handler. Two more functions are called and, finally,
p𝐴 returns.

To obtain an intuitive idea of how the chain relation augments the linear structure of a word with the tree-like
structure of OPLs consider Fig. 7: it displays an OP-word on the alphabet of the OPA of Fig. 5b whose image under the
homomorphism projecting the OPA’s alphabet onto the boldface components is the word𝑤ex from Example 2.1. Since
the OPM of the OPA is isomorphic to that of Fig. 1, the ST of the OP-word of Fig. 7 is isomorphic to that of Fig. 3. Thus,
for simplicity, in the following we will refer to the ST of Fig. 3 as if it was the ST of the OP-word of Fig. 7. Notice also
that, rigorously speaking, the OP-word of the figure is not accepted by the OPA although it is compatible with its OPM,
since the OPA —and the MiniProc program from which it is derived— necessarily perform the assignment statement
foo = true at the beginning of procedure 𝑝𝐴 . We omitted that statement in the OP-word to help focusing on the stack
management policy and how it is reflected in the 𝜒 relation.

Fig. 7 emphasizes the distinguishing feature of the relation, i.e. that, for composed chains, it may not be one-to-one,
but also one-to-many or many-to-one. Notice also the correspondence between internal nodes in the ST of Fig. 3 and
pairs of positions in the 𝜒 relation.

In a ST, we say that the right context 𝑗 of a chain is at the same level as the left one 𝑖 when 𝑖 � 𝑗 (e.g., in Fig. 3, pos. 1
with 11 and 2 with 6), at a lower level when 𝑖 ⋖ 𝑗 (e.g., pos. 1 with 7, and 9), at a higher level if 𝑖 ⋗ 𝑗 (e.g., pos. 3 and 4
with 6).

Given 𝑖, 𝑗 ∈ 𝑈 , relation 𝜒 has the following properties:

(1) It never crosses itself: if 𝜒 (𝑖, 𝑗) and 𝜒 (ℎ, 𝑘), for any ℎ, 𝑘 ∈ 𝑈 , then we have 𝑖 < ℎ < 𝑗 =⇒ 𝑘 ≤ 𝑗 and
𝑖 < 𝑘 < 𝑗 =⇒ 𝑖 ≤ ℎ.

(2) If 𝜒 (𝑖, 𝑗), then 𝑖 ⋖ 𝑖 + 1 and 𝑗 − 1 ⋗ 𝑗 .
(3) Consider all positions (if any) 𝑖1 < 𝑖2 < · · · < 𝑖𝑛 s.t. 𝜒 (𝑖𝑝 , 𝑗) for all 1 ≤ 𝑝 ≤ 𝑛. We have 𝑖1 ⋖ 𝑗 or 𝑖1 � 𝑗 and, if

𝑛 > 1, 𝑖𝑞 ⋗ 𝑗 for all 2 ≤ 𝑞 ≤ 𝑛.
(4) Consider all positions (if any) 𝑗1 < 𝑗2 < · · · < 𝑗𝑛 s.t. 𝜒 (𝑖, 𝑗𝑝) for all 1 ≤ 𝑝 ≤ 𝑛. We have 𝑖 ⋗ 𝑗𝑛 or 𝑖 � 𝑗𝑛 and, if

𝑛 > 1, 𝑖 ⋖ 𝑗𝑞 for all 1 ≤ 𝑞 ≤ 𝑛 − 1.

Property 4 says that when the chain relation is one-to-many, the contexts of the outermost chain (𝑖1 and 𝑗) are in the �
or ⋗ relation, while the inner ones are in the ⋖ relation. We call 𝑖1 the leftmost context of 𝑗 . Property 3 says that contexts
of outermost many-to-one chains (𝑖 and 𝑗𝑛) are in the � or ⋖ relation, and the inner ones are in the ⋗ relation. We call
𝑗𝑛 the rightmost context of 𝑖 . Such properties are proved in [27] for readers unfamiliar with OPLs.

The 𝜒 relation is the core of the MSO logic characterization for OPLs given in [58]; as a natural consequence of the
greater generality of OPLs over VPLs, the MSO logic for the former family has a greater expressive power than the one
for the latter family. Indeed, such a greater power requires more technical analysis which, however, allows to prove

Manuscript submitted to ACM

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

16 Michele Chiari, Dino Mandrioli, Francesco Pontiggia, and Matteo Pradella

the same important results in terms of closure properties, decidability and complexity of the constructions, as those
holding for VPLs and the corresponding MSO logic.

Similarly, in [27] we show that the temporal logic POTL is FO-complete as well as NWTL, despite the greater
complexity of the 𝜒 relation. To complete the path, in this paper we produce model checking algorithms for POTL and
OPLs with the same order of complexity as those for NWTL and VPLs.

While LTL’s linear paths only follow the ordering relation <, paths in POTL may follow the 𝜒 relation too. As a
result, a POTL path through a string can simulate paths through the corresponding ST.

We envisage two basic types of path. The first one is that of summary paths. By following the chain relation, summary
paths may skip chain bodies, which correspond to the fringe of a subtree in the ST. We distinguish between downward

and upward summary paths (resp. DSP and USP). Both kinds can follow both the < and the 𝜒 relations; DSPs can enter
a chain body but cannot exit it so that they can move only downward in a ST or remain at the same level; conversely,
USPs cannot enter one but can move upward by exiting the current one. In other words, if a position 𝑘 is part of a DSP,
and there are two positions 𝑖 and 𝑗 , with 𝑖 < 𝑘 < 𝑗 and 𝜒 (𝑖, 𝑗) holds, the next position in the DSP cannot be ≥ 𝑗 . E.g.,
two of the DSPs starting from pos. 1 in Fig. 7 are 1-2-3, which enters chain 𝜒 (2, 6), and 1-2-6, which skips its body. USPs
are symmetric, and some examples thereof are paths 3-6-7 and 4-6-7.

Since the 𝜒 relation can be many-to-one or one-to-many, it makes sense to write formulas that consider only left
contexts of chains that share their right context, or vice versa. Thus, the paths of our second type, named hierarchical

paths, are made of such positions, but excluding outermost chains. E.g., in Fig. 7, positions 2, 3 and 4 are all in the 𝜒
relation with 6, so 3-4 is a hierarchical path (𝜒 (2, 6) is the outermost chain). Symmetrically, 7-9 is another hierarchical
path. The reason for excluding the outermost chain is that, with most OPMs, such positions have a different semantic
role than internal ones. E.g., positions 3 and 4 are both calls terminated by the same exception, while 2 is the handler.
Positions 7 and 9 are both calls issued by the same function (the one called in position 1), while 11 is its return. This is a
consequence of properties 3 and 4 above.

In the next subsection, we describe in a complete and formal way POTL for finite string OPLs while in the subsequent
subsection we briefly describe the necessary changes to deal with 𝜔-languages.

3.1 POTL Syntax and Semantics

Given a finite set of atomic propositions 𝐴𝑃 , let a ∈ 𝐴𝑃 , and 𝑡 ∈ {𝑑,𝑢}. The syntax of POTL is the following:

𝜑 ::= a | ¬𝜑 | 𝜑 ∨ 𝜑 | #𝑡 𝜑 | ⊖𝑡 𝜑 | 𝜒𝑡𝐹 𝜑 | 𝜒𝑡𝑃 𝜑 | 𝜑 U𝑡
𝜒 𝜑 | 𝜑 S𝑡

𝜒 𝜑 | #𝑡
𝐻 𝜑 | ⊖𝑡𝐻 𝜑 | 𝜑 U𝑡

𝐻 𝜑 | 𝜑 S𝑡
𝐻 𝜑

The truth of POTL formulas is defined w.r.t. a single word position. Let 𝑤 be an OP word, and a ∈ 𝐴𝑃 . Then, for
any position 𝑖 ∈ 𝑈 of 𝑤 , we have (𝑤, 𝑖) |= a iff 𝑖 ∈ 𝑃 (a). Propositional operators such as ∧, ∨ and ¬ have their usual
semantics. Next, while giving the formal semantics of other POTL operators, we illustrate it by showing how it can be
used to express properties on program execution traces, such as the one of Fig. 7.

Next/back operators. The downward next and back operators #𝑑 and ⊖𝑑 are like their LTL counterparts, except
they are true only if the next (resp. current) position is at a lower or equal ST level than the current (resp. preceding)
one. The upward next and back, #𝑢 and ⊖𝑢 , are symmetric. Formally, (𝑤, 𝑖) |= #𝑑 𝜑 iff (𝑤, 𝑖 + 1) |= 𝜑 and 𝑖 ⋖ (𝑖 + 1) or
𝑖 � (𝑖 + 1), and (𝑤, 𝑖) |= ⊖𝑑 𝜑 iff (𝑤, 𝑖 − 1) |= 𝜑 , and (𝑖 − 1) ⋖ 𝑖 or (𝑖 − 1) � 𝑖 . Substitute ⋗ for ⋖ to obtain the semantics
for #𝑢 and ⊖𝑢 .

Manuscript submitted to ACM

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

A Model Checker for Operator Precedence Languages 17

E.g., we can write #𝑑 call to say that the next position is an inner call (it holds in pos. 2, 3, 4 of Fig. 7), ⊖𝑑 call to say
that the previous position is a call, and the current one is the first of the body of a function (pos. 2, 4, 5), or the ret of an
empty one (pos. 8, 10), and ⊖𝑢 call to say that the current position terminates an empty function frame (holds in 6, 8,
10). In pos. 2 #𝑑 p𝐵 holds, but #𝑢 p𝐵 does not.

Chain Next/Back. The chain next and back operators 𝜒𝑡𝐹 and 𝜒𝑡𝑃 evaluate their argument resp. on future and past
positions in the chain relation with the current one. The downward (resp. upward) variant only considers chains whose
right context goes down (resp. up) or remains at the same level in the ST. Formally, (𝑤, 𝑖) |= 𝜒𝑑𝐹 𝜑 iff there exists a
position 𝑗 > 𝑖 such that 𝜒 (𝑖, 𝑗), 𝑖 ⋖ 𝑗 or 𝑖 � 𝑗 , and (𝑤, 𝑗) |= 𝜑 . (𝑤, 𝑖) |= 𝜒𝑑𝑃 𝜑 iff there exists a position 𝑗 < 𝑖 such that
𝜒 (𝑗, 𝑖), 𝑗 ⋖ 𝑖 or 𝑗 � 𝑖 , and (𝑤, 𝑗) |= 𝜑 . Replace ⋖ with ⋗ for the upward versions.

E.g., in pos. 1 of Fig. 7, 𝜒𝑑𝐹 pErr holds because 𝜒 (1, 7) and 𝜒 (1, 9), meaning that p𝐴 calls pErr at least once. Also, 𝜒𝑢𝐹 exc
is true in call positions whose procedure is terminated by an exception thrown by an inner procedure (e.g. pos. 3 and 4).
𝜒𝑢𝑃 call is true in exc statements that terminate at least one procedure other than the one raising it, such as the one in
pos. 6. Notice that, although the upper label of the 𝜒𝑢𝑃 operator is a 𝑢, the calls in pos. 3 and 4 are below the exc in
pos. 6 in the ST: this is due to the fact that the 𝑢 label refers to the left-to-right direction of the involved chain. 𝜒𝑑𝐹 ret
and 𝜒𝑢𝐹 ret hold in calls to non-empty procedures that terminate normally, and not due to an uncaught exception (e.g.,
pos. 1).

(Summary) Until/Since operators. POTL has two kinds of until and since operators. They express properties on
paths, which are sequences of positions obtained by iterating the different kinds of next or back operators. In general,
a path of length 𝑛 ∈ N between 𝑖, 𝑗 ∈ 𝑈 is a sequence of positions 𝑖 = 𝑖1 < 𝑖2 < · · · < 𝑖𝑛 = 𝑗 . The until operator on
a set of paths Γ is defined as follows: for any word 𝑤 and position 𝑖 ∈ 𝑈 , and for any two POTL formulas 𝜑 and 𝜓 ,
(𝑤, 𝑖) |= 𝜑 U(Γ) 𝜓 iff there exist a position 𝑗 ∈ 𝑈 , 𝑗 ≥ 𝑖 , and a path 𝑖1 < 𝑖2 < · · · < 𝑖𝑛 between 𝑖 and 𝑗 in Γ such that
(𝑤, 𝑖𝑘) |= 𝜑 for any 1 ≤ 𝑘 < 𝑛, and (𝑤, 𝑖𝑛) |= 𝜓 . Since operators are defined symmetrically. Note that, depending on Γ, a
path from 𝑖 to 𝑗 may not exist. We define until/since operators by associating them with different sets of paths.

The summary until𝜓 U𝑡
𝜒 𝜃 (resp. since𝜓 S𝑡

𝜒 𝜃) operator is obtained by inductively applying the #𝑡 and 𝜒𝑡𝐹 (resp. ⊖𝑡

and 𝜒𝑡𝑃) operators. It holds in a position in which either 𝜃 holds, or𝜓 holds together with#𝑡 (𝜓U𝑡
𝜒 𝜃) (resp. ⊖𝑡 (𝜓 S𝑡

𝜒 𝜃))
or 𝜒𝑡𝐹 (𝜓U𝑡

𝜒 𝜃) (resp. 𝜒𝑡𝑃 (𝜓 S𝑡
𝜒 𝜃)). It is an until operator on paths that can move not only between consecutive positions,

but also between contexts of a chain, skipping its body. With reference to a MiniProc program modeled as an OPA, this
means skipping function bodies. The downward variants can move between positions at the same level in the ST (i.e.,
in the same simple chain body), or down in the nested chain structure. The upward ones remain at the same level, or
move to higher levels of the ST.

Formula ⊤U𝑢
𝜒 exc is true in positions contained in the frame of a function that is terminated by an exception. It

is true in pos. 3 of Fig. 7 because of path 3-6, and false in pos. 1, because no upward path can enter the chain whose
contexts are pos. 1 and 11. Formula ⊤U𝑑

𝜒 exc is true in call positions whose function frame contains excs, but that are
not directly terminated by one of them, such as the one in pos. 1 (with path 1-2-6).

We formally define Downward Summary Paths (DSPs) as follows. Given an OP word𝑤 , and two positions 𝑖 ≤ 𝑗 in𝑤 ,
the DSP between 𝑖 and 𝑗 , if it exists, is a sequence of positions 𝑖 = 𝑖1 < 𝑖2 < · · · < 𝑖𝑛 = 𝑗 such that, for each 1 ≤ 𝑝 < 𝑛,

𝑖𝑝+1 =

𝑘 if 𝑘 = max{ℎ | ℎ ≤ 𝑗 ∧ 𝜒 (𝑖𝑝 , ℎ) ∧ (𝑖𝑝 ⋖ ℎ ∨ 𝑖𝑝 � ℎ)} exists;
𝑖𝑝 + 1 otherwise, if 𝑖𝑝 ⋖ (𝑖𝑝 + 1) or 𝑖𝑝 � (𝑖𝑝 + 1).

Manuscript submitted to ACM

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

18 Michele Chiari, Dino Mandrioli, Francesco Pontiggia, and Matteo Pradella

The Downward Summary (DS) until and since operators U𝑑
𝜒 and S𝑑

𝜒 use as Γ the set of DSPs starting in the position
in which they are evaluated. The definition for the Upward Summary Paths (USPs), on which Upward Summary (US)
until and since are based, is obtained by substituting ⋗ for ⋖. For instance, in Fig. 7, callU𝑑

𝜒 (ret ∧ pErr) holds in pos. 1
because of path 1-7-8 and 1-9-10, (call ∨ exc) S𝑢

𝜒 p𝐵 in pos. 7 because of path 3-6-7, and (call ∨ exc) U𝑢
𝜒 ret in 3 because

of path 3-6-7-8.

Hierarchical operators. A single position may be the left or right context of multiple chains. The operators seen so
far cannot keep this fact into account, since they “forget” about a left context when they jump to the right one. Thus,
we introduce the hierarchical next and back operators. The upward hierarchical next (resp. back), #𝑢

𝐻 𝜓 (resp. ⊖𝑢𝐻 𝜓),
is true iff the current position 𝑗 is the right context of a chain whose left context is 𝑖 , and 𝜓 holds in the next (resp.
previous) pos. 𝑗 ′ that is a right context of 𝑖 , with 𝑖 ⋖ 𝑗, 𝑗 ′. So, #𝑢

𝐻 pErr holds in pos. 7 of Fig. 7 because pErr holds in
9, and ⊖𝑢𝐻 pErr in 9 because pErr holds in 7. In the ST, #𝑢

𝐻 goes up between calls to pErr , while ⊖𝑢𝐻 goes down. Their
downward counterparts behave symmetrically, and consider multiple inner chains sharing their right context. They are
formally defined as:

• (𝑤, 𝑖) |= #𝑢
𝐻 𝜑 iff there exist a positionℎ < 𝑖 s.t. 𝜒 (ℎ, 𝑖) andℎ⋖𝑖 and a position 𝑗 = min{𝑘 | 𝑖 < 𝑘∧𝜒 (ℎ, 𝑘)∧ℎ⋖𝑘}

and (𝑤, 𝑗) |= 𝜑 ;
• (𝑤, 𝑖) |= ⊖𝑢𝐻 𝜑 iff there exist a positionℎ < 𝑖 s.t. 𝜒 (ℎ, 𝑖) andℎ⋖𝑖 and a position 𝑗 = max{𝑘 | 𝑘 < 𝑖∧𝜒 (ℎ, 𝑘)∧ℎ⋖𝑘}

and (𝑤, 𝑗) |= 𝜑 ;
• (𝑤, 𝑖) |= #𝑑

𝐻 𝜑 iff there exist a positionℎ > 𝑖 s.t. 𝜒 (𝑖, ℎ) and 𝑖⋗ℎ and a position 𝑗 = min{𝑘 | 𝑖 < 𝑘∧𝜒 (𝑘, ℎ)∧𝑘⋗ℎ}
and (𝑤, 𝑗) |= 𝜑 ;

• (𝑤, 𝑖) |= ⊖𝑑𝐻 𝜑 iff there exist a positionℎ > 𝑖 s.t. 𝜒 (𝑖, ℎ) and 𝑖⋗ℎ and a position 𝑗 = max{𝑘 | 𝑘 < 𝑖∧𝜒 (𝑘, ℎ)∧𝑘⋗ℎ}
and (𝑤, 𝑗) |= 𝜑 .

In the ST of Fig. 3, #𝑑
𝐻 and ⊖𝑑𝐻 go down and up among calls terminated by the same exc. For example, in pos. 3 #𝑑

𝐻 p𝐶
holds, because both pos. 3 and 4 are in the chain relation with 6. Similarly, in pos. 4 ⊖𝑑𝐻 p𝐵 holds. Note that these
operators do not consider leftmost/rightmost contexts, so #𝑢

𝐻 ret is false in pos. 9, as call � ret, and pos. 11 is the
rightmost context of pos. 1.

The hierarchical until and since operators are defined by iterating these next and back operators. The Upward
Hierarchical Path (UHP) between 𝑖 and 𝑗 is a sequence of positions 𝑖 = 𝑖1 < 𝑖2 < · · · < 𝑖𝑛 = 𝑗 such that there exists a
position ℎ < 𝑖 such that for each 1 ≤ 𝑝 ≤ 𝑛 we have 𝜒 (ℎ, 𝑖𝑝) and ℎ ⋖ 𝑖𝑝 , and for each 1 ≤ 𝑞 < 𝑛 there exists no position
𝑘 such that 𝑖𝑞 < 𝑘 < 𝑖𝑞+1 and 𝜒 (ℎ, 𝑘). The until and since operators based on the set of UHPs starting in the position in
which they are evaluated are denoted as U𝑢

𝐻 and S𝑢
𝐻 . E.g., callU𝑢

𝐻 pErr holds in pos. 7 because of the singleton path
7 and path 7-9, and call S𝑢

𝐻 pErr in pos. 9 because of paths 9 and 7-9.
The Downward Hierarchical Path (DHP) between 𝑖 and 𝑗 is a sequence of positions 𝑖 = 𝑖1 < 𝑖2 < · · · < 𝑖𝑛 = 𝑗 such

that there exists a position ℎ > 𝑗 such that for each 1 ≤ 𝑝 ≤ 𝑛 we have 𝜒 (𝑖𝑝 , ℎ) and 𝑖𝑝 ⋗ ℎ, and for each 1 ≤ 𝑞 < 𝑛 there
exists no position 𝑘 such that 𝑖𝑞 < 𝑘 < 𝑖𝑞+1 and 𝜒 (𝑘, ℎ). The until and since operators based on the set of DHPs starting
in the position in which they are evaluated are denoted as U𝑑

𝐻 and S𝑑
𝐻 . In Fig. 7, callU𝑑

𝐻 p𝐶 holds in pos. 3, and
call S𝑑

𝐻 p𝐵 in pos. 4, both because of path 3-4.

Equivalences. POTL until and since operators enjoy expansion laws similar to those of LTL. Here we give laws for
until operators, those for their since counterparts being symmetric. They were originally formulated in [27]; those
Manuscript submitted to ACM

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

A Model Checker for Operator Precedence Languages 19

referring to hierarchical operators, however, suffered from a minor inaccuracy, which is fixed in the present version.

𝜑 U𝑡
𝜒 𝜓 ≡ 𝜓 ∨

(
𝜑 ∧ (

#𝑡 (𝜑 U𝑡
𝜒 𝜓) ∨ 𝜒𝑡𝐹 (𝜑 U𝑡

𝜒 𝜓)
))

for 𝑡 ∈ {𝑑,𝑢}
𝜑 U𝑢

𝐻 𝜓 ≡ (𝜓 ∧ 𝜒⋖𝑃 ⊤) ∨ (
𝜑 ∧#𝑢

𝐻 (𝜑 U𝑢
𝐻 𝜓)

)
𝜑 U𝑑

𝐻 𝜓 ≡ (𝜓 ∧ 𝜒⋗𝐹 ⊤) ∨ (
𝜑 ∧#𝑑

𝐻 (𝜑 U𝑑
𝐻 𝜓)

)
where 𝜒⋖𝑃 ⊤ is the restriction of 𝜒𝑑𝑃 ⊤ to chains having their left context in the ⋖ PR with the right one. Formally, for
any POTL formula 𝛾 we define 𝜒⋖𝑃 𝛾 :=

∨
𝑎,𝑏⊆𝐴𝑃, 𝑎⋖𝑏 (𝜎𝑎 ∧ 𝜒𝑑𝑃 (𝜎𝑏 ∧𝛾)), where for any 𝑐 ⊆ 𝐴𝑃 , 𝜎𝑐 :=

∧
p∈𝑐 p ∧∧

q∉𝑐 ¬q
holds in a position 𝑖 iff 𝑐 is the set of atomic propositions holding in 𝑖 . 𝜒⋗𝐹 ⊤ is defined symmetrically. We will make a
more systematic use of these specialized chain operators in Section 4.

As in LTL, it is worth defining some useful derived operators. For 𝑡 ∈ {𝑑,𝑢}, we define the downward/upward
summary eventually as 3𝑡 𝜑 := ⊤ U𝑡

𝜒 𝜑 , and the downward/upward summary globally as □𝑡 𝜑 := ¬3𝑡 (¬𝜑). 3𝑢 𝜑

and □𝑢 𝜑 respectively say that 𝜑 holds in one or all positions in the path from the current position to the root of the
ST. Their downward counterparts consider all positions in the current rhs and its subtrees, starting from the current
position. 3𝑑 𝜑 says that 𝜑 holds in at least one of such positions, and □𝑑 𝜑 in all of them. E.g., if □𝑑 (¬p𝐴) holds in a
call, it means that p𝐴 never holds in its whole function body, which is the subtree rooted next to the call. This way, the
LTL globally operator □𝜓 can be expressed in POTL as □𝜓 := ¬3𝑢 (3𝑑 ¬𝜓) [27].

3.2 POTL on 𝜔-Words

Since applications in model checking usually require temporal logics on infinite words, we extend POTL to 𝜔-words.
To define OP 𝜔-words, it suffices to replace the finite set of positions 𝑈 with the set of natural numbers N in the

definition of OP words. OP 𝜔-words contain open chains, and property 4 of the 𝜒 relation does not hold if a position 𝑖
is the left context of an open chain. In fact, there may be positions 𝑗1 < 𝑗2 < · · · < 𝑗𝑛 such that 𝜒 (𝑖, 𝑗𝑝) and 𝑖 ⋖ 𝑗𝑝 for all
1 ≤ 𝑝 ≤ 𝑛, but no position 𝑘 such that 𝜒 (𝑖, 𝑘) and 𝑖 ⋗ 𝑘 or 𝑖 � 𝑘 .

The formal semantics of all POTL operators remains the same as in Section 3.1. The only difference in its intuitive
meaning is caused by open chains. Due to the change in property 4, 𝜒𝑢𝐹 operators never hold on the left contexts of
open chains, and 𝜒𝑑𝐹 may hold only in positions that are also left contexts of some closed chain, with contexts in the ⋖
relation (provided the operand holds in the right context). Downward hierarchical operators also never hold when
evaluated on left contexts of open chains.

3.3 Expressing Requirements in POTL

POTL can express many useful requirements of procedural programs: to illustrate its practical applications in automatic
verification, we supply a few examples of typical program properties expressed as POTL formulas. In Section 7 we will
show the outcomes of checking these—and many other—formulas against several benchmark programs.

POTL can express Hoare-style pre/postconditions. For instance, formula □(call ∧ 𝜌 =⇒ 𝜒𝑑𝐹 (ret ∧ 𝜃)) specifies
that if the precondition 𝜌 holds when a procedure is called, then the postcondition 𝜃 must hold when it returns. This
formula is false if a call is terminated by an exception.

Unlike NWTL, POTL can easily express properties related to exception handling and interrupt management. The
shortcut CallThr (𝜓) := #𝑢 (exc ∧𝜓) ∨ 𝜒𝑢𝐹 (exc ∧𝜓), evaluated in a call, states that the procedure currently invoked
is terminated by an exc in which𝜓 holds. So, □(call ∧ 𝜌 ∧ CallThr (⊤) =⇒ CallThr (𝜃)) means that if precondition 𝜌
holds when a procedure is called, then postcondition 𝜃 must hold if that procedure is terminated by an exception. In

Manuscript submitted to ACM

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

20 Michele Chiari, Dino Mandrioli, Francesco Pontiggia, and Matteo Pradella

object oriented programming languages, if 𝜌 ≡ 𝜃 is a class invariant asserting that a class instance’s state is valid, this
formula expresses weak (or basic) exception safety [1], and strong exception safety if 𝜌 and 𝜃 express particular states of
the class instance. The no-throw guarantee can be stated with □(call ∧ p𝐴 =⇒ ¬CallThr (⊤)), meaning procedure p𝐴
is never interrupted by an exception.

Stack inspection [36, 51] is an important class of requirements that state something about the sequence of procedures
active in the program’s stack at a certain point of its execution. They can be expressed with shortcut Scall(𝜑,𝜓) :=
(call =⇒ 𝜑) S𝑑

𝜒 (call ∧𝜓), which means that𝜓 holds in a call representing one of the currently active function frames,
and 𝜑 holds in all calls in the stack between it and the current position. This shortcut has the same purpose of the
call since operator of CaRet, which is also a since operator on calls currently in the stack, but thanks to other POTL
operators, it works with exceptions too. For instance, □

((call ∧ p𝐵 ∧ Scall(⊤, p𝐴)) =⇒ CallThr (⊤)) means that
whenever p𝐵 is executed and at least one instance of p𝐴 is on the stack, p𝐵 is terminated by an exception.

With reference to Example 2.10 formula 𝜒𝑢𝐹 (ret ∧ main) must hold in position 1 to guarantee that the program
terminates on any input array, and formula 𝜒𝑢𝐹 (sorted) —with an obvious definition of sorted— specifies that it is
correct w.r.t. the sorting goal. We will see in Section 7.2.2 that they are not guaranteed, i.e. the program is “buggy”.

For a thorough comparison of POTL with other temporal logics for structured languages see [27, Section 3.4].

4 FINITE-WORD MODEL CHECKING

The model checking procedure we give for POTL follows the classic automata-theoretic approach for LTL, adapting it
to work with OPA for the finite-word case, and 𝜔OPBA for the infinite-word case. Thus, we define a construction for
automata that accept models of an arbitrary POTL formula, and prove its correctness. This construction is significantly
more involved than the one for LTL and reflects the differences between regular languages and OPLs, although the
final automaton size remains singly exponential in formula length.

We give the finite-word construction in this section, and then we adapt it to 𝜔-words in Section 5. In Section 4.1 we
describe the construction, and we prove its correctness in Section 4.2. Finally, Section 4.3 analyzes the computational
complexity of POTL satisfiability and model checking.

4.1 Automaton Construction

Given an OP alphabet (P(𝐴𝑃), 𝑀𝐴𝑃) and a formula 𝜑 , we build an OPA A𝜑 = (P(𝐴𝑃), 𝑀𝐴𝑃 , 𝑄, 𝐼 , 𝐹 , 𝛿). We describe
the construction of 𝑄 , 𝐼 , 𝐹 and 𝛿 based on fixpoint computations that build these sets starting from a set of constraints.
Since POTL contains a large number of operators, some of which being quite complex, we define and explain constraints
related to each operator separately. Their correctness proof follows the same strategy: we prove a correctness lemma
for each operator, and finally combine them to prove correctness of the whole construction.

Following a fairly classical path, we begin by introducing the closure of 𝜑 , named Cl(𝜑), containing all subformulas
of 𝜑 . The states of the automaton will be sets of formulas associated to a word position. To do so, however, we need to
augment POTL’s alphabet with a few auxiliary operators which are not needed to increase POTL’s expressiveness but
are useful to specify the behavior of its model checker. Such new operators are:

• 𝜁𝐿 , which forces the current position to be the first one of a chain body;
• 𝜁𝑅 , which lets the computation go on only if the previous transition was a pop, and the position associated with

the current state is the right context of a chain;
• 𝜁� , which appears in a state iff the next transition will be a shift.

Manuscript submitted to ACM

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

A Model Checker for Operator Precedence Languages 21

• Furthermore we will use 𝜒𝜋𝐹 , 𝜒
𝜋
𝑃 , where 𝜋 is a PR, as a kind of “specialization” of the original 𝜒𝑡𝐹 , 𝜒

𝑡
𝑃 : for instance,

whereas (𝑤, 𝑖) |= 𝜒𝑑𝐹 𝜓 iff there exists a position 𝑗 > 𝑖 such that 𝜒 (𝑖, 𝑗), 𝑖 ⋖ 𝑗 or 𝑖 � 𝑗 , and (𝑤, 𝑗) |= 𝜓 , we now
need to treat separately the two cases 𝑖 ⋖ 𝑗 and 𝑖 � 𝑗 so that the two PRs now replace the superscript ‘𝑑’. 𝜒⋖𝑃
and 𝜒⋗𝐹 have already been formally defined and used in the expansion laws for hierarchical until operators (cf.
Section 3.1) as short-notations for more involved formulas that required explicitly the appropriate PR; their �
counterparts are defined analogously.

The precise semantics of the above new operators will be formalized when they will be used.
Thus, we obtain Cl(𝜑) through a fixpoint computation. It is the smallest set satisfying the following constraints:

• 𝜑 ∈ Cl(𝜑),
• 𝐴𝑃 ⊆ Cl(𝜑),
• if𝜓 ∈ Cl(𝜑) and𝜓 ≠ ¬𝜃 , then ¬𝜓 ∈ Cl(𝜑) (we identify ¬¬𝜓 with𝜓);
• if ¬𝜓 ∈ Cl(𝜑), then𝜓 ∈ Cl(𝜑);
• if any of the unary temporal operators (e.g.,#𝑑 , 𝜒𝑑𝐹 , 𝜒

𝑑
𝑃 ,#

𝑑
𝐻 , . . .) is in Cl(𝜑), and𝜓 is its operand, then𝜓 ∈ Cl(𝜑);

• if any of the binary operators (e.g., ∧, ∨, U𝑑
𝜒 , S𝑑

𝜒 , U𝑑
𝐻 , . . .) is in Cl(𝜑), and𝜓 and 𝜃 are its operands, then

𝜓, 𝜃 ∈ Cl(𝜑);
• if 𝜒𝑑𝐹 𝜓 ∈ Cl(𝜑), then 𝜁𝐿, 𝜒⋖𝐹 𝜓, 𝜒�𝐹 𝜓 ∈ Cl(𝜑);
• if 𝜒𝑢𝐹 𝜓 ∈ Cl(𝜑), then 𝜁𝐿, 𝜒⋗𝐹 𝜓, 𝜒�𝐹 𝜓 ∈ Cl(𝜑);
• if 𝜒𝑑𝑃 𝜓 ∈ Cl(𝜑), then 𝜁𝑅, 𝜒⋖𝑃 𝜓, 𝜒�𝑃 𝜓 ∈ Cl(𝜑);
• if 𝜒𝑢𝑃 𝜓 ∈ Cl(𝜑), then 𝜁𝑅, 𝜁�, 𝜒⋗𝑃 𝜓, 𝜒�𝑃 𝜓 ∈ Cl(𝜑);
• if #𝑢

𝐻 𝜓 ∈ Cl(𝜑), then 𝜁𝑅 ∈ Cl(𝜑);
• if ⊖𝑢𝐻 𝜓 ∈ Cl(𝜑), then 𝜁𝐿, 𝜁𝑅 ∈ Cl(𝜑);
• if 𝜃 ∈ Cl(𝜑) such that 𝜃 = #𝑑

𝐻 𝜓 or 𝜃 = ⊖𝑑𝐻 𝜓 , then 𝜁𝐿, 𝜁�, (⊖𝑑 𝜓 ∨ 𝜒⋖𝑃 𝜓), (⊖𝑑 𝜃 ∨ 𝜒⋖𝑃 𝜃) ∈ Cl(𝜑);
• if any until or since operator is in Cl(𝜑), then all operators required by its expansion law (cf. Section 3.1) are in

Cl(𝜑). E.g., if𝜓 U𝑡 𝜃 ∈ Cl(𝜑) for 𝑡 ∈ {𝑑,𝑢}, then #𝑡 (𝜓 U𝑡 𝜃), 𝜒𝑡𝐹 (𝜓 U𝑡 𝜃) ∈ Cl(𝜑).

Next, we define the set Atoms(𝜑), which contains all consistent subsets of Cl(𝜑), i.e., all Φ ⊆ Cl(𝜑) that satisfy a set
of Atomic consistency Constraints 𝒜𝒞. What constraints are in𝒜𝒞 depends on which operators appear in Cl(𝜑). In
the following, we introduce constraints that appear in 𝒜𝒞 due to each operator’s presence in Cl(𝜑) separately. We
start by defining those related to propositional operators: for any Φ ∈ Atoms(𝜑),

(a) 𝜓 ∈ Φ iff ¬𝜓 ∉ Φ for every𝜓 ∈ Cl(𝜑);
(b) 𝜓 ∧ 𝜃 ∈ Φ, iff𝜓 ∈ Φ and 𝜃 ∈ Φ;
(c) 𝜓 ∨ 𝜃 ∈ Φ, iff𝜓 ∈ Φ or 𝜃 ∈ Φ, or both.

While (a) is always present in𝒜𝒞, (b) and (c) only appear if any formula involving resp. ∧ or ∨ is in Cl(𝜑).
A𝜑 works in a way similar to the classic LTL tableau [79]: each state contains an atom with formulas that hold in the

next time instant, and transitions read the set of APs in that atom, guessing the next one. Whereas LTL and FSAs are
strictly sequential, POTL is devised to express properties of tree-shaped structures and OPAs are pushdown machines.
Furthermore OPAs, in general, are not real-time machines—unlike VPAs—, i.e., they also have pop transitions which
do not read any character. Thus, A𝜑 ’s states are obtained by pairing atoms with another subset of Cl(𝜑) which aims
at keeping track of what will happen (resp. happened) at the end (resp. beginning) of a chain. Formally, such a set of

Manuscript submitted to ACM

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

22 Michele Chiari, Dino Mandrioli, Francesco Pontiggia, and Matteo Pradella

pending formulas is defined as

Clpend (𝜑) =
{
𝜃 ∈ Cl(𝜑) | 𝜃 ∈ {𝜁𝐿, 𝜁𝑅, 𝜁�, 𝜒𝜋𝐹 𝜓, 𝜒𝜋𝑃 𝜓,#𝑡

𝐻 𝜓,⊖
𝑡
𝐻 𝜓 } for some 𝜋 ∈ {⋖, �,⋗}, 𝑡 ∈ {𝑑,𝑢} and𝜓 ∈ Cl(𝜑)}.

The states of A𝜑 are the set 𝑄 = Atoms(𝜑) × P(Clpend (𝜑)), and its elements, which we denote with Greek capital
letters, are of the form Φ = (Φ𝑐 ,Φ𝑝), where Φ𝑐 , called the current part of Φ, is the set of formulas that hold in the next
position that A𝜑 is going to read, and Φ𝑝 , or the pending part of Φ, is a set of temporal obligations. Φ𝑝 keeps track of
temporal operators such as 𝜒𝑡𝐹 𝜓 that, once guessed in a position 𝑖 that is the left context of a chain, is satisfied by𝜓
holding in position 𝑗 that is in the 𝜒 relation with 𝑖 . States with pending formulas can be pushed to the stack, so that
when they are popped the OPA “remembers” that some temporal operator must be satisfied.

The initial set 𝐼 contains states of the form (Φ𝑐 ,Φ𝑝), with 𝜑 ∈ Φ𝑐 , and the final set 𝐹 contains states of the form
(Ψ𝑐 ,Ψ𝑝), s.t. Ψ𝑐 ∩ 𝐴𝑃 = {#} and Ψ𝑐 contains no future operators. Φ𝑝 and Ψ𝑝 may contain only operators explicitly
allowed in the following.

In the following, we use a notation that relates states to word positions. With this notation, Φ(𝑖) is a “look-ahead”
for 𝑎𝑖 , which is the next symbol to be read. State Φ(𝑖) is the one that guesses, in its Φ𝑐 component, the formulas holding
in position 𝑖 , and is produced directly by the push or shift move reading position 𝑖 − 1 (in particular, the initial state is
Φ(1)). Since OPA’s pop moves do not read any character, we introduce the notation Φ𝑔 (𝑖) to distinguish the state in
which the automaton is ready to read the symbol in position 𝑖 . Thus, whenA𝜑 reads the symbol in position 𝑖 − 1, it goes
from configuration ⟨𝑎𝑖−1𝑎𝑖𝑥,Φ𝑔 (𝑖 − 1), 𝛾⟩ to ⟨𝑎𝑖𝑥,Φ(𝑖), 𝛾 ′⟩, where 𝑎𝑖 is the input symbol at position 𝑖; in its pending
part, Φ(𝑖) may contain further guesses on formulas holding beyond position 𝑖 due to chain-next operators. Precisely, if
𝑠𝑚𝑏 (𝛾 ′) ⋖ 𝑎𝑖 or 𝑠𝑚𝑏 (𝛾 ′) � 𝑎𝑖 , then the next move is respectively a push or a shift, and Φ𝑔 (𝑖) = Φ(𝑖), bringing A𝜑 to ⟨𝑥,
Φ(𝑖 + 1), 𝛾 ′′⟩. If 𝑠𝑚𝑏 (𝛾 ′) ⋗ 𝑎𝑖 , a pop transition occurs before reading the symbol in position 𝑖 , and A𝜑 checks previous
guesses and makes new ones about formulas holding in positions beyond 𝑖: the next state is called Φ′ (𝑖), and if more
pops occur, we have similarly Φ′′ (𝑖), Φ′′′ (𝑖), etc.

The state resulting from the last pop before 𝑎𝑖 is read by a shift or a push is Φ𝑔 (𝑖). For instance, if 𝛾 ′ = [𝑎 𝑗 ′ ,Φ𝑔 (𝑗)]
[𝑎𝑘 ′ ,Φ𝑔 (𝑘)]𝛾 ′′ and 𝑎 𝑗 ′ , 𝑎𝑘 ′ ⋗ 𝑎𝑖 for some 𝑘 ≤ 𝑘′ < 𝑗 ≤ 𝑗 ′ < 𝑖 ,5 two pop moves occur and 𝑖 is read by a push, causing
the following sequence of transitions:

𝜌 = ⟨𝑎𝑖𝑥,Φ(𝑖), [𝑎 𝑗 ′ ,Φ𝑔 (𝑗)] [𝑎𝑘 ′ ,Φ𝑔 (𝑘)]𝛾 ′′⟩ ⊢ ⟨𝑎𝑖𝑥,Φ′ (𝑖), [𝑎𝑘 ′ ,Φ𝑔 (𝑘)]𝛾 ′′⟩ ⊢ ⟨𝑎𝑖𝑥,Φ′′ (𝑖), 𝛾 ′′⟩ ⊢ ⟨𝑥,Φ(𝑖+1), [𝑎𝑖 ,Φ′′ (𝑖)]𝛾 ′′⟩

At this point, Φ′′ (𝑖) is also referred to as Φ𝑔 (𝑖), and the last push transition occurs.
Temporal obligations are enforced by the transition relation 𝛿 . As well as Atoms(𝜑) is the set of all subsets of Cl(𝜑)

that satisfy the consistency constraints in𝒜𝒞, the transition relation 𝛿 is the set of all transitions that satisfy a set of
𝛿-rules,𝒟ℛ. We will introduce𝒟ℛ in parallel with𝒜𝒞 gradually for each operator: 𝛿push and 𝛿shift are the largest
subsets of 𝑄 × P(𝐴𝑃) ×𝑄 satisfying all rules in 𝒟ℛ, and 𝛿pop is the largest subset of 𝑄 ×𝑄 ×𝑄 satisfying all rules in
𝒟ℛ. Given a formula 𝜓 , we denote as 𝒟ℛ(𝜓) the set of 𝒟ℛ rules that are defined as a consequence of 𝜓 ∈ Cl(𝜑).
First, we introduce two𝒟ℛ rules that are always present and are not bound to a particular operator.

Each state of A𝜑 guesses the APs that will be read next. So,𝒟ℛ always contains the rule that

(1) for any (Φ, 𝑎,Ψ) ∈ 𝛿push/shift , with Φ,Ψ ∈ 𝑄 and 𝑎 ∈ P(𝐴𝑃), we have Φ𝑐 ∩𝐴𝑃 = 𝑎

(by 𝛿push/shift we mean 𝛿push ∪ 𝛿shift , and by Φ𝑐 ∩ 𝐴𝑃 the set of atomic propositions in Φ𝑐). Pop moves, on the other
hand, do not read input symbols, and A𝜑 remains at the same position when performing them: 𝒟ℛ contains the rule

5Recall that the input symbol contained in stack elements can be changed by shift moves, leaving the state unchanged: this is why we need two more
positions 𝑗 ′ and 𝑘 ′ besides 𝑗 and 𝑘 .

Manuscript submitted to ACM

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

A Model Checker for Operator Precedence Languages 23

step input state stack PR move
1 call call exc # Φ𝑔 (1) = ({call,#𝑑 #𝑢 exc}, ∅) ⊥ # ⋖ call push
2 call exc # Φ𝑔 (2) = ({call,#𝑢 exc}, ∅) [call,Φ𝑔 (1)]⊥ call ⋖ call push
3 exc # Φ(3) = ({exc}, ∅) [call,Φ𝑔 (2)] [call,Φ𝑔 (1)]⊥ call ⋗ exc pop
4 exc # Φ′ (3) = ({exc}, ∅) [call,Φ𝑔 (1)]⊥ call ⋗ exc pop
5 exc # Φ′′ (3) = Φ𝑔 (3) = ({exc}, ∅) ⊥ # ⋖ exc push
6 # Φ(4) = ({#}, ∅) [exc,Φ𝑔 (3)]⊥ exc ⋗ # pop
7 # Φ′ (4) = Φ𝑔 (4) = ({#}, ∅) ⊥ – –

·
·

call ·

call

exc

#

l

m m

⋖ call ⋖ call ⋗ exc ⋗

Fig. 8. Example run of the automaton for#𝑑 #𝑢 exc (left), and ST (top right) and flat representation of the input word (bottom right).

(2) for any (Φ,Θ,Ψ) ∈ 𝛿pop it must be Φ𝑐 = Ψ𝑐 .

Referring to the above sequence 𝜌 , thanks to 𝒟ℛ rule (1), Φ𝑐 (𝑖) ∩ 𝐴𝑃 = 𝑎𝑖 , and due to rule (2) we have Φ𝑐 (𝑖) =
Φ′
𝑐 (𝑖) = Φ′′

𝑐 (𝑖) —i.e., only pending parts can change during pop moves—.
Next, we examine all POTL’s operators and derive 𝒟ℛ rules therefrom with an informal explanation of their

rationale. Then, in Section 4.2, we provide a formal correctness statement and proof thereof. Since the involved POTL
operators are more complex than those of classic LTL —and of NWTL too— we structure such a correctness proof
into a sequence of lemmas, one for each operator, followed by a global proof based on a natural induction on formula
structure.

4.1.1 Next and Back Operators. If #𝑑 𝜓 ∈ Cl(𝜑) for some𝜓 ,𝒟ℛ(#𝑑 𝜓) contains a rule imposing that:

(3) for all (Φ, 𝑎,Ψ) ∈ 𝛿push/shift , it must be that#𝑑 𝜓 ∈ Φ𝑐 iff (𝜓 ∈ Ψ𝑐 and either 𝑎 ⋖𝑏 or 𝑎 � 𝑏, where 𝑏 = Ψ𝑐 ∩𝐴𝑃).
For ⊖𝑑 𝜓 , the rule is symmetric, i.e. the double implication is ⊖𝑑 𝜓 ∈ Ψ𝑐 iff (𝜓 ∈ Φ𝑐 and 𝑎 ⋖ 𝑏 or 𝑎 � 𝑏). For the upward
counterparts it suffices to replace ⋖ with ⋗ in the previous rules.

Not surprisingly, the above rules involve transitions that read an input symbol in a similar way as for LTL and FSAs.
It also immediately appears, however, that there are conditions on PRs to consider, with an impact on the way the ST
associated to any sentence is visited. If 𝑡 = 𝑑 , when a push or a shift transition reads a position where #𝑑 𝜓 is guessed
to hold, it only leads to a state containing APs such that the read label is in the ⋖ or � PR with them. This means the
OPA guesses that the next transition will be, again, a push or a shift, and will read a symbol where𝜓 holds.

Things get slightly more complicated if 𝑡 = 𝑢 because pop transitions may occur, so we illustrate this case with
an example. Fig. 8 shows an accepting run of A𝜑 , built on (Σcall, 𝑀call) with 𝜑 = #𝑑 #𝑢 exc, on one of its models
(but others exist). A𝜑 starts in a state Φ𝑔 (1) with #𝑑 #𝑢 exc in its current part, which is required for all initial states.
A push move reads the first position, guessing that the next one will be a call, and state Φ𝑔 (2) is reached. We have
#𝑑 #𝑢 exc ∈ Φ

𝑔
𝑐 (1) and #𝑢 exc ∈ Φ

𝑔
𝑐 (2), and also call ⋖ call, so rule (3) is satisfied. The next position is again read by a

push, but this time the next state is Φ(3), which guesses the next position being a exc. call ⋗ exc satisfies the 𝑢 version
of rule (3), but it means that the next move will be a pop. Indeed, the OPA pops all symbols in the stack, but because
of 𝒟ℛ rule (2), the current part of the state does not change, so the guess that exc will hold in the third position is
preserved. Note that the pending parts of states are always empty, because they are not needed for this operator. Also,
notice the 𝑔 notation, which we use to distinguish states that are ready for a push or a shift move. States Φ(1) and Φ(2)
can be also denoted as Φ𝑔 (1) and Φ𝑔 (2) respectively, while Φ𝑔 (3) = Φ′′ (3) and Φ𝑔 (4) = Φ′ (4).

4.1.2 Chain Next Operators. To model check chain next operators we use auxiliary operators 𝜒𝜋𝐹 , with 𝜋 ∈ {⋖, �,⋗},
that restrict their downward and upward counterparts to a single PR. Their semantics can be defined as follows: given

Manuscript submitted to ACM

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

24 Michele Chiari, Dino Mandrioli, Francesco Pontiggia, and Matteo Pradella

step input state stack PR move
1 call han exc ret # Φ𝑔 (1) = ({call, 𝜒𝑑𝐹 ret, 𝜒�𝐹 ret}, {𝜁𝐿}) ⊥ # ⋖ call push
2 han exc ret # Φ𝑔 (2) = ({han}, {𝜒�𝐹 ret, 𝜁𝐿}) [call,Φ𝑔 (1)]⊥ call ⋖ han push
3 exc ret # Φ𝑔 (3) = ({exc}, ∅) [han,Φ𝑔 (2)] [call,Φ𝑔 (1)]⊥ han � exc shift
4 ret # Φ(4) = ({ret}, ∅) [exc,Φ𝑔 (2)] [call,Φ𝑔 (1)]⊥ exc ⋗ ret pop
5 ret # Φ′ (4) = Φ𝑔 (4) = ({ret}, {𝜒�𝐹 ret}) [call,Φ𝑔 (1)]⊥ call � ret shift
6 # Φ(5) = ({#}, ∅) [ret,Φ𝑔 (1)]⊥ ret ⋗ # pop
7 # Φ′ (5) = Φ𝑔 (5) = ({#}, ∅) ⊥ – –

·

call ·

han exc

ret

#

�
l m

�

⋖ call ⋖ han � exc ⋗ ret ⋗

Fig. 9. Example run of the automaton for 𝜒𝑑𝐹 ret (left), and ST (top right) and flat representation of the input word (bottom right).

an OP word 𝑤 and a position 𝑖 , we have (𝑤, 𝑖) |= 𝜒𝜋𝐹 𝜓 iff there exists a position 𝑗 > 𝑖 such that 𝜒 (𝑖, 𝑗) and 𝑖 𝜋 𝑗 ,
and (𝑤, 𝑗) |= 𝜓 . In particular, we have 𝜒𝑑𝐹 𝜓 ⇐⇒ 𝜒⋖𝐹 𝜓 ∨ 𝜒�𝐹 𝜓 and 𝜒𝑢𝐹 𝜓 ⇐⇒ 𝜒⋗𝐹 𝜓 ∨ 𝜒�𝐹 𝜓 , which justify the 𝒜𝒞

constraints below.
If 𝜒𝑑𝐹 𝜓 ∈ Cl(𝜑),𝒜𝒞 contains the following constraint:

(d) for each Φ ∈ 𝑄 we have 𝜒𝑑𝐹 𝜓 ∈ Φ𝑐 iff (𝜒⋖𝐹 𝜓 ∈ Φ𝑐 or 𝜒�𝐹 𝜓 ∈ Φ𝑐).

For 𝜒𝑢𝐹 𝜓 ∈ Cl(𝜑), the constraint becomes

(e) for each Φ ∈ 𝑄 we have 𝜒𝑢𝐹 𝜓 ∈ Φ𝑐 iff (𝜒�𝐹 𝜓 ∈ Φ𝑐 or 𝜒⋗𝐹 𝜓 ∈ Φ𝑐).

We also use the auxiliary symbol 𝜁𝐿 to force the next position to be read to be the first one of a chain body. If we let
the current state of A𝜑 be Φ ∈ 𝑄 , then 𝜁𝐿 ∈ Φ𝑝 iff the upcoming transition (i.e. the one reading the next position) is a
push. This is accomplished by the following rules in𝒟ℛ(𝜁𝐿):

(4) if (Φ, 𝑎,Ψ) ∈ 𝛿shift or (Φ,Θ,Ψ) ∈ 𝛿pop , for any Φ,Θ,Ψ and 𝑎, then 𝜁𝐿 ∉ Φ𝑝 ;
(5) if (Φ, 𝑎,Ψ) ∈ 𝛿push, then 𝜁𝐿 ∈ Φ𝑝 .

Moreover, for any initial state (Φ𝑐 ,Φ𝑝) ∈ 𝐼 , we have 𝜁𝐿 ∈ Φ𝑝 iff # ∉ Φ𝑐 .
If 𝜒�𝐹 𝜓 ∈ Cl(𝜑), its satisfaction is ensured by the following rules in𝒟ℛ(𝜒�𝐹 𝜓):
(6) Let (Φ, 𝑎,Ψ) ∈ 𝛿push/shift : then 𝜒�𝐹 𝜓 ∈ Φ𝑐 iff 𝜒�𝐹 𝜓, 𝜁𝐿 ∈ Ψ𝑝 ;
(7) let (Φ,Θ,Ψ) ∈ 𝛿pop : then 𝜒�𝐹 𝜓 ∉ Φ𝑝 and (𝜒�𝐹 𝜓 ∈ Θ𝑝 iff 𝜒�𝐹 𝜓 ∈ Ψ𝑝);
(8) let (Φ, 𝑎,Ψ) ∈ 𝛿shift : then 𝜒�𝐹 𝜓 ∈ Φ𝑝 iff𝜓 ∈ Φ𝑐 .

If 𝜒⋖𝐹 𝜓 ∈ Cl(𝜑), then 𝜒⋖𝐹 𝜓 is allowed in the pending part of initial states, and 𝒟ℛ(𝜒⋖𝐹 𝜓) contains the following rules:

(9) Let (Φ, 𝑎,Ψ) ∈ 𝛿push/shift : then 𝜒⋖𝐹 𝜓 ∈ Φ𝑐 iff 𝜒⋖𝐹 𝜓, 𝜁𝐿 ∈ Ψ𝑝 ;
(10) let (Φ,Θ,Ψ) ∈ 𝛿pop : then 𝜒⋖𝐹 𝜓 ∈ Θ𝑝 iff (𝜁𝐿 ∈ Ψ𝑝 and (either (a) 𝜒⋖𝐹 𝜓 ∈ Ψ𝑝 or (b)𝜓 ∈ Φ𝑐)).

The rules for 𝜒⋗𝐹 𝜓 only differ in𝜓 being enforced by a pop transition, triggered by the ⋗ relation between the left and
right contexts of the chain on whose left context 𝜒⋗𝐹 𝜓 holds. Thus, if 𝜒⋗𝐹 𝜓 ∈ Cl(𝜑), in𝒟ℛ(𝜒⋗𝐹 𝜓) we have:

(11) Let (Φ, 𝑎,Ψ) ∈ 𝛿push/shift : then 𝜒⋗𝐹 𝜓 ∈ Φ𝑐 iff 𝜒⋗𝐹 𝜓, 𝜁𝐿 ∈ Ψ𝑝 ;
(12) let (Φ,Θ,Ψ) ∈ 𝛿𝑝𝑜𝑝 : (𝜒⋗𝐹 𝜓 ∈ Θ𝑝 iff 𝜒⋗𝐹 𝜓 ∈ Ψ𝑝) and (𝜒⋗𝐹 𝜓 ∈ Φ𝑝 iff𝜓 ∈ Φ𝑐);
(13) let (Φ, 𝑎,Ψ) ∈ 𝛿shift : then 𝜒⋗𝐹 𝜓 ∉ Φ𝑝 .

We illustrate how the construction works for 𝜒�𝐹 with the example of Fig. 9, which shows an accepting run of A𝜑

for 𝜑 = 𝜒𝑑𝐹 ret. The OPA starts in state Φ𝑔 (1), with 𝜒𝑑𝐹 ret ∈ Φ
𝑔
𝑐 (1), and guesses that 𝜒𝑑𝐹 will be fulfilled by 𝜒�𝐹 , so

𝜒�𝐹 ret ∈ Φ
𝑔
𝑐 (1), and that the next move will be a push, so 𝜁𝐿 ∈ Φ

𝑔
𝑝 (1). call is read by a push move, resulting in state

Φ2 (2). Again, the OPA guesses the next move will be a push, so 𝜁𝐿 ∈ Φ
𝑔
𝑝 (2). By rule (6), we have 𝜒�𝐹 ret ∈ Φ

𝑔
𝑝 (2). The

last guess is immediately verified by the next push (step 2-3). Thus, the pending obligation for 𝜒�𝐹 ret is stored onto
Manuscript submitted to ACM

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

A Model Checker for Operator Precedence Languages 25

the stack in Φ𝑔 (2). The OPA, then, reads exc with a shift, and pops the stack symbol containing Φ𝑔 (2) (step 4-5). By
rule (7), the temporal obligation is resumed in the next state Φ′ (4), so 𝜒�𝐹 ret ∈ Φ′

𝑝 (4). Finally, ret is read by a shift
which, by rule (8), may occur only if ret ∈ Φ′

𝑐 (4). Rule (8) verifies the guess that 𝜒�𝐹 ret holds in Φ𝑔 (1), and fulfills the
temporal obligation contained in Φ′

𝑝 (4), by preventing computations in which ret ∉ Φ′
𝑐 (4) from continuing. Had the

next transition been a pop (e.g., because there was no ret and call ⋗ #), the run would have been blocked by rule (7),
preventing the OPA from reaching an accepting state.

4.1.3 Chain Back Operators. Despite the structure of chains in OPLs being symmetric, the way chain back operators
work is quite different from chain next operators, because OPAs proceed left-to-right. Hence, while the OPA has to
guess the presence of a 𝜒𝑡𝐹 𝜓 because 𝜓 will hold in the future, with 𝜒𝑡𝑃 𝜓 the argument 𝜓 is found first, so the OPA
must make sure the chain back will hold in the future.

To model check the 𝜒𝑑𝑃 𝜓 and 𝜒𝑢𝑃 𝜓 operators, we employ the auxiliary operator 𝜒𝜋𝑃 𝜓 , with 𝜋 ∈ {⋖, �,⋗}. Given an
OP word𝑤 and a position 𝑖 in it, we have (𝑤, 𝑖) |= 𝜒𝜋𝑃 𝜓 iff there exists a position 𝑗 < 𝑖 such that 𝜒 (𝑗, 𝑖) and 𝑗 𝜋 𝑖 , and
(𝑤, 𝑗) |= 𝜓 . The𝒜𝒞 constraints below rely on the equivalences 𝜒𝑑𝑃 𝜓 ⇐⇒ 𝜒⋖𝑃 𝜓 ∨ 𝜒�𝑃 𝜓 and 𝜒𝑢𝑃 𝜓 ⇐⇒ 𝜒⋗𝑃 𝜓 ∨ 𝜒�𝑃 𝜓 .
If 𝜒𝑑𝑃 𝜓 ∈ Cl(𝜑),𝒜𝒞 contains the following constraint:

(f) for any Φ ∈ 𝑄 we have 𝜒𝑑𝑃 𝜓 ∈ Φ𝑐 iff (𝜒�𝑃 𝜓 ∈ Φ𝑐 or 𝜒⋖𝑃 𝜓 ∈ Φ𝑐).

For 𝜒𝑢𝑃 𝜓 ∈ Cl(𝜑),𝒜𝒞 contains

(g) for any Φ ∈ 𝑄 we have 𝜒𝑢𝑃 𝜓 ∈ Φ𝑐 iff (𝜒�𝑃 𝜓 ∈ Φ𝑐 or 𝜒⋗𝑃 𝜓 ∈ Φ𝑐).

We use symbol 𝜁𝑅 , which is symmetric to 𝜁𝐿 : it lets the computation go on only if the previous transition was a pop,
and the next position to be read is the right context of a chain. So, we define the following𝒟ℛ(𝜁𝑅) rules:

(14) for any (Φ, 𝑎,Ψ) ∈ 𝛿push/shift , we have 𝜁𝑅 ∉ Ψ𝑝 ;
(15) for any (Φ,Θ,Ψ) ∈ 𝛿pop , we have 𝜁𝑅 ∈ Ψ𝑝 .

𝜁𝑅 is allowed in the pending part of final states.
If 𝜒�𝑃 𝜓 ∈ Cl(𝜑),𝒟ℛ(𝜒�𝑃 𝜓) contains the following rules:

(16) Let (Φ, 𝑎,Ψ) ∈ 𝛿shift : then 𝜒�𝑃 𝜓 ∈ Φ𝑐 iff 𝜒�𝑃 𝜓, 𝜁𝑅 ∈ Φ𝑝 ;
(17) let (Φ, 𝑎,Ψ) ∈ 𝛿push: then 𝜒�𝑃 𝜓 ∉ Φ𝑐 ;
(18) let (Φ,Θ,Ψ) ∈ 𝛿pop : then 𝜒�𝑃 𝜓 ∈ Ψ𝑝 iff 𝜒�𝑃 𝜓 ∈ Θ𝑝 ;
(19) let (Φ, 𝑎,Ψ) ∈ 𝛿push/shift : then 𝜒�𝑃 𝜓 ∈ Ψ𝑝 iff𝜓 ∈ Φ𝑐 .

The rules in𝒟ℛ(𝜒⋖𝑃 𝜓) if 𝜒⋖𝑃 𝜓 ∈ Cl(𝜑) follow:
(20) Let (Φ, 𝑎,Ψ) ∈ 𝛿push: then 𝜒⋖𝑃 𝜓 ∈ Φ𝑐 iff 𝜒⋖𝑃 𝜓, 𝜁𝑅 ∈ Φ𝑝 ;
(21) let (Φ, 𝑎,Ψ) ∈ 𝛿shift : then 𝜒⋖𝑃 𝜓 ∉ Φ𝑐 ;
(22) let (Φ,Θ,Ψ) ∈ 𝛿pop : then 𝜒⋖𝑃 𝜓 ∈ Ψ𝑝 iff 𝜒⋖𝑃 𝜓 ∈ Θ𝑝 ;
(23) let (Φ, 𝑎,Ψ) ∈ 𝛿push/shift : then 𝜒⋖𝑃 𝜓 ∈ Ψ𝑝 iff𝜓 ∈ Φ𝑐 .

Finally, for 𝜒⋗𝑃 , we use symbol 𝜁� , which appears in a state iff the next transition will be a shift.𝒟ℛ(𝜁�) contains:
(24) for any (Φ, 𝑎,Ψ) ∈ 𝛿push and (Φ,Θ,Ψ) ∈ 𝛿pop , 𝜁� ∉ Φ𝑝 ;
(25) for any (Φ, 𝑎,Ψ) ∈ 𝛿shift , 𝜁� ∈ Φ𝑝 .

𝜒⋗𝑃 𝜓 and 𝜁� are allowed in the pending part of final states.
If 𝜒⋗𝑃 𝜓 ∈ Cl(𝜑),𝒟ℛ(𝜒⋗𝑃 𝜓) contains the rules below:

For any (Φ, 𝑎,Ψ) ∈ 𝛿push/shift ,
Manuscript submitted to ACM

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

26 Michele Chiari, Dino Mandrioli, Francesco Pontiggia, and Matteo Pradella

step input state stack PR move
1 call han exc ret # Φ𝑔 (1) = ({call,#𝑑 #𝑑 #𝑢 𝜒𝑑𝑃 call}, ∅) ⊥ # ⋖ call push
2 han exc ret # Φ𝑔 (2) = ({han,#𝑑 #𝑢 𝜒𝑑𝑃 call}, {𝜒�𝑃 call}) [call,Φ𝑔 (1)]⊥ call ⋖ han push
3 exc ret # Φ𝑔 (3) = ({exc,#𝑢 𝜒𝑑𝑃 call}, ∅) [han,Φ𝑔 (2)] [call,Φ𝑔 (1)]⊥ han � exc shift
4 ret # Φ(4) = ({ret, 𝜒𝑑𝑃 call, 𝜒�𝑃 call}, ∅) [exc,Φ𝑔 (2)] [call,Φ𝑔 (1)]⊥ exc ⋗ ret pop
5 ret # Φ′ (4) = Φ𝑔 (4) = ({ret, 𝜒𝑑𝑃 call, 𝜒�𝑃 call}, {𝜒�𝑃 call, 𝜁𝑅}) [call,Φ𝑔 (1)]⊥ call � ret shift
6 # Φ(5) = ({#}, ∅) [ret,Φ𝑔 (1)]⊥ ret ⋗ # pop
7 # Φ′ (5) = Φ(5) = ({#}, ∅) ⊥ – –

Fig. 10. Example run of the automaton for #𝑑 #𝑑 #𝑢 𝜒𝑑𝑃 call on the same word as in Fig. 9.

(26) 𝜒⋗𝑃 𝜓 ∉ Ψ𝑝 ;
(27) 𝜒⋗𝑃 𝜓 ∈ Φ𝑐 iff 𝜒⋗𝑃 𝜓, 𝜁𝑅 ∈ Φ𝑝 ;

for any (Φ,Θ,Ψ) ∈ 𝛿pop ,
(28) if (𝜁𝐿 ∈ Ψ𝑝 or 𝜁� ∈ Ψ𝑝), then 𝜒⋗𝑃 𝜓 ∈ Ψ𝑝 iff 𝜒⋗𝑃 𝜓 ∈ Φ𝑝 ;
(29) if 𝜁𝐿, 𝜁� ∉ Ψ𝑝 , then 𝜒⋗𝑃 𝜓 ∈ Ψ𝑝 iff (either 𝜒⋖𝑃 𝜓 ∨ ⊖𝑑 𝜓 ∈ Θ𝑐 or 𝜒⋗𝑃 𝜓 ∈ Φ𝑝).

In Fig. 10, we show how the construction works through an example run of A𝜑 built for 𝜑 = #𝑑 #𝑑 #𝑢 𝜒𝑑𝑃 call on
the same word as in Fig. 9. Position 1 is read by a push move, and since call ∈ Φ𝑔 (1), according to𝒟ℛ rule (19), 𝜒�𝑃 call
is stored in the pending part of the next state Φ𝑔 (2). Here the OPA has just made two guesses: that position 1 is the left
context of a chain, and that in its right context 𝜒𝑑𝑃 call will be fulfilled by 𝜒�𝑃 call. The OPA then proceeds by reading
position 2 with a push that stores Φ𝑔 (2) on the stack: the guess about 𝜒�𝑃 call will be checked when it is popped. Next,
exc in position 3 is read by a shift move that updates the character in the topmost stack symbol and, more importantly,
guesses that 𝜒�𝑃 call will hold in position 4. Due to𝒜𝒞 constraint (f), 𝜒𝑑𝑃 call is also in Φ𝑐 (4), fulfilling the𝒟ℛ rule
for the #𝑢 operator. State Φ𝑔 (2) is then popped, and since 𝜒�𝑃 call ∈ Φ

𝑔
𝑝 (2), by rule (18) we have 𝜒�𝑃 call ∈ Φ′

𝑝 (4). By
rule (15), 𝜁𝑅 ∈ Φ′

𝑝 (4). Thus, Φ′ (4) = Φ𝑔 (4) contains all formulas needed for rule (16) to confirm the guess that 𝜒�𝑃 call
holds in position 4. Note that rule (16) only holds for shift transitions, while rule (17) forbids push moves with 𝜒�𝑃 call
in the current part of the starting state: this makes sure the two chain contexts are in the � relation.

4.1.4 Summary Until and Since. The construction for these operators relies on𝒜𝒞 constraints based on their expansion
laws (cf. Section 3.1). The constraints for until follow, and those for since are symmetric.

(h) For any Φ ∈ 𝑄 , we have𝜓 U𝑡 𝜃 ∈ Φ𝑐 , with 𝑡 ∈ {𝑑,𝑢} being a direction, iff either:
• 𝜃 ∈ Φ𝑐 , or
• #𝑡 (𝜓 U𝑡 𝜃),𝜓 ∈ Φ𝑐 , or
• 𝜒𝑡𝐹 (𝜓 U𝑡 𝜃),𝜓 ∈ Φ𝑐 .

4.1.5 Hierarchical Next and Back Operators. If #𝑢
𝐻 𝜓 ∈ Cl(𝜑) for some𝜓 ,𝒟ℛ(#𝑢

𝐻 𝜓) contains the following rules:
for any (Φ, 𝑎,Ψ) ∈ 𝛿push,

(30) if #𝑢
𝐻 𝜓 ∈ Φ𝑐 , then 𝜁𝑅 ∈ Φ𝑝 ;

(31) #𝑢
𝐻 𝜓 ∈ Φ𝑝 iff (𝜓 ∈ Φ𝑐 and 𝜁𝑅 ∈ Φ𝑝);

for any (Φ,Θ,Ψ) ∈ 𝛿pop ,
(32) if 𝜁𝑅 ∈ Θ𝑝 , then #𝑢

𝐻 𝜓 ∈ Θ𝑐 iff #𝑢
𝐻 𝜓 ∈ Ψ𝑝 ;

(33) #𝑢
𝐻 𝜓 ∉ Φ𝑝 ;

Manuscript submitted to ACM

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

A Model Checker for Operator Precedence Languages 27

step input state stack PR move
1 call stm stm call ret ret # Φ𝑔 (1) = ({call,#𝑑 #𝑢 #𝑢

𝐻 call}, ∅) ⊥ # ⋖ call push
2 stm stm call ret ret # Φ𝑔 (2) = ({stm,#𝑢 #𝑢

𝐻 call}, ∅) [call,Φ𝑔 (1)]⊥ call ⋖ stm push
3 stm call ret ret # Φ(3) = ({stm,#𝑢

𝐻 call}, ∅) [stm,Φ𝑔 (2)] [call,Φ𝑔 (1)]⊥ stm ⋗ stm pop
4 stm call ret ret # Φ′ (3) = Φ𝑔 (3) = ({stm,#𝑢

𝐻 call}, {𝜁𝑅}) [call,Φ𝑔 (1)]⊥ call ⋖ stm push
5 call ret ret # Φ(4) = (call, ∅) [stm,Φ𝑔 (3)] [call,Φ𝑔 (1)]⊥ stm ⋗ call pop
6 call ret ret # Φ′ (4) = Φ𝑔 (4) = (call, {𝜁𝑅,#𝑢

𝐻 call}) [call,Φ𝑔 (1)]⊥ call ⋖ call push
7 ret ret # Φ𝑔 (5) = ({ret}, ∅) [call,Φ𝑔 (4)] [call,Φ𝑔 (1)]⊥ call � ret shift
8 ret # Φ(6) [ret,Φ𝑔 (4)] [call,Φ𝑔 (1)]⊥ ret ⋗ ret pop
9 ret # Φ′ (6) = Φ𝑔 (6) = ({ret}, {𝜁𝑅}) [call,Φ𝑔 (1)]⊥ call � ret shift
10 # Φ(7) = ({#}, ∅) [ret,Φ𝑔 (1)]⊥ ret ⋗ # pop
11 # Φ′ (7) = ({#}, 𝜁𝑅) ⊥ – –

·

call ·

·

·

stm

stm

call ret

ret

#

�

l
l

m

m

m

�

⋖ call ⋖ stm ⋗ stm ⋗ call � ret ⋗ ret ⋗

Fig. 11. Example run of the automaton for#𝑑 #𝑢 #𝑢
𝐻 call (top left), ST (top right) and flat representation (bottom) of the input word.

for any (Φ, 𝑎,Ψ) ∈ 𝛿shift :
(34) #𝑢

𝐻 𝜓 ∉ Φ𝑝 and #𝑢
𝐻 𝜓 ∉ Φ𝑐 .

If ⊖𝑢𝐻 𝜓 ∈ Cl(𝜑) for some𝜓 ,𝒟ℛ(⊖𝑢𝐻 𝜓) contains the following rules:

(35) for any (Φ, 𝑎,Ψ) ∈ 𝛿push, if ⊖𝑢𝐻 𝜓 ∈ Φ𝑐 , then 𝜁𝑅, 𝜁𝐿 ∈ Φ𝑝 ;
(36) for any (Φ,Θ,Ψ) ∈ 𝛿pop , if 𝜁𝐿 ∈ Ψ𝑝 , then ⊖𝑢𝐻 𝜓 ∈ Ψ𝑐 iff𝜓 ∈ Θ𝑐 and 𝜁𝑅 ∈ Θ𝑝 ;
(37) for any (Φ, 𝑎,Ψ) ∈ 𝛿shift , ⊖𝑢𝐻 𝜓 ∉ Φ𝑐 .

If #𝑑
𝐻 𝜓 ∈ Cl(𝜑) for some𝜓 ,𝒟ℛ(#𝑑

𝐻 𝜓) contains the following rules:
for any (Φ,Θ,Ψ) ∈ 𝛿pop ,

(38) if 𝜁𝐿, 𝜁� ∉ Ψ𝑝 , then (⊖𝑑 𝜓 ∨ 𝜒⋖𝑃 𝜓) ∈ Θ𝑐 iff #𝑑
𝐻 𝜓 ∈ Ψ𝑝 ;

(39) if 𝜁𝐿, 𝜁� ∉ Ψ𝑝 , then #𝑑
𝐻 𝜓 ∈ Φ𝑝 iff (⊖𝑑 (#𝑑

𝐻 𝜓) ∨ 𝜒⋖𝑃 (#𝑑
𝐻 𝜓)) ∈ Θ𝑐 ;

(40) if (⊖𝑑 (#𝑑
𝐻 𝜓) ∨ 𝜒⋖𝑃 (#𝑑

𝐻 𝜓)) ∈ Θ𝑐 , then 𝜁� ∉ Ψ𝑝 ;

for any (Φ, 𝑎,Ψ) ∈ 𝛿push/shift ,
(41) if #𝑑

𝐻 𝜓 ∈ Φ𝑐 , then 𝜁𝐿 ∈ Ψ𝑝 ;
(42) #𝑑

𝐻 𝜓 ∉ Ψ𝑝 .

If ⊖𝑑𝐻 𝜓 ∈ Cl(𝜑) for some𝜓 ,𝒟ℛ(⊖𝑑𝐻 𝜓) contains the following rules:
for any (Φ,Θ,Ψ) ∈ 𝛿pop ,

(43) if 𝜁𝐿, 𝜁� ∉ Ψ𝑝 , then (⊖𝑑 𝜓 ∨ 𝜒⋖𝑃 𝜓) ∈ Θ𝑐 iff ⊖𝑑𝐻 𝜓 ∈ Φ𝑝 ;
(44) if 𝜁𝐿 ∉ Ψ𝑝 , then ⊖𝑑𝐻 𝜓 ∈ Ψ𝑝 iff (⊖𝑑 (⊖𝑑𝐻 𝜓) ∨ 𝜒⋖𝑃 (⊖𝑑𝐻 𝜓)) ∈ Θ𝑐 ;
(45) if ⊖𝑑𝐻 𝜓 ∈ Φ𝑝 , then 𝜁𝐿, 𝜁� ∉ Ψ𝑝 ;

for any (Φ, 𝑎,Ψ) ∈ 𝛿push/shift ,
(46) if ⊖𝑑𝐻 𝜓 ∈ Φ𝑐 , then 𝜁𝐿 ∈ Ψ𝑝 ;
(47) ⊖𝑑𝐻 𝜓 ∉ Φ𝑝 .

We illustrate how the construction of the #𝑢
𝐻 works through the example of Fig. 11, which shows an accepting run

of the automaton built for formula#𝑑 #𝑢 #𝑢
𝐻 call. The computation goes on normally until, in step 3, the second stm is

reached. Thanks to the two nested next operators, #𝑢
𝐻 call is forced to hold here, so #𝑢

𝐻 call ∈ Φ𝑐 (3). A pop transition
Manuscript submitted to ACM

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

28 Michele Chiari, Dino Mandrioli, Francesco Pontiggia, and Matteo Pradella

then brings the automaton to Φ′ (3): none of rules (32) and (33) apply but, since 𝜁𝑅 ∈ Φ′
𝑝 (3), rule (30) is satisfied and a

push move reads stm. The next input symbol is a call, so a pop move is triggered. Since the popped symbol contains
Φ′ (3) and 𝜁𝑅 ∈ Φ′

𝑝 (3), rule (32) applies. The next state is thus Φ′ (4) with #𝑢
𝐻 call ∈ Φ′

𝑝 (4), because #𝑢
𝐻 call ∈ Φ′

𝑐 (3).
State Φ′ (4) satisfies rule (31) because call ∈ Φ′

𝑐 (4) and, due to the previous pop move, 𝜁𝑅 ∈ Φ′
𝑝 (4). A push move can

therefore read call, and the computation goes on normally until acceptance.

4.1.6 Hierarchical Until and Since Operators. The construction for this kind of until and since operators also relies on
𝒜𝒞 constraints based on expansion laws (cf. Section 3.1). Here we only report the constraints for U𝑢

𝐻 , as the others
are symmetric.

(i) For any Φ ∈ 𝑄 , we have𝜓 U𝑢
𝐻 𝜃 ∈ Φ𝑐 iff either:

• 𝜃, 𝜒⋖𝑃 ⊤ ∈ Φ𝑐 or
• 𝜓,#𝑢

𝐻 (𝜓 U𝑢
𝐻 𝜃) ∈ Φ𝑐 .

4.2 Correctness Proof

We prove that A𝜑 accepts all and only words in which 𝜑 holds in position 1. The strategy we follow is to prove by
induction on the syntactic structure of 𝜑 the claim that the computation of A𝜑 in each accepted word𝑤 is such that,
for all positions 𝑖 , we have (𝑤, 𝑖) |= 𝜓 iff𝜓 ∈ Φ

𝑔
𝑐 (𝑖) for all𝜓 ∈ Cl(𝜑). Since 𝜑 is included in all of its initial states, A𝜑

only accepts words read by a run where 𝜑 ∈ Φ
𝑔
𝑐 (1), and consequently such that (𝑤, 1) |= 𝜑 .

The overall induction argument is given in Theorem 4.4; before, the inductive step is proved separately for each
operator. In each of the following lemmas, given a sub-formula 𝜃 of 𝜑 , we start from the inductive assumption that
for each sub-formula 𝜓 of 𝜃 except 𝜃 itself we have (𝑤, 𝑖) |= 𝜓 iff 𝜓 ∈ Φ

𝑔
𝑐 (𝑖) for all positions 𝑖 in A𝜑 ’s accepting

computations. Then, we prove the inductive claim stating that for a computation of A𝜑 to be accepting, the same must
hold for 𝜃 , i.e., (𝑤, 𝑖) |= 𝜃 iff 𝜃 ∈ Φ

𝑔
𝑐 (𝑖) for all 𝑖 . We also prove that each operator does not interfere with rules regarding

other formulas, so that words that satisfy other formulas are accepted if they also satisfy the one at hand. To do this, we
consider A𝜑−𝜃 , an OPA built as A𝜑 but using𝒟ℛ \𝒟ℛ(𝜃) for 𝛿 , i.e., without rules related to 𝜃 . We show that if a
computation is accepting for A𝜑−𝜃 and satisfies the rules for 𝜃 , then it is accepting for A𝜑 too.

Before going on, we clarify that the set of sub-formulas subf (𝜑) of a formula 𝜑 is the smallest set such that:

• 𝜑 ∈ subf (𝜑);
• if any of the unary operators (e.g., ¬, #𝑑 , 𝜒𝑑𝐹 , 𝜒

𝑑
𝑃 , . . .) is in subf (𝜑), and𝜓 is its operand, then𝜓 ∈ subf (𝜑);

• if any of the binary operators (e.g., ∧, ∨, U𝑑
𝜒 , S𝑑

𝜒 , . . .) is in subf (𝜑), and 𝜓 and 𝜃 are its operands, then
𝜓, 𝜃 ∈ subf (𝜑).

The set of strict sub-formulas of 𝜑 is ssubf (𝜑) = subf (𝜑) \ {𝜑}.

4.2.1 Lemmas about Next Operators. Lemma 4.1 proves the correctness of the rules given in Section 4.1.1 for the next
operator, the proof for back being symmetric. We examine in detail the behavior of A𝜑 when reading input symbols;
since between two push or shift moves an unbounded number of pop moves may occur, we consider the scanning of
two consecutive characters.

Lemma 4.1. Given a finite set of atomic propositions 𝐴𝑃 , an OP alphabet (P(𝐴𝑃), 𝑀𝐴𝑃) and a formula #𝑡 𝜓 with

𝑡 ∈ {𝑑,𝑢}, let A𝜑 be the OPA built for a formula 𝜑 such that #𝑡 𝜓 ∈ Cl(𝜑); and let A𝜑−#𝑡 𝜓 be the OPA built as A𝜑 but

using 𝒟ℛ \𝒟ℛ(#𝑡 𝜓) for 𝛿 .
Manuscript submitted to ACM

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

A Model Checker for Operator Precedence Languages 29

Inductive assumption: in all accepting computations of A𝜑 for each position 𝑖 in the input word 𝑤 and for each

sub-formula𝜓 ′ ∈ ssubf (#𝑡 𝜓) we have (𝑤, 𝑖) |= 𝜓 ′ iff𝜓 ′ ∈ Φ
𝑔
𝑐 (𝑖).

Inductive claim 𝐼 : [𝐼1] A computation 𝜌 of A𝜑 is accepting if and only if [𝐼2] 𝜌 is accepting for A𝜑−#𝑡 𝜓 and for each

position 𝑖 in the input word𝑤 we have (𝑤, 𝑖) |= #𝑡 𝜓 iff #𝑡 𝜓 ∈ Φ
𝑔
𝑐 (𝑖).

Proof. To prove the inductive claim, we first prove an auxiliary claim based on the following assertions:

• let [𝐴1] be: (𝑤, 𝑖) |= #𝑡 𝜓 ;
• let [𝐴2] be: all accepting computations of A𝜑 bring it from configuration ⟨𝑎𝑖𝑦,Φ𝑔 (𝑖), 𝛾⟩ with #𝑡 𝜓 ∈ Φ

𝑔
𝑐 (𝑖) to a

new configuration ⟨𝑦,Φ𝑔 (𝑖 + 1), 𝛾 ′⟩.
We prove that for any word𝑤 = #𝑥𝑎𝑖𝑦# with 𝑎𝑖 ∈ P(𝐴𝑃) and position 𝑖 = |𝑥 | + 1 in𝑤 , 𝐴1 ⇐⇒ 𝐴2.

[𝐴1 ⇒ 𝐴2] A𝜑 makes the initial guess that#𝑡 𝜓 holds in 𝑖 , so when it reaches configuration ⟨𝑎𝑖𝑦,Φ𝑔 (𝑖), 𝛾⟩, we have
#𝑡 𝜓 ∈ Φ

𝑔
𝑐 (𝑖). Later we show that a computation cannot be accepting without this guess.

Then, a transition reads symbol 𝑎 in position 𝑖 and A𝜑 reaches a configuration ⟨𝑦,Φ(𝑖 + 1), [𝑎𝑖 ,Φ𝑔 (𝑗)] . . .⊥⟩, with
𝑗 = 𝑖 if the transition was a push, and 𝑗 < 𝑖 if it was a shift. In doing so, by rule (1) it guesses the first character of 𝑦,
which we call 𝑎𝑖+1, so Φ𝑐 (𝑖 + 1) ∩𝐴𝑃 = 𝑎𝑖+1. This guess is possible because, if #𝑡 𝜓 holds in 𝑖 , the PR between 𝑎𝑖 and
𝑎𝑖+1 is the right one according to rule (3). Since #𝑡 𝜓 holds in 𝑖 , 𝜓 , which is trivially a sub-formula of #𝑡 𝜓 , holds in
𝑖 + 1 and therefore is in Φ𝑐 (𝑖 + 1) by the inductive assumption. This satisfies rule (3). Also, note that according to the
same rule there is no transition that goes from 𝑖 with #𝑡 𝜓 ∉ Φ

𝑔
𝑐 (𝑖) to 𝑖 + 1 with𝜓 ∈ Φ𝑐 (𝑖 + 1), so runs that do not make

the initial guess cannot be accepting.
Now, let 𝑡 = 𝑑 : then we have either 𝑎𝑖 ⋖ 𝑎𝑖+1 or 𝑎𝑖 � 𝑎𝑖+1. The automaton is now ready to read 𝑎𝑖+1 with, respectively,

a push or a shift move, because 𝑎𝑖 is on top of the stack.
Suppose, instead, 𝑡 = 𝑢: then either 𝑎𝑖 � 𝑎𝑖+1 or 𝑎𝑖 ⋗ 𝑎𝑖+1. In the former case, 𝑎𝑖+1 can be read directly by a shift

move. In the latter, the topmost stack symbol is popped, and a sequence of pop transitions brings the automaton to
configuration ⟨𝑦,Φ𝑔 (𝑖 + 1), 𝛾 ′⟩ where the topmost symbol in 𝛾 ′ is [𝑎𝑘 ,Φ𝑔 (𝑗)] such that 𝑎𝑘 ⋖ 𝑎𝑖+1 or 𝑎𝑘 � 𝑎𝑖+1, for some
positions 𝑗 ≤ 𝑘 < 𝑖 . However, 𝒟ℛ rule (2) imposes that the current part of the automaton’s state does not change
during pop moves. Thus, Φ𝑔𝑐 (𝑖 + 1) = Φ𝑐 (𝑖 + 1), including𝜓 ∈ Φ

𝑔
𝑐 (𝑖 + 1). Then, the automaton is ready to proceed with a

push or shift transition reading 𝑎𝑖+1.
[𝐴2 ⇒ 𝐴1] Suppose that an accepting computation contains configuration ⟨𝑎𝑖𝑦,Φ𝑔 (𝑖), 𝛾⟩ with #𝑡 𝜓 ∈ Φ

𝑔
𝑐 (𝑖). After

reading 𝑖 , it reaches a configuration ⟨𝑦,Φ(𝑖 + 1), [𝑎𝑖 ,Φ(𝑗)] . . .⊥⟩, with 𝑗 = 𝑖 or 𝑗 < 𝑖 depending on the move that read 𝑖 .
By rule (3), we must have𝜓 ∈ Φ𝑐 (𝑖 + 1), and the PR between 𝑎 and Φ𝑐 (𝑖 + 1) ∩𝐴𝑃 must be the right one according to 𝑡 .
Atom Φ𝑐 (𝑖 + 1) contains a guess of 𝑎𝑖+1, and rule (2) enforces it even if pop moves occur before 𝑎𝑖+1 is read. Thus, since
𝜓 ∈ Cl(𝜓), by hypothesis𝜓 ∈ Φ

𝑔
𝑐 (𝑖 + 1) implies (𝑤, 𝑖 + 1) |= 𝜓 and, thus, #𝑡 𝜓 holds in 𝑖 .

We can now prove the inductive claim. The [𝐼1 ⇒ 𝐼2] part follows from the auxiliary claim, together with the fact
that #𝑡 𝜓 is a future operator, so Φ(𝑖) cannot be final if #𝑡 𝜓 ∈ Φ𝑐 (𝑖), and 𝑖 is followed by another position in all
accepting computations (i.e., |𝑦 | ≥ 1). Moreover, A𝜑 ’s transition relation is a subset of that of A𝜑−#𝑡 𝜓 because the
latter has fewer rules than the former, so if a word is accepted by A𝜑 , then A𝜑−#𝑡 𝜓 must be able to perform the same
accepting run.

For the [𝐼2 ⇒ 𝐼1] side, note that according to the proof above Φ(𝑖 + 1) does not necessarily contain #𝑡 𝜓 (unless
#𝑡 𝜓 holds in 𝑖 + 1) so 𝒟ℛ rule (3) cannot prevent it from reaching an accepting configuration. Thus, if a computation
is accepting for A𝜑−#𝑡 𝜓 and satisfies (𝑤, 𝑖) |= #𝑡 𝜓 iff #𝑡 𝜓 ∈ Φ𝑐 (𝑖), it can go on past 𝑖 + 1 and be accepting. □

Manuscript submitted to ACM

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

30 Michele Chiari, Dino Mandrioli, Francesco Pontiggia, and Matteo Pradella

·

·

·

0 ·

·

·

...

·

· 11

1=−1

1=

3

#

G I

D0

D=

D=−1

D1

·

·

·

·

0 ·

·

·

...

·

· 11

1=−1

1=

3

#

G I

D0

D=

D=−1

D1

⋖ 𝑥 𝜋𝑥 𝑎 ⋖ 𝑢0 ⋗ 𝑏1 𝜋1 𝑢1 ⋗ . . . ⋗ 𝑏𝑛−1 𝜋𝑛−1 𝑢𝑛−1 ⋗ 𝑏𝑛 𝜋𝑛 𝑢𝑛 ⋗ 𝑑 𝜋𝑧 𝑧 ⋗
0 𝑖 𝑖𝑏1 𝑖𝑏𝑛−1 𝑖𝑏𝑛 𝑗

�/⋗
⋖⋖

⋖

Fig. 12. The two possible STs of a generic OP word 𝑤 = 𝑥𝑦𝑧 (top), and its flat representation with chains (bottom). Wavy lines are
placeholders for frontiers of subtrees or parts thereof. We have either 𝑎 � 𝑑 (top left), or 𝑎 ⋗ 𝑑 (top right). In both trees, 𝑎 ⋖ 𝑏𝑘 for
1 ≤ 𝑘 ≤ 𝑛, and the corresponding word positions are in the chain relation. For 1 ≤ 𝑘 ≤ 𝑛, 𝑢𝑘 is the word generated by the right
part of the rhs whose first terminal is 𝑏𝑘 . So, either 𝑏𝑘 [𝑢𝑘]𝑏𝑘+1 , or 𝑢𝑘 is of the form 𝑣𝑘0 𝑐

𝑘
0 𝑣

𝑘
1 𝑐

𝑘
1 . . . 𝑐𝑘𝑚𝑘

𝑣𝑘𝑚𝑘+1, where 𝑐
𝑘
𝑝 � 𝑐

𝑘
𝑝+1 for

0 ≤ 𝑝 <𝑚𝑘 , 𝑏𝑘 � 𝑐𝑘0 , and resp. 𝑐𝑘𝑚𝑘
⋗𝑏𝑘+1 and 𝑐𝑛𝑚𝑛

⋗𝑑 (cf. Fig. 13). Moreover, for each 0 ≤ 𝑝 <𝑚𝑘 , either 𝑣𝑘𝑝+1 = 𝜀 or 𝑐
𝑘
𝑝 [𝑣𝑘𝑝+1]

𝑐𝑘𝑝+1 ;

either 𝑣𝑘0 = 𝜀 or 𝑏𝑘 [𝑣𝑘0]𝑐
𝑘
0 , and either 𝑣𝑘𝑚𝑘+1 = 𝜀 or 𝑐

𝑘
𝑚𝑘 [𝑣𝑘𝑚𝑘+1]𝑏𝑘+1 (resp. 𝑐

𝑛
𝑚𝑛 [𝑣𝑛𝑚𝑛+1]𝑑). 𝑢0 has this latter form, except 𝑣0

0 = 𝜀 and

𝑎 ⋖ 𝑐0
0 . In the bottom representation, the 𝜋𝑘 s are placeholders for precedence relations, that depend on the surrounding characters.

Also, chains that may or may not exist depending on the form of each 𝑢𝑘 are not shown by edges (e.g., between 𝑏𝑛 and 𝑑).

We now prove the correctness of rules given in Section 4.1.2 for the 𝜒�𝐹 operator in Lemma 4.2. The lemmas for the
𝜒⋖𝐹 and chain back operators follow a very similar structure, so we postpone them to Appendix A.

In the following, we denote as first(𝑤) the first position of a word𝑤 ; we use initial letters of the alphabet 𝑎, 𝑏, 𝑐, . . .
to denote single input symbols, and 𝑢, 𝑣 to denote sub-words. We use Fig. 12, which represents the generic structure of
any one-to-many composed chain. In the left tree, the contexts of the outermost chain (𝑎 and 𝑑) are in the � PR, and in
the right one they are in the ⋗ PR (cf. Property 4 of the 𝜒 relation). We use the left tree when proving case 𝜒�𝐹 ; the
Manuscript submitted to ACM

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

A Model Checker for Operator Precedence Languages 31

·

·

... 1: · 2:0 · 2:1
. . .

. . .

2:<:
·

1:+1

E:0 E:1 E:<:

D:+1

. . . ⋗ 𝑏𝑘 ⋖ 𝑣
𝑘
0 ⋗ 𝑐

𝑘
0 ⋖ 𝑣

𝑘
1 ⋗ 𝑐

𝑘
1 . . . 𝑐

𝑘
𝑚𝑘
⋖ 𝑣𝑘𝑚𝑘

⋗ 𝑏𝑘+1 ⊙𝑘+1 𝑢𝑘+1
𝑖𝑏𝑘 𝑖𝑏𝑘+1

� � ⋗⋖

⋖

Fig. 13. The structure of 𝑢𝑘 in the word of Fig. 12.

𝜒⋗𝐹 case can be proved identically to 𝜒�𝐹 by referring to the right tree and is therefore omitted. Both sides, instead, are
used for 𝜒⋖𝐹 , but note that the ⋖ PR does not hold between 𝑎 and 𝑑 , but rather between 𝑎 and all 𝑏𝑖 ’s. When referring to
Fig. 12, we denote by 𝑖𝑐 the word position of any input symbol 𝑐 , and by 𝑖𝑣 the position of first(𝑣) for any sub-word 𝑣 .

Lemma 4.2 (𝜒�𝐹 operator). Given a finite set of atomic propositions 𝐴𝑃 , an OP alphabet (P(𝐴𝑃), 𝑀𝐴𝑃) and a formula

𝜒�𝐹 𝜓 , let A𝜑 be the OPA built for a formula 𝜑 such that 𝜒�𝐹 𝜓 ∈ Cl(𝜑); and let A𝜑−𝜒�𝐹 𝜓 be the OPA built as A𝜑 but using

𝒟ℛ \𝒟ℛ(𝜒�𝐹 𝜓) for 𝛿 .
Inductive assumption: in all accepting computations of A𝜑 for each position 𝑖 in the input word 𝑤 and for each

sub-formula𝜓 ′ ∈ ssubf (𝜒�𝐹 𝜓) we have (𝑤, 𝑖) |= 𝜓 ′ iff𝜓 ′ ∈ Φ
𝑔
𝑐 (𝑖).

Inductive claim 𝐼 : [𝐼1] A computation 𝜌 of A𝜑 is accepting if and only if [𝐼2] 𝜌 is accepting for A𝜑−𝜒�𝐹 𝜓 and for each

position 𝑖 in the input word𝑤 we have (𝑤, 𝑖) |= 𝜒�𝐹 𝜓 iff 𝜒�𝐹 𝜓 ∈ Φ
𝑔
𝑐 (𝑖).

Proof. We first prove two auxiliary claims, built on the following assertions:

• Let [𝐴1] be: (𝑤, 𝑖) |= 𝜒�𝐹 𝜓 ;
• let [𝐴2] be: all accepting computations of A𝜑 bring it from a configuration ⟨𝑦𝑧,Φ𝑔 (𝑖), 𝛼𝛾⟩ with 𝜒�𝐹 𝜓 ∈ Φ

𝑔
𝑐 (𝑖) to

a configuration ⟨𝑧,Φ𝑔 (𝑖𝑧), 𝛼 ′𝛾⟩ such that 𝜒�𝐹 𝜓 ∉ Φ
𝑔
𝑝 (𝑖𝑧), |𝛼 | = 1 and |𝛼 ′ | = 1 if first(𝑦) is read by a shift move,

|𝛼 ′ | = 2 if it is read by a push move.

We prove that for any word𝑤 = #𝑥𝑦𝑧# and positions 𝑖 = |𝑥 | + 1, 𝑖𝑧 = |𝑥𝑦 | + 1 in𝑤 , 𝐴1 ⇐⇒ 𝐴2.
[𝐴1 ⇒ 𝐴2] Suppose 𝜒�𝐹 𝜓 holds in position 𝑖 , labeled with terminal symbol 𝑎. Then, 𝑖 is the left context of a chain

with right context 𝑑 and 𝑎 � 𝑑 , so𝑤 has the form of Fig. 12 (left), possibly with 𝑛 = 0 (cf. the caption for notation). In all
accepting computations, the OPA reaches configuration ⟨𝑎 . . . 𝑧,Φ𝑔 (𝑖), [𝑓 ,Φ𝑔 (𝑘)]𝛾⟩, where 𝑘 < 𝑖 and 𝛼 = [𝑓 ,Φ𝑔 (𝑘)],
and guesses that 𝜒�𝐹 𝜓 holds in 𝑖 , so 𝜒�𝐹 𝜓 ∈ Φ

𝑔
𝑐 (𝑖). We show later in the proof that all accepting computations must

make this guess. 𝑎 is read by either a push or a shift transition, leading the OPA to configuration ⟨𝑐0
0 . . . 𝑧,Φ(𝑖𝑐0

0
), 𝛽⟩,

Manuscript submitted to ACM

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

32 Michele Chiari, Dino Mandrioli, Francesco Pontiggia, and Matteo Pradella

with either 𝛽 = [𝑎,Φ𝑔 (𝑖)] [𝑓 ,Φ𝑔 (𝑘)]𝛾 or 𝛽 = [𝑎,Φ𝑔 (𝑘)]𝛾 , respectively. Moreover, 𝜒�𝐹 𝜓 ∈ Φ𝑝 (𝑖𝑐0
0
) and 𝜁𝐿 ∈ Φ𝑝 (𝑖𝑐0

0
) due

to rule (6). Since 𝜒�𝐹 𝜓 holds in 𝑖 , 𝑎 is the left context of a chain, so the next transition is a push, satisfying rule (5), and
Φ(𝑖𝑐0

0
) = Φ𝑔 (𝑖𝑐0

0
). Any accepting computation must go through the support for this chain. The next configuration is

⟨𝑣0
1 . . . 𝑧,Φ(𝑖𝑣0

1
), [𝑐0

0,Φ
𝑔 (𝑖𝑐0

0
)]𝛽⟩, with 𝜒�𝐹 𝜓 ∈ Φ

𝑔
𝑝 (𝑖𝑐0

0
). Then, the computation goes on normally. Note that, when reading

an inner chain body such as 𝑣0
1 , the automaton does not touch the stack symbol containing Φ𝑔 (𝑖𝑐0

0
), and other symbols

in the body of the same simple chain, i.e. 𝑐0
1, 𝑐

0
2 . . . , are read with shift moves that update the topmost stack symbol

with the new terminal, leaving state Φ𝑔 (𝑖𝑐0
0
) untouched.

If 𝑎 is the left context of more than one chain (i.e. 𝑛 > 0 in the figure), the OPA then reaches configuration ⟨𝑏1 . . . 𝑧,

Φ(𝑖𝑏1), [𝑐0
𝑚0 ,Φ

𝑔 (𝑖𝑐0
0
)]𝛽⟩. Since 𝑐0

𝑚0 ⋗ 𝑏1, the next transition is a pop. We have 𝜒�𝐹 𝜓 ∈ Φ
𝑔
𝑝 (𝑖𝑐0

0
), so by rule (7), the

automaton reaches configuration ⟨𝑏1 . . . 𝑧,Φ′ (𝑖𝑏1), 𝛽⟩ with 𝜒�𝐹 𝜓 ∈ Φ′
𝑝 (𝑖𝑏1). Then, since 𝑎 is contained in the topmost

stack symbol and 𝑎 ⋖ 𝑏1, the next move is a push, leading to ⟨𝑣1
0 . . . 𝑧,Φ(𝑖𝑣1

0
), [𝑏1,Φ′

𝑝 (𝑖𝑏1)]𝛽⟩. Notice how 𝜒�𝐹 𝜓 is again
stored as a pending obligation in the topmost stack symbol. The OPA run goes on in the same way for each terminal
𝑏𝑝 , 1 ≤ 𝑝 ≤ 𝑛, until the automaton reaches configuration ⟨𝑑 . . . 𝑧,Φ(𝑗), [𝑐𝑛𝑚𝑛

,Φ𝑔 (𝑖𝑏𝑛)]𝛽⟩ with 𝜒�𝐹 𝜓 ∈ Φ
𝑔
𝑝 (𝑖𝑏𝑛). If 𝑎 is

the left context of only one chain, this is the configuration reached after reading the body of such a chain, with 𝑛 = 0.
Since 𝑐𝑛𝑚𝑛

⋗ 𝑑 , a pop transition leads to ⟨𝑑 . . . 𝑧,Φ′ (𝑗), 𝛽⟩, with 𝜒�𝐹 𝜓 ∈ Φ′
𝑝 (𝑗), by rule (7) (recall 𝑗 is the position of

𝑑). Note that there exists a computation in which 𝜒�𝐹 𝜓 ∉ Φ𝑝 (𝑗), because no other rule prevents it, so rule (7) applies.
Then, if 𝜒�𝐹 𝜓 holds in 𝑖 , since 𝑎 is the terminal in the topmost stack symbol, we must have 𝑎 � 𝑑 . So 𝑑 is read by a
shift move, leading to ⟨𝑧,Φ(𝑖𝑧), 𝛼 ′𝛾⟩ with 𝛼 ′ = [𝑑,Φ𝑔 (𝑖)] [𝑓 ,Φ𝑔 (𝑘)] or 𝛼 ′ = [𝑑,Φ𝑔 (𝑘)], depending on which kind of
move previously read 𝑎. Since 𝜒�𝐹 𝜓 holds in 𝑖 , 𝜓 holds in 𝑗 , and 𝜓 ∈ Φ′𝑑

𝑐 , because we assume the correctness of the
construction for all other operators. This satisfies rule (8), and verifies the initial guess that 𝜒�𝐹 𝜓 holds in 𝑖 . By rule (8),
any computation in which𝜓 holds in 𝑗 must have 𝜒�𝐹 𝜓 ∈ Φ′

𝑝 (𝑗), which is only the case if the OPA makes such initial
guess. Finally, there exists a computation in which 𝜒�𝐹 𝜓 ∉ Φ𝑝 (𝑖𝑧), satisfying 𝐴2. Note that all computations of this form
may then proceed normally until acceptance, if they are not blocked by rules other than 6-8.

[𝐴2 ⇒ 𝐴1] Suppose that an accepting computation reaches configuration ⟨𝑎 . . . 𝑧,Φ𝑔 (𝑖), [𝑓 ,Φ𝑔 (𝑘)]𝛾⟩, with 𝑘 < 𝑖 ,
𝜒�𝐹 𝜓 ∈ Φ

𝑔
𝑐 (𝑖), 𝛼 = [𝑓 ,Φ𝑔 (𝑘)], and 𝑓 ⋖ 𝑎 (the case 𝑓 � 𝑎 is analogous). 𝑎 is read by a push move in this case, which leads

the OPA to configuration ⟨𝑐0
0 . . . 𝑧,Φ(𝑖𝑐0

0
), [𝑎,Φ𝑔 (𝑖)] [𝑓 ,Φ𝑔 (𝑘)]𝛾⟩, with 𝜒�𝐹 𝜓, 𝜁𝐿 ∈ Φ𝑝 (𝑖𝑐0

0
). Since 𝜁𝐿 ∈ Φ𝑝 (𝑖𝑐0

0
), the next

transition must be a push, so 𝑎 ⋖ 𝑐0
0 , 𝑎 is the left context of a chain and𝑤 has one of the structures of Fig. 12. The push

move brings the OPA to configuration ⟨𝑣0
0 . . . 𝑧,Φ(𝑖𝑣0

0
), [𝑐0

0,Φ(𝑖𝑐0
0
)] [𝑎,Φ𝑔 (𝑖)] [𝑓 ,Φ𝑔 (𝑘)]𝛾⟩. Notice that the stack size is

now |𝛾 | + 3. To fulfill 𝐴2, the automaton must eventually reach a configuration in which the stack size is |𝛾 | + 2. This
can be achieved if [𝑐0

0,Φ(𝑖𝑐0
0
)] is popped, so 𝛼 ′ = [𝑎,Φ𝑔 (𝑖)] [𝑓 ,Φ𝑔 (𝑘)]. In a generic word such as the one of Fig. 12, this

happens only before reading 𝑏𝑝 , 1 ≤ 𝑖 ≤ 𝑛, or 𝑑 .
In both cases, let [𝑐𝑘𝑚𝑘

,Φ𝑔 (𝑖𝑏𝑘)] be the popped stack symbol. We have 𝜒�𝐹 𝜓 ∈ Φ
𝑔
𝑝 (𝑖𝑏𝑘). Let Φ′ be the destination state

of the pop move: by rule (7), 𝜒�𝐹 𝜓 ∈ Φ′
𝑝 , so Φ′ is not Φ𝑔 (𝑖𝑧) from claim 𝐴2. If the next move is a push (such as when

reading any 𝑏𝑝 , 1 ≤ 𝑝 ≤ 𝑛), the stack length increases again, which also does not satisfy the thesis. If the next move is a
pop, rule (7) blocks the computation. So, the next move must be a shift, updating symbol [𝑎,Φ𝑔 (𝑖)] to [𝑑,Φ𝑔 (𝑖)], where
𝑑 is the just-read terminal symbol. This means the OPA reached the right context of the chain whose left context is 𝑖
(i.e. 𝑎), and the two positions are in the � relation. By rule (8),𝜓 is part of the starting state of this move, so𝜓 holds in
this position, satisfying 𝜒�𝐹 𝜓 in 𝑖 .

Manuscript submitted to ACM

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

A Model Checker for Operator Precedence Languages 33

[𝐼1 ⇒ 𝐼2] follows directly from 𝐴1 ⇒ 𝐴2 and A𝜑−𝜒�𝐹 𝜓 ’s 𝒟ℛ rules being a strict subset of A𝜑 ’s. [𝐼2 ⇒ 𝐼1] again
follows from 𝐴2 ⇒ 𝐴1, and the fact that Φ𝑔 (𝑖𝑧) may not contain 𝜒�𝐹 𝜓 , nor states in 𝛼

′, so rules (6)-(8) may not prevent
the computation from reaching a final state. □

We now prove the correctness of the construction for the #𝑢
𝐻 operator; we omit the proofs for the other hierarchical

next and back operators as they are very similar.

Lemma 4.3 (#𝑢
𝐻 operator). Given a finite set of atomic propositions 𝐴𝑃 , an OP alphabet (P(𝐴𝑃), 𝑀𝐴𝑃) and a formula

#𝑢
𝐻 𝜓 , let A𝜑 be the OPA built for a formula 𝜑 such that #𝑢

𝐻 𝜓 ∈ Cl(𝜑); and let A𝜑−#𝑢
𝐻 𝜓 be the OPA built as A𝜑 but

using𝒟ℛ \𝒟ℛ(#𝑢
𝐻 𝜓) for 𝛿 .

Inductive assumption: in all accepting computations of A𝜑 for each position 𝑖 in the input word 𝑤 and for each

sub-formula𝜓 ′ ∈ ssubf (#𝑢
𝐻 𝜓) we have (𝑤, 𝑖) |= 𝜓 ′ iff𝜓 ′ ∈ Φ

𝑔
𝑐 (𝑖).

Inductive claim 𝐼 : [𝐼1] A computation 𝜌 of A𝜑 is accepting if and only if [𝐼2] 𝜌 is accepting for A𝜑−#𝑢
𝐻 𝜓 and for each

position 𝑖 in the input word𝑤 we have (𝑤, 𝑖) |= #𝑢
𝐻 𝜓 iff #𝑢

𝐻 𝜓 ∈ Φ
𝑔
𝑐 (𝑖).

Proof. We first prove two auxiliary claims, built on the following assertions:

• Let [𝐴1] be: (𝑤, 𝑖′) |= #𝑢
𝐻 𝜓 ;

• let [𝐴2] be: all accepting computations of A𝜑 bring it from a configuration ⟨𝑦𝑧,Φ𝑔 (𝑖′), 𝛾⟩ with #𝑢
𝐻 𝜓 ∈ Φ

𝑔
𝑐 (𝑖′)

to a configuration ⟨𝑧,Φ𝑔 (𝑖𝑧), 𝛼𝛾⟩ such that #𝑢
𝐻 𝜓 ∉ Φ

𝑔
𝑝 (𝑖𝑧) and |𝛼 | = 1.

We prove that for any word𝑤 = #𝑥𝑦𝑧# and positions 𝑖 = |𝑥 | + 1, 𝑖𝑧 = |𝑥𝑦 | + 1 in𝑤 , 𝐴1 ⇐⇒ 𝐴2.
[𝐴1 =⇒ 𝐴2] Suppose #𝑢

𝐻 𝜓 holds in position 𝑖′. Then, by the semantics of #𝑢
𝐻 there exists a position 𝑖 such

that 𝜒 (𝑖, 𝑖′) and 𝑖 ⋖ 𝑖′. By property 4 of the 𝜒 relation, 𝑤 has the form of Fig. 12 with 𝑛 ≥ 2, and 𝑖′ = 𝑖𝑏𝑘 for some
1 ≤ 𝑘 ≤ 𝑛 − 1. Also,𝜓 holds in 𝑖𝑏𝑘+1 . In all accepting computations, the OPA reaches configuration ⟨𝑏𝑘 . . . 𝑧,Φ𝑔 (𝑖𝑏𝑘),
[𝑎,Φ𝑔 (𝑘)]𝛾 ′⟩ where 𝑘 ≤ 𝑖 and 𝛾 = [𝑎,Φ𝑔 (𝑘)]𝛾 ′, and guesses that #𝑢

𝐻 𝜓 holds in 𝑖𝑏𝑘 , so #𝑢
𝐻 𝜓 ∈ Φ

𝑔
𝑐 (𝑖𝑏𝑘). Previously, if

𝑘 ≥ 2 the OPA must have read 𝑏𝑘−1 and 𝑢𝑘−1, or 𝑢0 if 𝑘 = 1. Both 𝑏𝑘−1𝑢𝑘−1 and 𝑢0 end with a position in the ⋗ PR
with 𝑏𝑘 , which triggers a pop move, and therefore 𝜁𝑅 ∈ Φ

𝑔
𝑝 (𝑖𝑏𝑘), so rule (30) is satisfied. The OPA then reads 𝑏𝑘 with a

push move, leading to configuration ⟨𝑣𝑘0 . . . 𝑧,Φ(𝑖𝑣𝑘0), [𝑏𝑘 ,Φ
𝑔 (𝑖𝑏𝑘)]𝛾⟩.

The computation then goes on normally by reading the rest of 𝑢𝑘 , until reaching configuration ⟨𝑏𝑘+1 . . . 𝑧,Φ(𝑖𝑏𝑘+1),
[𝑐𝑘𝑚𝑘

,Φ𝑔 (𝑖𝑏𝑘)]𝛾⟩, where #𝑢
𝐻 𝜓 ∉ Φ𝑝 (𝑖𝑏𝑘+1) (otherwise the computation would not be accepting by rule (33)). Since

𝑐𝑘𝑚𝑘
⋗𝑏𝑘+1, a pop move is triggered. We have 𝜁𝑅 ∈ Φ

𝑔
𝑝 (𝑖𝑏𝑘), so by rule (32) we reach configuration ⟨𝑏𝑘+1 . . . 𝑧,Φ

′ (𝑖𝑏𝑘+1),
𝛾⟩, where #𝑢

𝐻 𝜓 ∈ Φ′
𝑝 (𝑖𝑏𝑘+1). Since this move is a pop, we have 𝜁𝑅 ∈ Φ′ (𝑖𝑏𝑘+1). Because 𝑏𝑘+1 ⋖ 𝑎, the next move is a

push that reads 𝑏𝑘+1, leading to ⟨𝑣𝑘+1
0 . . . 𝑧,Φ(𝑖𝑣𝑘+1

0
), [𝑏𝑘+1,Φ

𝑔 (𝑖𝑏𝑘+1)]𝛾⟩, where Φ𝑔 (𝑖𝑏𝑘+1) = Φ′ (𝑖𝑏𝑘+1). By rule (31), since

#𝑢
𝐻 𝜓 ∈ Φ′

𝑝 (𝑖𝑏𝑘+1), we have𝜓 ∈ Φ𝑐 (𝑖𝑣𝑘+1
0

). If we set 𝑧 = first(𝑣𝑘+1
0) (or 𝑧 = 𝑐𝑘+1

0 , or 𝑧 = 𝑏𝑘+2, if resp. 𝑣𝑘+1
0 = 𝜀 or𝑢𝑘+1 = 𝜀)

and 𝛼 = [𝑏𝑘+1,Φ
𝑔 (𝑖𝑏𝑘+1)], then 𝐴1 =⇒ 𝐴2 is proven.

[𝐴2 =⇒ 𝐴1] Suppose that an accepting computation reaches a configuration ⟨𝑦𝑧,Φ𝑔 (𝑖′), 𝛾⟩ with #𝑢
𝐻 𝜓 ∈ Φ

𝑔
𝑐 (𝑖′).

By rule (34), the next position cannot be read by a shift move, but only by a push. Thus, there exists a position 𝑖 labeled
with a such that 𝑎 ⋖ first(𝑦). By rule (30), 𝜁𝑅 ∈ Φ

𝑔
𝑝 (𝑖′), so we also have 𝜒 (𝑖, 𝑖′). Thus, by property 4 of the 𝜒 relation,

𝑤 has the form of Fig. 12 with 𝑛 ≥ 1, and 𝑖′ = 𝑖𝑏𝑘 for some 1 ≤ 𝑘 ≤ 𝑛. Such a push move reads 𝑏𝑘 and stores a
stack symbol containing Φ𝑔 (𝑖𝑏𝑘). Since the computation is accepting, at some point this stack symbol must be popped.
Let ⟨𝑏 . . . 𝑧,Φ(𝑖𝑏), [𝑐𝑘𝑚𝑘

,Φ𝑔 (𝑖𝑏𝑘)]𝛾⟩ be the configuration right before this pop move occurs (we name the look-ahead
as 𝑏). Recall that 𝜁𝑅 ∈ Φ

𝑔
𝑝 (𝑖𝑏𝑘) and #𝑢

𝐻 𝜓 ∈ Φ
𝑔
𝑐 (𝑖𝑏𝑘), so by rule (32) the next configuration is ⟨𝑏 . . . 𝑧,Φ′ (𝑖𝑏), 𝛾⟩ with

#𝑢
𝐻 𝜓 ∈ Φ′

𝑝 (𝑖𝑏) (and also 𝜁𝑅 ∈ Φ′
𝑝 (𝑖𝑏) because of the pop move). By rules (33) and (34), the next move has to be a push,

Manuscript submitted to ACM

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

34 Michele Chiari, Dino Mandrioli, Francesco Pontiggia, and Matteo Pradella

so Φ𝑔 (𝑖𝑏) = Φ′ (𝑖𝑏). Therefore, we have 𝑎 ⋖𝑏 and 𝑏 = 𝑏𝑘+1 (cf. Fig. 12, it cannot be 𝑏 = 𝑑). Also, rule (31) applies, and we
have𝜓 ∈ Φ𝑔 (𝑖𝑏). By the semantics of #𝑢

𝐻 𝜓 , we can claim (𝑤, 𝑖′) |= #𝑢
𝐻 𝜓 (recall 𝑖′ = 𝑖𝑏𝑘), which proves 𝐴2 =⇒ 𝐴1.

[𝐼1 ⇒ 𝐼2] follows directly from 𝐴1 ⇒ 𝐴2 and A𝜑−#𝑢
𝐻 𝜓 ’s𝒟ℛ rules being a strict subset of A𝜑 ’s. [𝐼2 ⇒ 𝐼1] again

follows from 𝐴2 ⇒ 𝐴1, and the fact that Φ𝑔 (𝑖𝑧) may not contain #𝑢
𝐻 𝜓 , nor states in 𝛼 , so rules (30)-(34) may not

prevent the computation from reaching a final state. □

4.2.2 Wrap-Up.

Theorem 4.4 (Correctness of Finite-Word Model Checking). Given a finite set of atomic propositions 𝐴𝑃 , an

OP alphabet (P(𝐴𝑃), 𝑀𝐴𝑃), a word𝑤 on it, and a POTL formula 𝜑 , automaton A𝜑 is such that it performs at least one

accepting computation on𝑤 if and only if (𝑤, 1) |= 𝜑 .

Proof. We prove by structural induction on formula syntax the following statement: for each 𝜃 ∈ subf (𝜑), a
computation of A𝜑 is accepting if and only if it is accepting for A𝜑−𝜃 and for each position 𝑖 in the input word𝑤 we
have (𝑤, 𝑖) |= 𝜃 iff 𝜃 ∈ Φ

𝑔
𝑐 (𝑖).

From this, it directly follows that in all A𝜑 ’s accepting computations we have (𝑤, 1) |= 𝜑 iff 𝜑 ∈ Φ
𝑔
𝑐 (1). Since Φ𝑔 (1)

is an initial state, we always have 𝜑 ∈ Φ
𝑔
𝑐 (1), hence A𝜑 accepts only words such that (𝑤, 1) |= 𝜑 .

The base case of the induction are members of 𝐴𝑃 . The only𝒟ℛ rule that applies to them directly is (1). Clearly, due
to (1), all computations of A𝜑 that reach a final configuration must be such that for all a ∈ 𝐴𝑃 we have (𝑤, 𝑖) |= a iff
a ∈ Φ

𝑔
𝑐 (𝑖), or no input symbols could be read by push or shift moves. The other side of the implication is also trivial. As

for negated atomic propositions note that, by𝒜𝒞 constraint (a), a ∉ Φ𝑐 implies ¬a ∈ Φ𝑐 , so we also have (𝑤, 𝑖) |= ¬a
iff ¬a ∈ Φ

𝑔
𝑐 (𝑖).

For the inductive hypothesis, we assume that in all accepting computations of A𝜑 for each position 𝑖 in the input
word𝑤 and formula𝜓 ∈ ssubf (𝜃) \ {𝜃 } we have (𝑤, 𝑖) |= 𝜓 iff𝜓 ∈ Φ

𝑔
𝑐 (𝑖).

We proved the inductive step for all temporal operators in Lemmas 4.1, 4.2, 4.3, A.1, A.2 and A.3, while other proofs
have been omitted due to their similarity with the previous ones.

For the ∧ propositional operator, there are no𝒟ℛ rules involved, soA𝜑−(𝜓∧𝜓 ′) = A𝜑 . The fact that (𝑤, 𝑖) |= 𝜓 ∧𝜓 ′

iff𝜓 ∧𝜓 ′ ∈ Φ
𝑔
𝑐 (𝑖) follows from 𝒜𝒞 constraint (b) and the inductive hypothesis. The proof for ∨ is analogous. As for ¬,

note that, by𝒜𝒞 constraint (a), 𝜃 ∉ Φ𝑐 implies ¬𝜃 ∈ Φ𝑐 , so from (𝑤, 𝑖) |= 𝜃 iff 𝜃 ∈ Φ
𝑔
𝑐 (𝑖) in the hypothesis we derive

(𝑤, 𝑖) |= ¬𝜃 iff ¬𝜃 ∈ Φ
𝑔
𝑐 (𝑖).

Until and since operators rely on 𝒜𝒞 constraints whose correctness derives from the expansion laws in Section 3.1.
The inductive step for them follows from those of the next and back operators appearing in the right-hand-sides of the
expansion laws.

This concludes our induction argument.
Now, we need to prove that if (𝑤, 1) |= 𝜑 , then A𝜑 has at least one accepting computation. This computation is such

that for each 𝜃 ∈ Cl(𝜑) and position 𝑖 in the word𝑤 it reads, we have (𝑤, 𝑖) |= 𝜃 iff 𝜃 ∈ Φ
𝑔
𝑐 (𝑖). First, consider a version

of A𝜑 , called A′
𝜑 , built with an empty 𝒟ℛ, so that its transition relation is a complete graph. Clearly, A′

𝜑 performs at
least a computation with the above feature. Since we proved that for each 𝜃 ∈ Cl(𝜑) the rules in𝒟ℛ(𝜃) do not block it
if it is such that (𝑤, 𝑖) |= 𝜃 iff 𝜃 ∈ Φ

𝑔
𝑐 (𝑖), we can conclude that this computation is accepting in A𝜑 too. □

Manuscript submitted to ACM

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

A Model Checker for Operator Precedence Languages 35

4.3 Complexity

The set Cl(𝜑) is linear in |𝜑 |, the length of 𝜑 . Atoms(𝜑) has size at most 2 | Cl(𝜑) | = 2𝑂 (|𝜑 |) , and the size of the set of
states is the square of that. Therefore,

Theorem 4.5. Given a POTL formula 𝜑 , it is possible to build an OPA A𝜑 accepting the language denoted by 𝜑 with at

most 2𝑂 (|𝜑 |) states.

A𝜑 can then be intersected with an OPA modeling a program, and emptiness can be decided with polynomial-time
reachability algorithms that we will present in Section 6.

Since it is possible to linearly translate NWTL into POTL in a way similar to what we did with Operator Precedence
Temporal Logic (OPTL) in [27], we can exploit the same lower bounds for decision problems:

Theorem 4.6. POTL model checking and satisfiability on finite OP words are EXPTIME-complete.

Therefore, POTL does not have a worse computational complexity than NWTL and OPTL, despite its greater
expressive power.

5 𝜔-WORD MODEL CHECKING

To performmodel checking of a POTL formula 𝜑 on OP𝜔-words, we adapt the approach used in [24] for OPTL. We build
a generalized 𝜔OPBA (cf. Definition 2.7) A𝜔

𝜑 = (P(𝐴𝑃), 𝑀𝐴𝑃 , 𝑄𝜔 , 𝐼𝜔 , F, 𝛿), where 𝑄𝜔 = Atoms(𝜑) × P(Clpend (𝜑)) ×
P(Clst (𝜑)), and Clst (𝜑) = {𝜒𝜋𝐹 𝜓 ∈ Cl(𝜑) | 𝜋 ∈ {⋖, �,⋗}} ∪ {#𝑡

𝐻 ∈ Cl(𝜑) | 𝑡 ∈ {𝑑,𝑢}}.
In finite words, the stack is empty at the end of every accepting computation, which implies the satisfaction of

all temporal constraints tracked by the pending part of states in stack symbols. In 𝜔OPBAs, the stack may never be
empty, and symbols with a non-empty pending part may remain in it indefinitely, never enforcing the satisfaction of
the respective formulas. To overcome this issue, we add a subset of Clst (𝜑) to states obtained according to the OPA
construction of Section 4.1. A𝜔

𝜑 ’s states have the form Φ = (Φ𝑐 ,Φ𝑝 ,Φ𝑠), where Φ𝑐 and Φ𝑝 have the same role as in
the finite-word case, and Φ𝑠 is the in-stack part of Φ. All rules defined in Section 4.1 for Φ𝑐 and Φ𝑝 remain the same.
At any point in a computation, Φ𝑠 contains any element of Clst (𝜑) that is present in the pending part of any symbol
currently in the stack. Thus, pending temporal obligations are copied from the stack to the 𝜔OPBA state, so that they
can be taken into account by the Büchi acceptance condition. Initial states are the same as in the finite case except their
in-stack part is empty: 𝐼𝜔 = {(Φ𝑐 ,Φ𝑝 , ∅) | Φ ∈ 𝐼 }, where 𝐼 is the initial set of A𝜑 .

Suppose we want to verify 𝜒�𝐹 𝜓 . Formula 𝜒�𝐹 𝜓 must be inserted in the in-stack part of the current state whenever a
stack symbol containing it in its pending part is pushed. It must be kept in the in-stack part of the current state until
the last stack symbol containing it in its pending part is popped, marking the satisfaction of its temporal requirement.
Then, we can define an acceptance set 𝐹𝜒�𝐹 𝜓 ∈ F as the set of states not containing 𝜒�𝐹 𝜓 in their pending or in-stack
parts. The same holds for 𝜒⋗𝐹 . Formally, 𝐹𝜒𝜋𝐹 𝜓 = {Φ ∈ 𝑄𝜔 | 𝜒𝜋𝐹 𝜓 ∉ Φ𝑝 ∪ Φ𝑠 }, for 𝜋 ∈ {�,⋗}. Things are slightly more
complicated with 𝜒⋖𝐹 , as we have 𝐹𝜒⋖𝐹 𝜓 = {Φ ∈ 𝑄𝜔 | 𝜒⋖𝐹 𝜓 ∉ Φ𝑠 ∧ (𝜒⋖𝐹 𝜓 ∉ Φ𝑝 ∨𝜓 ∈ Φ𝑐)}. Why this is needed will be
clarified by Example 5.2.

A similar issue occurs for the hierarchical next operators, and it can be overcome likewise by setting 𝐹#𝑡
𝐻 𝜓 = {Φ ∈

𝑄𝜔 | #𝑡
𝐻 𝜓 ∉ Φ𝑠 } for 𝑡 ∈ {𝑑,𝑢}.

We first show the𝒟ℛ rules governing the in-stack part of states. If𝜓 = 𝜒𝜋𝐹 𝜃 ∈ Cl(𝜑),𝒟ℛ(𝜓) contains the following
rules, besides those defined in Section 4.1:

(48) for any (Φ, 𝑎,Θ) ∈ 𝛿push, (𝜓 ∈ Φ𝑝 or𝜓 ∈ Φ𝑠) iff𝜓 ∈ Θ𝑠 ;
Manuscript submitted to ACM

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

36 Michele Chiari, Dino Mandrioli, Francesco Pontiggia, and Matteo Pradella

step input state stack PR move
1 call call han exc ret ret call . . . Φ𝑔 (1) = ({call, 𝜒𝑑𝐹 ret, 𝜒�𝐹 ret}, {𝜁𝐿}, ∅) ⊥ # ⋖ call push
2 call han exc ret ret call . . . Φ𝑔 (2) = ({call, 𝜒𝑑𝐹 ret, 𝜒�𝐹 ret}, {𝜒�𝐹 ret, 𝜁𝐿}, ∅) [call,Φ𝑔 (1)]⊥ call ⋖ call push
3 han exc ret ret call . . . Φ𝑔 (3) = ({han}, {𝜒�𝐹 ret, 𝜁𝐿}, {𝜒�𝐹 ret}) [call,Φ𝑔 (2)] [call,Φ𝑔 (1)]⊥ call ⋖ han push
4 exc ret ret call . . . Φ𝑔 (4) = ({exc}, ∅, {𝜒�𝐹 ret}) [han,Φ𝑔 (3)] [call,Φ𝑔 (2)] [call,Φ𝑔 (1)]⊥ han � exc shift
5 ret ret call . . . Φ(5) = ({ret}, ∅, {𝜒�𝐹 ret}) [exc,Φ𝑔 (3)] [call,Φ𝑔 (2)] [call,Φ𝑔 (1)]⊥ exc ⋗ ret pop
6 ret ret call . . . Φ′ (5) = Φ𝑔 (5) = ({ret}, {𝜒�𝐹 ret}, {𝜒�𝐹 ret}) [call,Φ𝑔 (2)] [call,Φ𝑔 (1)]⊥ call � ret shift
7 ret call . . . Φ(6) = ({ret}, ∅, {𝜒�𝐹 ret}) [ret,Φ𝑔 (2)] [call,Φ𝑔 (1)]⊥ ret ⋗ ret pop
8 ret call . . . Φ′ (6) = Φ𝑔 (6) = ({ret}, {𝜒�𝐹 ret}, ∅) [call,Φ𝑔 (1)]⊥ call � ret shift
9 call . . . Φ(7) = ({call, 𝜒𝑑𝐹 ret, 𝜒�𝐹 ret}, ∅, ∅) [ret,Φ𝑔 (1)]⊥ ret ⋗ call pop
10 call . . . Φ′ (7) = Φ𝑔 (7) = Φ𝑔 (1) ⊥ # ⋖ call push

Fig. 14. Example run of the automaton for 𝜒𝑑𝐹 ret on word (call call han exc ret ret)𝜔 .

step input state stack PR move
1 call call ret call . . . Φ𝑔 (1) = ({call, 𝜒𝑑𝐹 ret, 𝜒�𝐹 ret}, {𝜁𝐿}, ∅) ⊥ # ⋖ call push
2 call ret call . . . Φ𝑔 (2) = ({call}, {𝜒�𝐹 ret, 𝜁𝐿}, ∅) [call,Φ𝑔 (1)]⊥ call ⋖ call push
3 ret call . . . Φ𝑔 (3) = ({ret}, ∅, {𝜒�𝐹 ret}) [call,Φ𝑔 (2)] [call,Φ𝑔 (1)]⊥ call � ret shift
4 call . . . Φ(4) = ({call}, ∅, {𝜒�𝐹 ret}) [ret,Φ𝑔 (2)] [call,Φ𝑔 (1)]⊥ ret ⋗ call pop
5 call . . . Φ′ (4) = Φ𝑔 (4) = Φ𝑔 (2) [call,Φ𝑔 (1)]⊥ call ⋖ call push

Fig. 15. Example run of the automaton for 𝜒𝑑𝐹 ret on word call(call ret)𝜔 .

(49) for any (Φ, 𝑎,Θ) ∈ 𝛿shift ,𝜓 ∈ Φ𝑠 iff𝜓 ∈ Θ𝑠 ;
(50) for any (Φ,Θ,Ψ) ∈ 𝛿pop , (𝜓 ∈ Φ𝑠 and𝜓 ∈ Θ𝑠) iff𝜓 ∈ Ψ𝑠 .

If𝜓 = #𝑡
𝐻 𝜃 ∈ Cl(𝜑), 𝒟ℛ(𝜓) contains, besides those defined in Section 4.1, rules (49) and (50), and the following:

(51) for any (Φ, 𝑎,Θ) ∈ 𝛿push, (𝜓 ∈ Φ𝑐 or𝜓 ∈ Φ𝑠) iff𝜓 ∈ Θ𝑠 .

We show how the rules for 𝜒𝜋𝐹 operators work through a few examples; those for #𝑡
𝐻 work in the same way.

Example 5.1. Fig. 14 shows a prefix of an accepting run of A𝜔
𝜑 for 𝜑 = 𝜒𝑑𝐹 ret, which holds in positions 1 and 2 of

the infinite word (call call han exc ret ret)𝜔 . In the initial state, the automaton guesses that 𝜒𝑑𝐹 ret will be satisfied by
𝜒�𝐹 ret, and so does in Φ𝑔 (2). The first push move puts 𝜒�𝐹 ret in Φ𝑔 (2) as a pending obligation, and the next one stores
Φ𝑔 (2) in the stack. Due to rule (48), 𝜒�𝐹 ret is stored in the in-stack part of the next state Φ𝑔 (3), to signal that 𝜒�𝐹 ret is
pending in the stack. The run then goes on according to the 𝒟ℛ rules for the 𝜒�𝐹 operator given in Section 4.1. All
the next push and shift moves propagate it in the in-stack parts thanks to resp. rules (48) and (49). When reaching the
first ret, state Φ𝑔 (3), which contains a pending 𝜒�𝐹 ret, is popped. However, another instance of 𝜒�𝐹 ret is still pending
in Φ𝑔 (2), so 𝜒�𝐹 ret must be kept into the in-stack part. This is accomplished by rule (50): the fact that 𝜒�𝐹 ret is in the
in-stack part of the popped state means that another instance of it was pending when it was pushed, so it is propagated
into the in-stack part of the next state. Its propagation stops when Φ𝑔 (3) is popped (step 7–8): since 𝜒�𝐹 ret ∉ Φ

𝑔
𝑠 (3),

rule (50) does not allow it into Φ′
𝑠 (6), so 𝜒�𝐹 ret ∉ Φ′

𝑠 (6). The 𝒟ℛ rules for 𝜒�𝐹 ret put it in Φ′
𝑝 (6) as it has not yet been

satisfied. This happens with the shift move that reads the second ret, and state Φ(7) does not contain 𝜒�𝐹 ret in its
pending or in-stack part, so Φ(7) ∈ 𝐹𝜒�𝐹 ret. A𝜔

𝜑 then goes back to Φ𝑔 (1), and its subsequent behavior is cyclic. Thus,
Φ(7) is visited infinitely often, and the run is accepting.

Fig. 15 shows a prefix of a rejecting run of the same automaton on word call(call ret)𝜔 . The run starts with Φ𝑔 (1),
whereA𝜔

𝜑 guesses —wrongly— that 𝜒𝑑𝐹 ret will be satisfied by 𝜒�𝐹 ret. Rules from Section 4.1 put 𝜒�𝐹 ret in Φ
𝑔
𝑝 (2), which

is then pushed to the stack when reading the second call. Thus, according to rule (48), we have 𝜒�𝐹 ret ∈ Φ
𝑔
𝑠 (3). 𝜒�𝐹 ret

Manuscript submitted to ACM

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

A Model Checker for Operator Precedence Languages 37

step input state stack PR move
1 call call ret call . . . Φ𝑔 (1) = ({call, 𝜒𝑑𝐹 call, 𝜒⋖𝐹 call}, {𝜁𝐿}, ∅) ⊥ # ⋖ call push
2 call ret call . . . Φ𝑔 (2) = ({call}, {𝜒⋖𝐹 call, 𝜁𝐿}, ∅) [call,Φ𝑔 (1)]⊥ call ⋖ call push
3 ret call . . . Φ𝑔 (3) = ({ret}, ∅, {𝜒⋖𝐹 call}) [call,Φ𝑔 (2)] [call,Φ𝑔 (1)]⊥ call � ret shift
4 call . . . Φ(4) = ({call}, ∅, {𝜒⋖𝐹 call}) [ret,Φ𝑔 (2)] [call,Φ𝑔 (1)]⊥ ret ⋗ call pop
5 call . . . Φ′ (4) = Φ𝑔 (4) = Φ(2) [call,Φ𝑔 (1)]⊥ call ⋖ call push

Fig. 16. Example run of the automaton for 𝜒𝑑𝐹 call on word call(call ret)𝜔 .

is propagated to Φ𝑠 (4) by the subsequent shift move, but it is removed from the in-stack part by the next pop move,
because 𝜒�𝐹 ret ∉ Φ

𝑔
𝑠 (2). However, rule (7) imposes that 𝜒�𝐹 ret ∈ Φ

𝑔
𝑝 (2), marking that the satisfaction of 𝜒�𝐹 ret is still

pending. From now on, the automaton cycles between states Φ𝑔 (2), Φ𝑔 (3) and Φ(4). These states contain 𝜒�𝐹 ret either
in their pending or in-stack part, so none of them is accepting, and the run is rejected. Indeed, 𝜒�𝐹 ret does not hold in
position 1, nor does 𝜒𝑑𝐹 ret: the run originating from A𝜔

𝜑 initially guessing 𝜒⋖𝐹 ret is symmetric and also rejecting.

Example 5.2. Fig. 16 shows a prefix of an accepting run ofA𝜔
𝜑 for 𝜑 = 𝜒𝑑𝐹 call, which holds in position 1 of the infinite

word call(call ret)𝜔 . First, the automaton guesses that 𝜒𝑑𝐹 call will be satisfied by 𝜒⋖𝐹 call, which becomes pending after
the first push move by rule (9). Then, 𝜒⋖𝐹 call is put into the in-stack part of the current state by rule (48) and propagated
by (49). The next pop move stops its propagation, but 𝜒⋖𝐹 call is in the pending part of Φ′ (4) by rule (10). Note that here
we can conclude that 𝜒⋖𝐹 call is satisfied in position 1, because 𝜒 (1, 4), call ⋖ call and call holds in position 4. Indeed,
Φ′ (4) = Φ𝑔 (2) ∈ 𝐹𝜒⋖𝐹 call even if 𝜒⋖𝐹 call ∈ Φ

𝑔
𝑝 (2), because 𝜒⋖𝐹 call ∉ Φ

𝑔
𝑠 (2) and call ∈ Φ

𝑔
𝑐 (2). Since the rest of the run

cycles between Φ𝑔 (2), Φ𝑔 (3) and Φ(4), it gets accepted.

Thus, we state the following:

Lemma 5.3. Given a finite set of atomic propositions 𝐴𝑃 , an OP alphabet (P(𝐴𝑃), 𝑀𝐴𝑃), and a formula𝜓 ∈ Clst (𝜑), let
A𝜔

𝜑 be the 𝜔OPBA built for a formula 𝜑 such that𝜓 ∈ Cl(𝜑).
For any 𝜔-word𝑤 = #𝑥𝑦 on (P(𝐴𝑃), 𝑀𝐴𝑃), let ⟨𝑦,Φ, 𝛾⟩ be A𝜔

𝜑 ’s configuration after reading 𝑥 .

If 𝜓 = 𝜒𝜋𝐹 𝜃 for 𝜋 ∈ {⋖, �,⋗} (resp. 𝜓 = #𝑡
𝐻 𝜃 for 𝑡 ∈ {𝑑,𝑢}), then there exists a stack symbol [𝑎,Θ] ∈ 𝛾 such that

𝜓 ∈ Θ𝑝 (resp.𝜓 ∈ Θ𝑐) iff𝜓 ∈ Φ𝑠 .

We omit the proof, as it is substantially similar to the one of Lemma 6.1 in [24].
Only chain next operators need to be in Clst (𝜑), because satisfaction of until operators depends on them. Correctness

proofs for past and next operators still hold in their current form; we need, instead, to re-prove Lemmas 4.2, A.1, and
4.3, to show that their inductive claim also holds with the generalized Büchi acceptance condition. We only re-prove
those for chain next operators, because the modifications required for Lemma 4.3 are similar.

Lemma 5.4. Given a finite set of atomic propositions 𝐴𝑃 , an OP alphabet (P(𝐴𝑃), 𝑀𝐴𝑃), and a formula 𝜒𝜋𝐹 𝜓 with

𝜋 ∈ {⋖, �,⋗}, let A𝜔
𝜑 be the 𝜔OPBA built for a formula 𝜑 such that 𝜒𝜋𝐹 𝜓 ∈ Cl(𝜑); and let A𝜔

𝜑−𝜒𝜋𝐹 𝜓
be the 𝜔OPBA built

as A𝜔
𝜑 but using𝒟ℛ \𝒟ℛ(𝜒𝜋𝐹 𝜓) for 𝛿 , and F \ {𝐹𝜒𝜋𝐹 𝜓 } as the set of acceptance sets.

Inductive assumption: in all accepting computations of A𝜔
𝜑 for each position 𝑖 in the input word 𝑤 and for each

sub-formula𝜓 ′ ∈ ssubf (𝜒𝜋𝐹 𝜓) we have (𝑤, 𝑖) |= 𝜓 ′ iff𝜓 ′ ∈ Φ
𝑔
𝑐 (𝑖).

Inductive claim 𝐼 : [𝐼1] A computation 𝜌 of A𝜔
𝜑 is accepting if and only if [𝐼2] 𝜌 is accepting for A𝜔

𝜑−𝜒𝜋𝐹 𝜓
and for each

position 𝑖 in the input word𝑤 we have (𝑤, 𝑖) |= 𝜒𝜋𝐹 𝜓 iff 𝜒𝜋𝐹 𝜓 ∈ Φ
𝑔
𝑐 (𝑖).

Manuscript submitted to ACM

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

38 Michele Chiari, Dino Mandrioli, Francesco Pontiggia, and Matteo Pradella

Proof. We prove an auxiliary claim built on the following assertions:

• Let [𝐴𝜔1] be: (𝑤, 𝑖) |= 𝜒𝜋𝐹 𝜓 ;
• let [𝐴𝜔2] be: all accepting computations of A𝜔

𝜑 bring it from a configuration ⟨𝑦𝑧,Φ𝑔 (𝑖), 𝛼𝛾⟩ with 𝜒𝜋𝐹 𝜓 ∈ Φ
𝑔
𝑐 (𝑖)

to a configuration ⟨𝑧,Φ𝑔 (𝑖𝑧), 𝛼 ′𝛾⟩ such that 𝜒𝜋𝐹 𝜓 ∉ Φ
𝑔
𝑝 (𝑖𝑧), |𝛼 | = 1 and |𝛼 ′ | = 1 if first(𝑦) is read by a shift

move, |𝛼 ′ | = 2 if it is read by a push move;
• let [𝐴𝜔3] be: 𝜋 = ⋖ and all accepting computations of A𝜔

𝜑 bring it from a configuration ⟨𝑦𝑧,Φ𝑔 (𝑖), 𝛼𝛾⟩ with
𝜒⋖𝐹 𝜓 ∈ Φ

𝑔
𝑐 (𝑖) to an infinite sequence of configurations ⟨𝑏𝑘 . . . ,Φ𝑔 (𝑖𝑏𝑘), 𝛼 ′𝛾⟩, such that 𝑘 ∈ N, 𝜒⋖𝐹 𝜓 ∈ Φ

𝑔
𝑝 (𝑖𝑏𝑘),

𝜓 ∈ Φ
𝑔
𝑐 (𝑖𝑏𝑘), |𝛼 | = 1 and |𝛼 ′ | = 1 if first(𝑦) is read by a shift move, |𝛼 ′ | = 2 if it is read by a push move.

We prove that for any 𝜔-word𝑤 = #𝑥𝑦𝑧 and positions 𝑖 = |𝑥 | + 1, 𝑖𝑧 = |𝑥𝑦 | + 1 in𝑤 , 𝐴𝜔1 ⇐⇒ (𝐴𝜔2 ∨𝐴𝜔3).
In the proofs of Lemmas 4.2 and A.1 we proved that the same auxiliary claim holds in the finite-word case for 𝜒𝜋𝐹 𝜓

with any 𝜋 , so we would like to show that 𝐴1 ⇐⇒ 𝐴2 implies 𝐴𝜔1 ⇐⇒ 𝐴𝜔2 . However, if𝑤 is an 𝜔-word and 𝜋 = ⋖,
𝜒⋖𝐹 𝜓 may be satisfied in 𝑖 because there exist infinitely many positions 𝑖𝑏𝑘 such that 𝜒 (𝑖, 𝑖𝑏𝑘), 𝑖 ⋖ 𝑖𝑏𝑘 , and (𝑤, 𝑖𝑏𝑘) |= 𝜓
(cf. Example 5.2). In this case, 𝐴𝜔1 ⇐⇒ 𝐴𝜔2 does not hold, but 𝐴𝜔1 ⇐⇒ 𝐴𝜔3 does.

First, we note that 𝒟ℛ rules of A𝜑 are a subset of A𝜔
𝜑 ’s, and A𝜔

𝜑 ’s additional rules (48)–(50) do not interfere with
others. In fact, by Lemma 5.3 any computation of A𝜑 can be transformed into one of A𝜔

𝜑 by adding in-stack parts to
states Φ so that, for all 𝜃 ∈ Clst (𝜑), if the stack contains a symbol [𝑎,Θ] such that 𝜃 ∈ Θ𝑝 , then 𝜃 ∈ Φ𝑠 .

Moreover, A𝜔
𝜑 ’s computations are infinite, so they all reach 𝑖𝑧 , if it exists. Thus, 𝐴1 ⇒ 𝐴2 clearly implies 𝐴𝜔1 ⇒ 𝐴𝜔2 .

Concerning 𝐴𝜔2 ⇒ 𝐴𝜔1 , we note that in the proofs of 𝐴2 ⇒ 𝐴1 the acceptance condition of A𝜑 does not matter, and 𝐴1

follows from the computation reaching 𝑖𝑧 . This proves that 𝐴1 ⇐⇒ 𝐴2 implies 𝐴𝜔1 ⇐⇒ 𝐴𝜔2 .
As stated earlier, 𝐴1 ⇐⇒ 𝐴2 may not always hold in the 𝜔 case. The only case when this happens is when 𝜋 = ⋖

and 𝜒⋖𝐹 𝜓 is satisfied by infinite positions 𝑖𝑏𝑘 , for 𝑘 ∈ N: in this case there exists no 𝑖𝑧 such that 𝐴𝜔2 holds, and we must
prove 𝐴𝜔1 ⇐⇒ 𝐴𝜔3 . The proof of this claim closely resembles the one of Lemma A.1, so we do not repeat it fully.
𝐴𝜔3 ⇒ 𝐴𝜔1 easily follows by the existence of infinitely many positions where𝜓 holds, and 𝐴𝜔1 ⇒ 𝐴𝜔3 can be shown by
detailing a generic computation of A𝜔

𝜑 on the word structure of Fig. 12.
Now, we prove the inductive claim.
𝐼1 ⇒ 𝐼2 follows from 𝐴𝜔1 ⇐⇒ (𝐴𝜔2 ∨𝐴𝜔3) and A𝜔

𝜑 ’s transition relation being a subset of A𝜔
𝜑−𝜒𝜋𝐹 𝜓

’s.
𝐼2 ⇒ 𝐼1 also follows from the auxiliary claim, but we must also show that computations that satisfy 𝐼2 are accepting

for A𝜔
𝜑 . If a computation is accepting for A𝜔

𝜑−𝜒𝜋𝐹 𝜓
, then it satisfies all acceptance sets except possibly 𝐹𝜒𝜋𝐹 𝜓 . We must

show that a state in 𝐹𝜒𝜋𝐹 𝜓 occurs infinitely often if 𝐼2 holds.
If 𝜒𝜋𝐹 𝜓 is not in Φ

𝑔
𝑝 (𝑖) nor in the pending part of any state in 𝛼𝛾 , then it is also not in the pending part of any

state in 𝛼 ′𝛾 . This can be easily shown by noting that 𝛾 remains the same, and according to the proofs of Lemmas 4.2
and A.1, 𝛼 ′ is made at most by one symbol from 𝛼 updated by a shift move (which does not change its state), and a
newly-pushed symbol which, however, is not constrained to contain 𝜒𝜋𝐹 𝜓 in its pending part by any 𝒟ℛ rule. By
Lemma 5.3, this means 𝜒𝜋𝐹 𝜓 ∉ Φ

𝑔
𝑠 (𝑖𝑧), so Φ𝑔 (𝑖𝑧) ∈ 𝐹𝜒𝜋𝐹 𝜓 if 𝐴𝜔2 holds. If 𝜒𝜋𝐹 𝜓 never holds again in the computation,

it is trivially accepting; if it holds infinitely many times, a state in 𝐹𝜒𝜋𝐹 𝜓 is also visited infinitely many times, so the
computation is accepting. If, instead, 𝐴𝜔3 holds, then A𝜔

𝜑 visits a sequence of states that contain 𝜒⋖𝐹 𝜓 in their pending
part and𝜓 in their current part, which makes them accepting for 𝐹𝜒⋖𝐹 𝜓 .

If 𝜒𝜋𝐹 𝜓 is in Φ
𝑔
𝑝 (𝑖) or in the pending part of some state(s) in 𝛼𝛾 , it means one or more previous instances of 𝜒𝜋𝐹 𝜓

appeared in previous states of the computation, and are pending. Let 𝑖′ be the leftmost word position where one of

Manuscript submitted to ACM

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

A Model Checker for Operator Precedence Languages 39

such instances holds: the same reasoning we made for 𝑖 can be applied to the instance holding in 𝑖′, proving that the
computation reaches a configuration where 𝜒𝜋𝐹 𝜓 does not appear any more in the current state nor in the stack. □

An acceptance condition for summary until operators is also needed, so that computations in which the satisfaction
of an until operator is postponed forever are rejected. For𝜓 U𝑑

𝜒 𝜃 ∈ Cl(𝜑), we add an acceptance set

𝐹𝜓U𝑑
𝜒𝜃

= 𝐹𝜒�𝐹 (𝜓U𝑑
𝜒𝜃) ∩ 𝐹𝜒⋖𝐹 (𝜓U𝑑

𝜒𝜃) ∩ {Φ ∈ 𝑄𝜔 | 𝜓 U𝑑
𝜒 𝜃 ∉ Φ𝑐 ∨ 𝜃 ∈ Φ𝑐 }.

The condition that𝜓 U𝑑
𝜒 𝜃 ∉ Φ𝑐 or 𝜃 ∈ Φ𝑐 allows for accepting computations where each instance of𝜓 U𝑑

𝜒 𝜃 is satisfied,
possibly occurring infinitely often. These states are intersected with those accepting for 𝜒�𝐹 (𝜓 U𝑑

𝜒 𝜃) and 𝜒⋖𝐹 (𝜓 U𝑑
𝜒 𝜃),

to make sure that no until operator is pending or “hidden” in the stack.
The condition for𝜓 U𝑢

𝜒 𝜃 is obtained by substituting ⋗ for ⋖. The conditions for hierarchical operators are similar:

𝐹𝜓U𝑢
𝐻𝜃 = 𝐹#𝑢

𝐻 (𝜓U𝑢
𝐻𝜃) ∩ {Φ ∈ 𝑄𝜔 | 𝜓 U𝑢

𝐻 𝜃 ∉ Φ𝑐 ∨ 𝜃 ∈ Φ𝑐 },
𝐹𝜓U𝑑

𝐻𝜃 = 𝐹#𝑑
𝐻 (𝜓U𝑑

𝐻𝜃) ∩ {Φ ∈ 𝑄𝜔 | 𝜓 U𝑢
𝐻 𝜃 ∉ Φ𝑐 ∨ 𝜃 ∈ Φ𝑐 } ∩ 𝐹𝜒⋗𝐹 ⊤ .

We can now conclude the proof:

Theorem 5.5 (Correctness of 𝜔-Word Model Checking). Given a finite set of atomic propositions 𝐴𝑃 , an OP

alphabet (P(𝐴𝑃), 𝑀𝐴𝑃), an 𝜔-word𝑤 on it, and a POTL formula 𝜑 with no hierarchical operators, automaton A𝜔
𝜑 is such

that it performs at least one accepting computation on𝑤 if and only if (𝑤, 1) |= 𝜑 .

Proof. The proof follows the one of Theorem 4.4 verbatim, except Lemmas 4.2, A.1 and 4.3 are replaced by 5.4. □

5.1 Complexity

The complexity claims made for finite-word model checking can be extended to the infinite case, as the presence of the
in-stack part of states does not cause a further blow-up of their amount. By Theorem 2.8 it is possible to transform the
generalized 𝜔OPBA A𝜔

𝜑 into a normal 𝜔OPBA with a size increase proportional to |F|. Since F contains one set for
each occurrence of a chain or hierarchical next or until operator in 𝜑 , we have |F| = 𝑂 (|𝜑 |), which does not change the
overall complexity class. Hence,

Theorem 5.6. Given a POTL formula 𝜑 , it is possible to build an 𝜔OPBA accepting the language denoted by 𝜑 with at

most 2𝑂 (|𝜑 |) states.

Again, we exploit the complexity lower bounds for NWTL to claim

Theorem 5.7. POTL model checking and satisfiability on OP 𝜔-words are EXPTIME-complete.

6 IMPLEMENTATION

We implemented the OPA and 𝜔OPBA constructions of Sections 4 and 5 in an explicit-state model checking tool called
POMC [23]. The tool is written in Haskell [61], a purely functional, statically typed programming language with lazy
evaluation. In this section, we describe the underlying algorithms together with some remarks on more technical
aspects of their implementation.

Given a POTL specification 𝜑 and an OPA (resp. 𝜔OPBA) A to be checked, POMC generates the product automaton

between A and the automaton A¬𝜑 (resp. A𝜔¬𝜑) built according to Section 4 (resp. 5) on-the-fly while executing a
reachability algorithm. POMC checks for emptiness of the language accepted by an OPA by checking the reachability

Manuscript submitted to ACM

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

40 Michele Chiari, Dino Mandrioli, Francesco Pontiggia, and Matteo Pradella

of an accepting configuration, by means of a modified Depth-First Search (DFS) of the transition relation. Language
emptiness checking for 𝜔OPBA is significantly more involved than the finite-word case, since fair cycles must be found
in the transition relation. We accomplish this by means of graph-theoretic techniques, with algorithms already sketched
in [73] that are similar to the ones developed for Recursive State Machines (RSMs) [5].

6.1 OPA Language Emptiness Checking

The transition system associated to an OPA can be infinite, because the stack may grow unboundedly. However, each
transition is determined only by the topmost stack symbol, besides the current state and the input symbol. Intuitively,
in runs in which the stack size grows forever, the OPA must visit a configuration featuring the same state and topmost
stack symbol infinitely often, forming a cycle. The reachability algorithm exploits this fact to detect cycles in OPA
behavior, and thus it does not have to explore an infinite number of configurations.

To formalize the underlying idea, we define semi-configurations as tuples whose elements uniquely determine the next
move of an OPA, and the semi-configuration graph, which is derived from an OPA’s transition relation by “projecting” it
onto the space of semi-configurations.

Definition 6.1. Given an OP alphabet (Σ, 𝑀Σ), where Σ is a finite input alphabet, let A = (Σ, 𝑀Σ, 𝑄, 𝐼 , 𝐹 , 𝛿) be an
OPA, with stack symbols in Γ = Σ ×𝑄 ∪ {⊥}.

A semi-configuration of A is an element of C = 𝑄 × Γ × Σ.
The semi-configuration graph of A is a pair (C, E) where E ⊆ C2 is partitioned into the following three disjoint sets:

𝐸push = {((𝑞,𝑔, 𝑏), (𝑝, [𝑏, 𝑞], ℓ)) ∈ C2 | 𝑠𝑚𝑏 (𝑔) ⋖ 𝑏 ∧ (𝑞,𝑏, 𝑝) ∈ 𝛿push ∧ ℓ ∈ Σ ∪ {#}}
𝐸shift = {((𝑞, [𝑎, 𝑟], 𝑏), (𝑝, [𝑏, 𝑟], ℓ)) ∈ C2 | 𝑎 � 𝑏 ∧ (𝑞,𝑏, 𝑝) ∈ 𝛿shift ∧ ℓ ∈ Σ ∪ {#}}

𝐸supp = {((𝑞,𝑔, 𝑏), (𝑝,𝑔, ℓ)) ∈ C2 | A has a support 𝑞
𝑏−→ 𝑞′ . . . 𝑞′′

𝑞
=⇒ 𝑝 and ℓ ∈ Σ ∪ {#}}

Elements of semi-configurations represent the current state, the topmost stack symbol, and a look-ahead for the next
input symbol, respectively.

The graph has three kinds of edges: push and shift edges, which represent the respective moves in A, and support

edges,6 which represent a chain support (cf. Definition 2.5). The need for such edges arises from the fact that, while
an OPA may perform push and shift moves freely, pop moves may only occur if a specific stack symbol is present on
top of the stack. Thus, cycles of push and shift moves may be followed an arbitrary number of times, while cycles of
pop moves are constrained by the number of stack symbols and, consequently, the number of previous push moves.
Therefore, we use support edges to represent the whole “life” of a stack symbol, from the push move creating it to the
pop move destroying it. Support edges have the additional feature that they “summarize” an entire chain support, so
recursively nested chains are replaced by one single edge, producing a finite graph.

It should be now easy to see that a path in the semi-configuration graph represents a run of A (the stack can be
re-constructed by accumulating pushed symbols), and reachability of a node in this graph implies reachability of the
semi-configuration in the OPA. Algorithm 1 solves the reachability problem for OPA by performing a DFS on the
semi-configuration graph on-the-fly. Each time a chain support is explored, its ending semi-configuration is saved and
associated with the starting one. So, the next time the starting semi-configuration is reached, the support does not have
to be re-explored.

6Support edges are analogous to summary edges in [5], with the usual differences due to the use of our relation 𝜒 .

Manuscript submitted to ACM

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

A Model Checker for Operator Precedence Languages 41

Algorithm 1 OPA semi-configuration reachability
1: function Reach(𝑞,𝑔, 𝑐, ℓ)
2: if (𝑞,𝑔, ℓ) ∈ 𝑉 ∨ (𝑞,𝑔, ∗) ∈ 𝑉 then return false
3: 𝑉 := 𝑉 ∪ (𝑞,𝑔, ℓ)
4: if 𝑞 ∈ 𝑄𝑅 ∧ 𝑔 ∈ Γ𝑅 then return true
5: 𝑎 := 𝑠𝑚𝑏 (𝑔)
6: for all (𝑞,𝑏, 𝑝) ∈ 𝛿push s.t. 𝑎 ⋖ 𝑏 ∧ (𝑏 = ℓ ∨ ℓ = ∗) do
7: SupportStarts := SupportStarts ∪ { (𝑞,𝑔, 𝑐) }
8: if Reach(𝑝, [𝑏,𝑞], 𝑏, ∗) then return true
9: for all (𝑠, 𝑞, 𝑐′, ℓ ′) ∈ SupportEnds s.t. 𝑎 ⋖ 𝑐′ do
10: if Reach(𝑠, 𝑔, 𝑐, ℓ ′) then return true
11: if 𝑔 ≠ ⊥ then
12: [𝑎, 𝑟] := 𝑔
13: for all (𝑞,𝑏, 𝑝) ∈ 𝛿shift s.t. 𝑎 � 𝑏 ∧ (𝑏 = ℓ ∨ ℓ = ∗) do
14: if Reach(𝑝, [𝑏, 𝑟], 𝑐, ∗) then return true
15: for all (𝑞, 𝑟, 𝑝) ∈ 𝛿pop, 𝑏 ∈ Σ ∪ {#} s.t. 𝑎 ⋗ 𝑏 ∧ (𝑏 = ℓ ∨ ℓ = ∗) do
16: SupportEnds := SupportEnds ∪ { (𝑝, 𝑟, 𝑐, 𝑏) }
17: for all (𝑟, 𝑔′, 𝑐′) ∈ SupportStarts s.t. 𝑠𝑚𝑏 (𝑔′) ⋖ 𝑐 do
18: if Reach(𝑝,𝑔′, 𝑐′, 𝑏) then return true
19: return false

Algorithm 2 OPA emptiness check
1: function IsEmpty(A)
2: (Σ, 𝑀Σ,𝑄, 𝐼 , 𝐹 , (𝛿push, 𝛿shift , 𝛿pop)) := A
3: 𝑉 := SupportStarts := SupportEnds := ∅
4: 𝑄𝑅 = 𝐹
5: Γ𝑅 = {⊥}
6: for all 𝑞 ∈ 𝐼 do
7: if Reach(𝑞,⊥, #, ∗) then return false
8: return true

Function Reach receives as its arguments a state 𝑞 ∈ 𝑄 , a stack symbol 𝑔 ∈ Γ, a character 𝑐 ∈ Σ, and ℓ ∈ Σ ∪ {∗}.
The algorithm searches the semi-configuration graph of the OPA starting from semi-configuration (𝑞,𝑔, ℓ) and stops
when it reaches a semi-configuration (𝑞′, 𝑔′, ℓ′) with 𝑞′ ∈ 𝑄𝑅 and 𝑔′ ∈ Γ𝑅 , where 𝑄𝑅 and Γ𝑅 are the sets of target states
and stack symbols. We admit ∗ as a wildcard look-ahead representing all characters in Σ to avoid creating a separate
semi-configuration for each input symbol after push and shift moves. The purpose of character 𝑐 will be explained later.

The algorithm first checks whether the current semi-configuration has already been visited or is a target semi-
configuration, and terminates in these cases. Otherwise, it proceeds to examine all transitions that the OPA could
perform next.

The loop in line 6 explores push moves. Before analyzing the semi-configuration produced by the push move through
a recursive call, it saves the current semi-configuration in the set SupportStarts, which contains semi-configurations
fromwhich a support begins. The contents of SupportStarts will be matched with pop moves to create support edges. The
loop in line 13 performs shift moves by updating the input symbol in 𝑔 and exploring the resulting semi-configuration.

The loop in line 15 performs pop moves: it looks into SupportStarts for semi-configurations that led to push moves
that could have pushed 𝑔 onto the stack, and for each one of them (line 17) it explores the semi-configuration resulting
by their pop. Each one of the iterations of the internal loop corresponds to the exploration of a support edge. Here we
use character 𝑐 , called the latest pushed look-ahead. We use it to match the state 𝑟 in the topmost stack symbol 𝑔 with
the character that was pushed with it, in order to uniquely identify the push move that pushed it. We need to store it
separately because the character in 𝑔 could be changed by shift moves.

Until now we have ignored the role of SupportEnds. To see why it is needed, suppose the algorithm reaches a
semi-configuration (𝑞,𝑔, ℓ) with latest pushed look-ahead 𝑐 that leads to a push of [𝑞, ℓ] to the stack: tuple (𝑞,𝑔, 𝑐) is
inserted into SupportStarts, and the subsequent support explored, starting from (𝑝, [𝑞, ℓ], ∗). Later, [𝑞, ℓ] is popped by
a move that leads to a semi-configuration (𝑠, 𝑔, ℓ′) for some ℓ′ ∈ Σ and latest pushed look-ahead 𝑐 . Then, suppose a
semi-configuration (𝑞,𝑔′, ℓ) is reached with 𝑔′ ≠ 𝑔 that admits the same push move: the next semi-configuration to

Manuscript submitted to ACM

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

42 Michele Chiari, Dino Mandrioli, Francesco Pontiggia, and Matteo Pradella

be explored would be, again, (𝑝, [𝑞, ℓ], ∗). But this semi-configuration is in 𝑉 , and would not be explored. This would
prevent the algorithm from exploring a summary edge that leads to (𝑠, 𝑔′, ℓ′), thus missing part of the graph.

To solve this issue, when exploring a pop move the algorithm saves into SupportEnds a tuple that allows it to
reconstruct its target configuration. After each push move, in line 9, the algorithm uses tuples in SupportEnds to jump
directly from the push move starting a support that has already been explored to the semi-configuration it ends with,
effectively following a support edge.

To solve the emptiness problem, as shown in Algorithm 2 we pose 𝑄𝑅 = 𝐹 and Γ𝑅 = {⊥}, and call Reach(𝑞,⊥, #, ∗)
for each 𝑞 ∈ 𝐼 .

Complexity. Each time an edge in 𝛿 is explored, Reach is called at most once for each element in SupportStarts

and SupportEnds, which is bounded by |𝛿push |2 (the number of possible push moves times stack symbols, which is
also bounded by |𝛿push |). The space complexity is dominated by the size of 𝑉 , which in the worst case contains all
semi-configurations. Thus, each call to Reach has worst-case time complexity 𝑂 (|𝛿 | |𝛿push |2 |Σ|) and space complexity
𝑂 (|𝑄 | |𝛿push | |Σ|). Note that only transitions and states that are actually visited contribute to the complexity, so the
above bounds are reached only if the whole OPA is visited. Also, if Σ contains sets of atomic propositions, we consider
only those on which the OPM is defined. E.g., with𝑀call we use only elements of Σcall as look-aheads, and |Σcall | is a
small constant.

Remark. When using these algorithms for model checking, states are pairs of states of A and A¬𝜑 . According to
𝒟ℛ rule (1) from Section 4.1, states of A¬𝜑 contain exactly the atomic propositions that will be read by subsequent
push and shift moves. Thus, it is possible to omit the look-ahead ℓ and the latest pushed look-ahead 𝑐 , by extracting
sets of atomic propositions from states. So, |Σ| can be removed from the above complexity bounds.

6.2 𝜔OPBA Emptiness Checking

The algorithm for checking emptiness of an 𝜔OPBA has been developed in [72]. Due to the Büchi acceptance condition,
to check whether an 𝜔OPBA has an accepting run we need to check for reachable cycles containing final states. In
Nondeterministic Büchi Automata (NBAs) this is done with a nested DFS, but adapting this algorithm to 𝜔OPBAs is
sub-optimal, as was shown for RSMs in [5]. Thus, following the same approach as [5], we use an on-line algorithm to
incrementally compute Strongly Connected Components (SCCs) while summary edges are discovered.

We use the path-based algorithm by H.N. Gabow [40], which is well-suited for early-termination and can be easily
combined with the transition graph’s exploration, because it is based on a DFS. This algorithm performs a DFS on
the graph, and contracts SCCs as it finds back-edges. It finds all SCCs in a graph in linear time, by using simple data
structures such as arrays and stacks.

The overall fair-cycle detection algorithm works by alternating two phases:

• a search phase, in which the transition graph of the 𝜔OPBA is explored and processed by the SCC algorithm
without following summary edges (or chain supports), which are stored in a set;

• a collapse phase, where summary edges collected in the search phase are added to the graph, and the SCC
algorithm only is run once again; resulting new SCCs are collapsed into one single node, if any.

After the collapse phase, a new search phase is launched starting from semi-configurations reached by summary edges,
and so on. If a SCC containing final states is detected during any of the two phases, the algorithm terminates, as an
Manuscript submitted to ACM

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

A Model Checker for Operator Precedence Languages 43

accepting run has been found. Otherwise, the algorithm terminates once no more summary edges have been found,
which means that the 𝜔OPBA accepts the empty language.

Complexity. This algorithm has a worst-case time complexity of 𝑂 (𝑘 |𝛿 | |𝛿push |3 |Σ|), where 𝑘 is the number of SCCs
found, and space complexity 𝑂 (|𝛿 | |𝛿push |2 |Σ|). 𝑘 is bounded by |𝑄 |, leading to a time bound 𝑂 (|𝑄 | |𝛿 | |𝛿push |3 |Σ|). We
can make the same considerations on the size of Σ as in Section 6.1.

On the choice of Haskell as the implementation language

The model checkers that have obtained most success in the research community are written in imperative programming
languages. Just to name a few, the already mentioned SPIN [50] and NuSMV [28] are written in C, and UPPAAL [11] in
C++. In this context, the choice of writing a model checker in a purely functional programming language like Haskell
deserves some remarks.

Themain reason for this choicewas that the declarative nature of Haskell and its syntax, which is close tomathematical
notation, make it easier to code the numerous rules required by the automaton construction procedure. Moreover,
all such rules only need to be activated when the relevant formula is present in the closure. We exploit higher order
functions and lazy evaluation to evaluate only rules that are actually needed, something that would require substantial
engineering efforts in imperative languages, but that comes naturally with Haskell (in practice, the automaton’s
transition relation is a thunk that contains only references to functions encoding the relevant rules).

The main drawback of using a functional language is that the reachability algorithms are based on a DFS, which is an
inherently sequential algorithm: the global sets and maps used to keep track of visited semi-configurations, as well as
SupportStarts and SupportEnds, do not cope well with referential transparency (in practice, such data structures would
need to be partially duplicated at any update, with considerable overhead). Luckily, Haskell offers monads to express
sequential computations and, in particular, the ST monad implements the lazy functional state threads paradigm [56],
which allows us to employ mutable data structures embedded in a purely functional context. This represents the
standard solution for structuring a DFS search in a lazy functional language [53].

The overall result is a relatively small (∼ 5000 lines of code) and maintainable code base, without sacrificing efficiency.

7 EXPERIMENTAL EVALUATION

We evaluate POMC on two benchmark suites which we made publicly available [23]. The first one consists of three case
studies that were modeled manually as OPAs in [25], and which we now also model as MiniProc programs (Section 7.1),
complemented by a systematic verification of the largest one of such programs against a variety of requirements
expressed as nontrivial POTL formulas. The main goal of these benchmarks is to stress the key features of OPLs and
POTL to evaluate the potential practical application thereof in terms of model checking. The second suite (Section 7.2)
comprises different MiniProc implementation variants of the QuickSort algorithm, and continues from the Example 2.10.
In this case the accent is on verifying algorithmic correctness and program termination, possibly in the presence
of exceptions. While the case studies in Section 7.1 were initially conceived as OPAs on finite-length sentences and
subsequently one of them was tested for 𝜔-languages too, in Section 7.2 we use exclusively 𝜔OPBAs, as we need to
perform termination analysis.

Manuscript submitted to ACM

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

2255

2256

2257

2258

2259

2260

2261

2262

2263

2264

2265

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

44 Michele Chiari, Dino Mandrioli, Francesco Pontiggia, and Matteo Pradella

main() {
pa();
try {

pa();
pb();

} catch {
perr();

}
}

pa() {
pc();
pd();
if (*) {

pa();
} else {}

}

pb() {
try {

pe();
} catch {

perr();
}

}

pc() {
if (*) {

pa();
} else {

pe();
}

}

pd() {
pc();
pa();

}

perr() {}

pe() {
if (*) {

throw;
} else {}

}

Fig. 17. “Basic larger” MiniProc program.

7.1 Basic Case Studies

The first three benchmarks of this section are a simple and a more complex case of stack inspection, and one of exception
safety. The fourth one instead is systematic verification of a single program against many different POTL formulas; in
this case the verification is carried over both for the OPA and for its 𝜔 version.

Simple stack inspection. We checked formula

□
((call ∧ p𝐵 ∧ Scall(⊤, p𝐴)) =⇒ CallThr (⊤))

from Section 3.3 on two simple MiniProc programs similar to the one of Fig. 4b, named Simple1 and Simple2 in the first
rows of Tables 1 and 2 and a third one, called “basic larger” in the third row of the same tables, and shown in Fig. 17.

Java-inspired stack inspection. The security framework of the Java Development Kit (JDK) is based on stack inspection,
i.e. the analysis of the program stack contents during execution. The JDK provides method checkPermission(perm)

from class AccessController, which searches the stack for frames of functions that have not been granted permission
perm. If any are found, an exception is thrown. Such permission checks prevent the execution of privileged code
by unauthorized parts of the program, but they must be placed in sensitive points manually. Failure to place them
appropriately may cause the unauthorized execution of privileged code. An automated tool to check that no code can
escape such checks is thus desirable. Any such tool would need the ability to model exceptions, as they are used to
avoid code execution in case of security violations.

Such needs are explained in [51] through an example Java program for managing a bank account. It allows the user
to check the account balance and withdraw money. To perform such tasks, the invoking program must have been
granted permissions CanPay and Debit, respectively. We modeled this program as MiniProc code and as an OPA, both
named Java Security in the fourth row of Tables 2 and 1 respectively, and proved that the program enforces security
measures effectively by checking it against the formula

□(call ∧ read =⇒ ¬(⊤ S𝑑
𝜒 (call ∧ ¬CanPay ∧ ¬read)))

meaning that the account balance cannot be read if some function in the stack lacks the CanPay permission (a similar
formula checks the Debit permission).

Exception Safety. This case study comes from a tutorial on how to make exception-safe generic containers in C++ [75].
It consists of two implementations of a generic stack data structure, parametric on the element type T. The first one is
not exception-safe: if the constructor of T throws an exception during a pop action, the topmost element is removed,
Manuscript submitted to ACM

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

2321

2322

2323

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

A Model Checker for Operator Precedence Languages 45

Table 1. Results of the evaluation of hand-made OPAs. ‘# states’ refers to the OPA to be verified.

Benchmark name # states Time (ms) Total Memory (KiB) MC Memory (KiB) Result
1 Simple1 12 1,009 73,632 6,096 True
2 Simple2 24 707 73,671 1,911 False
3 Basic larger (Fig. 17) 30 1,214 73,633 9,104 True
4 Java security 42 289 71,504 1,756 True
5 unsafe stack 63 1,332 71,482 21,095 False
6 safe stack 77 596 71,480 3,979 True
7 unsafe stack neutrality 63 4,821 209,981 83,850 True
8 safe stack neutrality 77 787 71,486 8,864 True

but it is not returned, and it is lost. This violates the strong exception safety requirement that each operation is rolled
back if an exception is thrown. The second version of the data structure instead satisfies such requirement.

While exception safety is undecidable in C++, here we consider the weaker requirement that each modification to
the data structure is only committed once no more exceptions can be thrown. We modeled both implementations as
OPAs, and checked this requirement against the following formula:

□(exc =⇒ ¬((⊖𝑢 modified ∨ 𝜒𝑢𝑃 modified) ∧ 𝜒𝑢𝑃 (Stack :: push ∨ Stack :: pop)))

POMC successfully found a counterexample for the first implementation named unsafe stack in the fifth row of the two
tables, and proved safety of the second one named safe stack in the sixth row.

Additionally, we proved that both implementations are exception neutral as reported in rows 7 and 8 of both tables,
i.e. Stack functions do not block exceptions thrown by the underlying type T. This was accomplished by checking the
following formula, where Stack identifies all methods of the Stack class:

□(exc ∧ ⊖𝑢 T ∧ 𝜒𝑑𝑃 (han ∧ 𝜒𝑑𝑃 Stack) =⇒ 𝜒𝑑𝑃 𝜒
𝑑
𝑃 𝜒

𝑢
𝐹 exc) .

Checking the basic larger program against a variety of formulas. To complete the first suite of experiments we
performed a systematic check of the program of Fig. 17 against many formulas devised with the purpose of testing
all POTL operators. They differ from each other in meaning, length and complexity. Such formulas are explicitly and
identically reported in Tables 3 and 4. This experiment has also the goal of comparing the tool performances in the two
cases of OPA and 𝜔OPBA. Both automata were automatically generated from the MiniProc code.

Results. These experiments were executed on a laptop with a 2.2 GHz Intel processor and 15 GiB of RAM, running
Ubuntu GNU/Linux 20.04.

The results of the first three benchmarks are shown in Tables 1 and 2, reporting, respectively, on the implementations
on manually designed OPAs and those automatically generated from MiniProc. Tables 3 and 4 instead list explicitly
the —further— POTL formulas used to verify the “basic larger” program and the results obtained for the OPA and the
𝜔OPBA, respectively. Tables 1 through 3 were included in artifact [26].

In the tables, by “Total” memory we mean the maximum resident memory including the Haskell runtime (which
allocates ~70 MiB by default), and by “MC” the maximum memory used by model checking as reported by the runtime.

Table 1 shows that model checking on hand-made OPAs runs in at most a few seconds, and with a modest memory
occupancy. In Table 2, when checking the same case studies by using automatically-generated OPAs as models, the
execution times increase significantly due to the larger size of generated OPAs, which is consistent with the reachability

Manuscript submitted to ACM

2341

2342

2343

2344

2345

2346

2347

2348

2349

2350

2351

2352

2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

2376

2377

2378

2379

2380

2381

2382

2383

2384

2385

2386

2387

2388

2389

2390

2391

2392

46 Michele Chiari, Dino Mandrioli, Francesco Pontiggia, and Matteo Pradella

Table 2. Results of the evaluation of MiniProc programs automatically compiled into OPAs. ‘# states’ refers to the OPA to be verified.

Benchmark name # states Time (ms) Total Memory (KiB) MC Memory (KiB) Result
1 Simple1 19 1,028 71,493 7,009 True
2 Simple2 31 743 71,490 2,138 False
3 Basic larger (Fig. 17) 44 1,315 71,487 8,125 True
4 Java security 1236 1,839 71,489 17,571 True
5 unsafe stack 162 2,869 88,394 33,990 False
6 safe stack 340 11,572 523,531 207,545 True
7 unsafe stack neutrality 162 12,670 468,025 197,892 True
8 safe stack neutrality 340 18,474 760,313 312,682 True

algorithm having a super-linear (but still polynomial) computational complexity. The time and memory requirements
remain, however, reasonable. The same can be said about the numerous formulas that we check in Table 3, most of
which take less than one second, except a few outliers, which highlight the fact that the process is exponential in
formula length.

Finally, in Table 4 we see the behavior of the 𝜔OPBA emptiness algorithms on the same formulas as in Table 3. In this
case, the execution times increase significantly, due to the higher complexity of finding SCCs instead of just checking
reachability. However, the time taken by most formulas remains of at most a few seconds, and the same can be said
for memory occupancy. There are a few outliers, this time more than in the finite-word case, and one of them even
runs out of memory. Again, this is a symptom of the worst-case complexity of the problem, which manifests itself with
longer formulas and with hierarchical operators in particular. We did not try the case studies from Table 2 as 𝜔OPBA,
because the properties we check do not make sense in the 𝜔-word case.

In conclusion, we can state that the results are promising also in practice, and this opens the way to the use of these
techniques for checking more complex systems, such as real-world programs, or parts thereof.

7.2 QuickSort

This benchmark is an adaptation from the suite packaged with the Moped model checker [52]; it consists of a Java
implementation of the QuickSort algorithm, which we tailored to exceptions, to show the greater expressive power
of POMC to model real-world procedural programs. QuickSort is a well-known sorting algorithm and an ideal case
study for the verification of infinite state-space programs, because it admits a naturally recursive implementation. In
different variants, it has been targeted in the literature by some state-of-the-art program verifiers (such as DAFNY [21]
and STAINLESS [45]).

Two versions of QuickSort are included in Moped: a correct one (Correct Quicksort), and a faulty one (called Buggy

Quicksort, or Error Quicksort) which enters an infinite loop for some input arrays, and of which we presented a MiniProc
version in Fig. 6. Moped [37, 74] has been used to prove, respectively, the correctness of the former one and the
incorrectness of the latter one.

Our first benchmark is an enrichment of the correct QuickSort in Moped, by introducing the management of
exceptions. The MiniProc code, called Semisafe, is shown in Fig. 18. The QuickSort procedure qs() receives as input an
array of objects to be sorted. Since the objects are of non-primitive types, the array may contain null references. If one
of them is read by the procedure, it throws a NullPointerException, potentially terminating the program abnormally.
Thus, we devised the following version of the algorithm: procedure qs() is first called in a try-catch block. If it throws
Manuscript submitted to ACM

2393

2394

2395

2396

2397

2398

2399

2400

2401

2402

2403

2404

2405

2406

2407

2408

2409

2410

2411

2412

2413

2414

2415

2416

2417

2418

2419

2420

2421

2422

2423

2424

2425

2426

2427

2428

2429

2430

2431

2432

2433

2434

2435

2436

2437

2438

2439

2440

2441

2442

2443

2444

A Model Checker for Operator Precedence Languages 47

Table 3. Results of additional experiments on the program of Fig. 17, automatically translated into an OPA with 44 reachable states.
The abbreviations are: M. T. = Total Memory, M. MC = Memory for Model Checking only.

Formula Time (ms) M.T. (MiB) M.MC (KiB) Results
𝜒𝑑𝐹 pErr 0.9 70 160 False
#𝑑 (#𝑑 (call ∧ 𝜒𝑢𝐹 exc)) 25.9 70 870 False
#𝑑 (han ∧ (𝜒𝑑𝐹 (exc ∧ 𝜒𝑢𝑃 call))) 45.6 70 1,354 False
□(exc =⇒ 𝜒𝑢𝑃 call) 12.1 70 599 True
⊤U𝑑

𝜒 exc 2.0 70 141 False
#𝑑 (#𝑑 (⊤ U𝑑

𝜒 exc)) 4.4 70 119 False
□((call ∧ p𝐴 ∧ (¬retU𝑑

𝜒 WRx)) =⇒ 𝜒𝑢𝐹 exc) 5,388.9 121 49,135 True
#𝑑 (#𝑢 call) 0.5 70 105 False
#𝑑 (#𝑑 (#𝑑 (⊖𝑢 call))) 3.2 70 145 False
𝜒𝑑𝐹 (#𝑑 (⊖𝑢 call)) 1.4 70 148 False
□((call ∧ p𝐴 ∧ CallThr (⊤)) =⇒ CallThr (e𝐵)) 13,119.2 200 80,975 False
3(#𝑑

𝐻 p𝐵) 2.4 70 120 False
3(⊖𝑑𝐻 p𝐵) 3.4 70 120 False
3(p𝐴 ∧ (callU𝑑

𝐻 p𝐶)) 599.0 70 16,547 True
3(p𝐶 ∧ (call S𝑑

𝐻 p𝐴)) 778.6 70 17,305 True
□((p𝐶 ∧ 𝜒𝑢𝐹 exc) =⇒ (¬p𝐴 S𝑑

𝐻 p𝐵)) 134,494.0 5,920 2,641,030 False
□(call ∧ p𝐵 =⇒ ¬p𝐶 U𝑢

𝐻 pErr) 175.8 70 7,226 True
3(#𝑢

𝐻 pErr) 1.3 70 125 False
3(⊖𝑢𝐻 pErr) 1.4 70 124 False
3(p𝐴 ∧ (callU𝑢

𝐻 p𝐵)) 11.2 70 117 False
3(p𝐵 ∧ (call S𝑢

𝐻 p𝐴)) 11.9 70 117 False
□(call =⇒ 𝜒𝑑𝐹 ret) 3.5 70 115 False
□(call =⇒ ¬#𝑢 exc) 2.5 70 115 False
□(call ∧ p𝐴 =⇒ ¬CallThr (⊤)) 150.0 70 2,997 False
□(exc =⇒ ¬(⊖𝑢 (call ∧ p𝐴) ∨ 𝜒𝑢𝑃 (call ∧ p𝐴))) 30.7 70 119 False
□((call ∧ p𝐵 ∧ (call S𝑑

𝜒 (call ∧ p𝐴))) =⇒ CallThr (⊤) 1,242.5 70 8,143 True
□(han =⇒ 𝜒𝑢𝐹 ret) 20.4 70 659 True
⊤U𝑢

𝜒 exc 7.0 70 137 True
#𝑑 (#𝑑 (⊤ U𝑢

𝜒 exc)) 57.2 70 1,380 True
#𝑑 (#𝑑 (#𝑑 (⊤ U𝑢

𝜒 exc))) 196.1 70 2,939 True
□(call ∧ p𝐶 =⇒ (⊤U𝑢

𝜒 exc ∧ 𝜒𝑑𝑃 han)) 103.7 70 863 False
callU𝑑

𝜒 (ret ∧ pErr) 1.8 70 117 False
𝜒𝑑𝐹 (call ∧ ((call ∨ exc) S𝑢

𝜒 p𝐵)) 9.9 70 116 False
#𝑑 (#𝑑 ((call ∨ exc) U𝑢

𝜒 ret)) 6.2 70 116 False

an exception, an input-sanitizing procedure named parseList() is called, which removes null references from the
array, thus enforcing void safety [65]. Then, qs() is called on the new array.

To explore how the model checking implementation scales in practice with respect to the theoretical results, we
explored the performances of the same MiniProc model with varying state-space sizes. In particular, two parameters
affect the model:

• M, the length of the array to be sorted. We considered up to 7 elements in the array (M ∈ [2, 7]).
• K, the number of bits to represent array values (K ∈ [1, 4]).

Manuscript submitted to ACM

2445

2446

2447

2448

2449

2450

2451

2452

2453

2454

2455

2456

2457

2458

2459

2460

2461

2462

2463

2464

2465

2466

2467

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

2480

2481

2482

2483

2484

2485

2486

2487

2488

2489

2490

2491

2492

2493

2494

2495

2496

48 Michele Chiari, Dino Mandrioli, Francesco Pontiggia, and Matteo Pradella

Table 4. Results of additional experiments on the program of Fig. 17, but interpreted as a continuously running program. The program
has been automatically translated into an 𝜔OPBA with 44 reachable states. The abbreviations are: M.T. = Total Memory, M.MC =
Memory for Model Checking only, O.O.M. = Out of memory.

Formula Time (ms) M.T. (MiB) M.MC (KiB) Results
𝜒𝑑𝐹 pErr 31.7 71 3,717 False
#𝑑 (#𝑑 (call ∧ 𝜒𝑢𝐹 exc)) 125.0 71 7,471 False
#𝑑 (han ∧ (𝜒𝑑𝐹 (exc ∧ 𝜒𝑢𝑃 call))) 231.0 71 16,722 False
□(exc =⇒ 𝜒𝑢𝑃 call) 8.5 71 864 True
⊤U𝑑

𝜒 exc 10.6 71 1,050 False
#𝑑 (#𝑑 (⊤ U𝑑

𝜒 exc)) 23.0 71 1,590 False
□((call ∧ p𝐴 ∧ (¬retU𝑑

𝜒 WRx)) =⇒ 𝜒𝑢𝐹 exc) 39,307.0 2,540 862,164 True
#𝑑 (#𝑢 call) 2.1 71 156 False
#𝑑 (#𝑑 (#𝑑 (⊖𝑢 call))) 12.9 71 907 False
𝜒𝑑𝐹 (#𝑑 (⊖𝑢 call)) 46.2 72 2,682 False
□((call ∧ p𝐴 ∧ CallThr (⊤)) =⇒ CallThr (e𝐵)) 91,806.6 4,137 1,416,790 True
3(#𝑑

𝐻 p𝐵) 26.4 71 3,005 False
3(⊖𝑑𝐻 p𝐵) 22.2 71 2,692 False
3(p𝐴 ∧ (callU𝑑

𝐻 p𝐶)) 3,794.6 490 227,858 False
3(p𝐶 ∧ (call S𝑑

𝐻 p𝐴)) 3,692.4 415 192,171 False
□((p𝐶 ∧ 𝜒𝑢𝐹 exc) =⇒ (¬p𝐴 S𝑑

𝐻 p𝐵)) – – – O.O.M.
□(call ∧ p𝐵 =⇒ ¬p𝐶 U𝑢

𝐻 pErr) 142.1 71 11,833 True
3(#𝑢

𝐻 pErr) 5.2 71 167 False
3(⊖𝑢𝐻 pErr) 14.3 71 992 False
3(p𝐴 ∧ (callU𝑢

𝐻 p𝐵)) 29.6 72 2,675 False
3(p𝐵 ∧ (call S𝑢

𝐻 p𝐴)) 72.8 72 5,043 False
□(call =⇒ 𝜒𝑑𝐹 ret) 58.5 72 4,215 False
□(call =⇒ ¬#𝑢 exc) 6.9 71 116 True
□(call ∧ p𝐴 =⇒ ¬CallThr (⊤)) 409.9 71 18,125 True
□(exc =⇒ ¬(⊖𝑢 (call ∧ p𝐴) ∨ 𝜒𝑢𝑃 (call ∧ p𝐴))) 32.2 72 1,800 True
□((call ∧ p𝐵 ∧ (call S𝑑

𝜒 (call ∧ p𝐴))) =⇒ CallThr (⊤) 1,917.7 130 42,035 True
□(han =⇒ 𝜒𝑢𝐹 ret) 42.6 71 3,260 True
⊤U𝑢

𝜒 exc 40.2 72 3,190 False
#𝑑 (#𝑑 (⊤ U𝑢

𝜒 exc)) 260.5 72 11,556 False
#𝑑 (#𝑑 (#𝑑 (⊤ U𝑢

𝜒 exc))) 826.6 94 40,479 False
□(call ∧ p𝐶 =⇒ (⊤U𝑢

𝜒 exc ∧ 𝜒𝑑𝑃 han)) 937.7 71 27,683 False
callU𝑑

𝜒 (ret ∧ pErr) 25.9 71 2,555 False
𝜒𝑑𝐹 (call ∧ ((call ∨ exc) S𝑢

𝜒 p𝐵)) 179.8 71 10,056 False
#𝑑 (#𝑑 ((call ∨ exc) U𝑢

𝜒 ret)) 397.7 72 17,557 False

These two parameters determine the number of bits G = K ·M that the model needs for representing the global variables. In
the model, array values are chosen nondeterministically before the first call to qs(), so that every possible combination
is explored by the checker. Hence, the number of initial states is given by 2G. As an example, for the model of Fig. 6 we
have (K, M) = (3, 4). Fig. 18 reports the MiniProc program for M = 4 and K = 3. With respect to the buggy version, the
Semisafe procedure keeps track of the elements equal to the pivot and does not call itself recursively on them.
Manuscript submitted to ACM

2497

2498

2499

2500

2501

2502

2503

2504

2505

2506

2507

2508

2509

2510

2511

2512

2513

2514

2515

2516

2517

2518

2519

2520

2521

2522

2523

2524

2525

2526

2527

2528

2529

2530

2531

2532

2533

2534

2535

2536

2537

2538

2539

2540

2541

2542

2543

2544

2545

2546

2547

2548

A Model Checker for Operator Precedence Languages 49

The benchmark is equipped with ten properties (Q.1-Q.10), which we describe below. Their POTL formulation, as
well as the satisfaction results are listed in Table 5. Two properties are usually of primary interest for such a program:

• The program terminates on any input array, and does it properly. This means that it always reaches a ret
statement (Property Q.1) for the main procedure. To verify it, we impose the first position, which is the call of
the main function, to be in the 𝜒 relation with the corresponding return7.

• Any input array is correctly sorted at the end of the Quicksort procedure (Property Q.2). In order to verify it,
we introduce the Boolean variable sorted. At every swap of values in the array, we check if the array is sorted
in ascending order, and update accordingly the value for sorted. The verification of this property is somewhat
decoupled from the previous one: Q.2 does imply the termination of the program, but not a proper one, as the
matching statement in the 𝜒 relation may either be a ret or an exc statement.

For our benchmark these simple properties are false, because qs() might throw other kinds of exceptions even after
null references have been removed, so the program may terminate exceptionally even before the array is sorted. We
therefore verify the following ones:

• Q.3 and Q.4 check whether the main and qs() procedures satisfy the no-throw guarantee, and POMC correctly
finds out that they might be terminated abnormally by exceptions.

• Q.5 verifies that the program can be terminated by an exception only if the second call to qs() throws one,
which means that the array has been sanitized and the exception is not a NullPointerException. In the
MiniProc model, hasParsed is an atomic proposition that is true only after the execution of the input-sanitizing
procedure.

• Q.6 verifies the property that the array is correctly sorted, hence in the right state, if the program is terminated
by an exception. It is false because qs() might throw an exception before having finished sorting the array.

• Q.7 is a stack-inspection property that verifies that whenever an exception is thrown, either there is a handler
on the stack (so we are in the first call to qs()), or parseList() has already been called (so we are in the second
call), and hence the exception is, again, not a NullPointerException.

• Q.8 checks that the program always terminates, either properly or by an exception from the second call to qs().
It is also called conditional proper termination, since it states that the program terminates properly unless an
exception is thrown after the input-sanitizing procedure.

• Similarly, Q.9 checks that the only reason for the array not to be sorted when the program terminates is an
exception thrown by the second call to qs() (the so-called conditional correctness).

• Finally, Q.10 verifies Q.8 and Q.9 together, with a small variant that uses the 3 operator.

In total, our benchmark is composed of 240 experiments. Fig. 19, 20 and 21 report the performance results for a false
formula, Q.1, and two valid ones, Q.7 and Q.8. Because of space limits, the graphs for the remaining formulae are left
to Appendix B. The graphs show the execution times for the model checking queries for each possible value of G. A
timeout of one hour is used. All times are in seconds. Experiments that reach this threshold are interrupted, hence
not reported in the graphs. Since some values of G may be induced by different combinations of K and M, each dot is
also associated with the corresponding (K, M) pair. For example, for G = 4, there are two matching experiments: one for
(K, M) = (1, 4) and one for (K, M) = (2, 2). All the experiments were run on a server with a 2.0 GHz AMD CPU and 500
GiB of RAM.

7Remember that, when termination is an issue, we must use 𝜔OPBAs. Thus, this whole benchmark suite adopts 𝜔OPBAs.

Manuscript submitted to ACM

2549

2550

2551

2552

2553

2554

2555

2556

2557

2558

2559

2560

2561

2562

2563

2564

2565

2566

2567

2568

2569

2570

2571

2572

2573

2574

2575

2576

2577

2578

2579

2580

2581

2582

2583

2584

2585

2586

2587

2588

2589

2590

2591

2592

2593

2594

2595

2596

2597

2598

2599

2600

50 Michele Chiari, Dino Mandrioli, Francesco Pontiggia, and Matteo Pradella

Table 5. Results of verification of theQuickSort benchmark.

Formula Result
Q.1 𝜒𝑢𝐹 (ret ∧ main) False
Q.2 𝜒𝑢𝐹 sorted False
Q.3 □((call ∧ main) =⇒ ¬(#𝑢 exc ∨ 𝜒𝑢𝐹 exc)) False
Q.4 □((call ∧ qs) =⇒ ¬(#𝑢 exc ∨ 𝜒𝑢𝐹 exc)) False
Q.5 (#𝑢 exc ∨ 𝜒𝑢𝐹 exc) =⇒ #𝑢 (exc ∧ hasParsed) ∨ 𝜒𝑢𝐹 (exc ∧ hasParsed) True
Q.6 (#𝑢 exc ∨ 𝜒𝑢𝐹 exc) =⇒ #𝑢 (exc ∧ sorted) ∨ 𝜒𝑢𝐹 (exc ∧ sorted) False
Q.7 □((call ∧ accessValues) =⇒ hasParsed ∨ (⊤ S𝑑

𝜒 han)) True
Q.8 𝜒𝑢𝐹 (ret ∧ main) ∨ 𝜒𝑢𝐹 (exc ∧ hasParsed) True
Q.9 𝜒𝑢𝐹 (sorted) ∨ 𝜒𝑢𝐹 (exc ∧ hasParsed) True
Q.10 3(ret ∧ main ∧ sorted) ∨ 𝜒𝑢𝐹 (exc ∧ hasParsed) True

program:
bool sorted, hasParsed;
u3[4] a;

main() {
a[0s4] = *;
a[1s4] = *;
a[2s4] = *;
a[3s4] = *;
sorted = false;
hasParsed = false;
try {

qs(0s4, 3s4);
} catch {

hasParsed = true;
qs(0s4, 3s4);

}
}

swapElements(s4 swapLeft, s4 swapRight) {
u3 tmp;

accessValues();
tmp = a[swapLeft];
a[swapLeft] = a[swapRight];
a[swapRight] = tmp;
sorted = a[0s4] <= a[1s4]

&& a[1s4] <= a[2s4]
&& a[2s4] <= a[3s4];

}

qs(s4 left, s4 right) {
s4 lo, hi, eq;
u3 piv;

if (left < right) {
piv = a[right];
eq = left;
lo = eq;
hi = right;
while (lo <= hi) {

if (a[hi] > piv) {
hi = hi - 1s4;

} else {
swapElements(lo, hi);
if (a[lo] < piv) {

swapElements(lo, eq);
eq = eq + 1s4;

} else {}
lo = lo + 1s4;

}
}
qs(left, eq-1s4);
qs(lo, right);

} else {}
}

Fig. 18. The “Semisafe” Quicksort algorithm in MiniProc.

For all formulae, the experiments show a normal worst-case exponential behavior with respect to G. The highest
value of G handled by POMC within the timeout is reached with a formula that actually holds, whereas typically finding
a counterexample should occur earlier on average, as POMC features on-the-fly state exploration and early termination.
This peak is 12, given by formula Q.7. 12 bits correspond to 4,096 initial states. However, the maximum values before
Manuscript submitted to ACM

2601

2602

2603

2604

2605

2606

2607

2608

2609

2610

2611

2612

2613

2614

2615

2616

2617

2618

2619

2620

2621

2622

2623

2624

2625

2626

2627

2628

2629

2630

2631

2632

2633

2634

2635

2636

2637

2638

2639

2640

2641

2642

2643

2644

2645

2646

2647

2648

2649

2650

2651

2652

A Model Checker for Operator Precedence Languages 51

(1,2) (1,3)

(1,4)
(1,5)

(1,6) (1,7)

(2,2)

(2,3)

(2,4)

(2,5)

(3,2)

(3,3)

(4,2)

0

500

1000

1500

2 4 6 8 10
G

T
im

e(
s)

Fig. 19. Experimental results on property Q.1

the exponential blow up are on average smaller for valid formulae (7.6) with respect to false ones (8.8), in agreement
with the exploration strategy.

When G can be given by different combinations of K and M, M is always dominating. This adheres to the theoretical
worst-case complexity of the sorting algorithm 𝑂 (M2), given that the checker has to explore all the recursive calls for
every possible initial state (2G), thus yielding an overall complexity of 𝑂 (2G · M2). Unfortunately, there are low chances
to share the search space between different initial states, as different global variables (the array to be sorted, which
contains different values in different initial states) induce different search spaces. A partial sharing happens only for
those pairs of initial states that correspond to the same set of array values, but with a different ordering. In such a case
it may happen that, in the recursive calls, the checker finds itself exploring the sorting of a subarray in an already
visited global state, thus aborting the exploration.

Some outliers may blur the inspection of the graphs: as an example, in Fig. 20 experiment (1, 5) overcomes experiment
(3, 2). However, the exponential behavior can still be found in this case by considering that experiment (2, 3), which
corresponds to G = 6 as well, while not present in the figure because of the timeout, requires more than 3,600 seconds.

Among the ones terminating within the blow up, the highest experiment in memory consumption allocated around
134 GiB. However, most of them do not require such a powerful device: the average amount of memory allocated is
27 GiB.

7.2.1 Iterated QuickSort. The aim of this section is to present a purely “omega” algorithm, that is, a routine that is
intentionally meant to execute for an indefinite amount of time. Such routines are usually found in web interfaces or
network protocols, where a server keeps listening on an input channel. When a connection is established, the interaction
proceeds according to the protocol. However, if something goes wrong, the current session has to be interrupted, and

Manuscript submitted to ACM

2653

2654

2655

2656

2657

2658

2659

2660

2661

2662

2663

2664

2665

2666

2667

2668

2669

2670

2671

2672

2673

2674

2675

2676

2677

2678

2679

2680

2681

2682

2683

2684

2685

2686

2687

2688

2689

2690

2691

2692

2693

2694

2695

2696

2697

2698

2699

2700

2701

2702

2703

2704

52 Michele Chiari, Dino Mandrioli, Francesco Pontiggia, and Matteo Pradella

(1,2) (1,3) (1,4)

(1,5)

(1,6) (1,7)

(2,2)

(2,3)
(2,4)

(2,5)

(2,6)

(3,2)

(3,3)

(3,4)

(4,2)

(4,3)

0

500

1000

1500

2000

2 4 6 8 10 12
G

T
im

e(
s)

Fig. 20. Experimental results on property Q.7

(1,2)

(1,3)

(1,4)

(1,5)

(2,2)

(3,2)

0

500

1000

1500

2000

2 3 4 5 6
G

T
im

e(
s)

Fig. 21. Experimental results on property Q.8

Manuscript submitted to ACM

2705

2706

2707

2708

2709

2710

2711

2712

2713

2714

2715

2716

2717

2718

2719

2720

2721

2722

2723

2724

2725

2726

2727

2728

2729

2730

2731

2732

2733

2734

2735

2736

2737

2738

2739

2740

2741

2742

2743

2744

2745

2746

2747

2748

2749

2750

2751

2752

2753

2754

2755

2756

A Model Checker for Operator Precedence Languages 53

Table 6. IteratedQuickSort Experiment.

Formula Time (s) Result
IQ.1 ¬ 𝜒𝑢𝐹 ((ret ∧ main) ∨ exc) 148.19 True
IQ.2 □(exc =⇒ 𝜒𝑢𝑃 han) 59.78 True
IQ.3 □(3(call ∧ qs)) 77.26 True
IQ.4 □((call ∧ qs ∧ ⊖𝑑 han) =⇒ (𝜒𝑢𝐹 (ret ∧ qs ∧ sorted) ∨ 𝜒𝑢𝐹 (exc ∧ maxReached))) > 3,600 True

the server gets back to the channel. In such cases, besides investigating the disruption’s causes, it is crucial to establish
that the disruption of a single session does not affect the operability of the server.

To show the suitability of POMC for the verification of such protocols, in this experiment we analyze another variant
of the QuickSort benchmark. A routine continuously generates arrays by choosing their elements nondeterministically,
and then sorts them with the correct qs() procedure on the generated array. If, however, the stack size reaches a
threshold value, and the allocation of a new frame is required, an exception is thrown, the call stack is emptied and a
new array is generated.

We consider arrays of 3 elements, whose cells contain 3-bit unsigned integer values. MAX_STACK, the threshold, is set
at 3. POTL formulas, verification results and execution times are reported in Table 6.

The main property we verify is that the routine never terminates. This can be achieved with different formulas.
Namely, formula IQ.1 checks that the call of the main procedure does not have a matching ret statement or an exception
that aborts it. This represents a variant of the no-throw guarantee, previously introduced. Similarly, IQ.2 checks that
every thrown exception has a matching handler that catches it, thus preventing the pop of the initial call from the stack.
IQ.3 is a liveness property that requires that calls to the QuickSort procedure are endlessly pushed onto the stack.

Finally, to verify the QuickSort procedure, we introduce formula IQ.4. It expresses conditional correctness and
conditional proper termination of procedure qs(). Its meaning is that every initial call of qs() on an array either
terminates properly with a ret statement after having correctly sorted the array, or is interrupted by an exception due
to having reached the maximum stack size (maxReached).

7.2.2 BuggyQuicksort. For completeness, we show the analysis of the buggy variant performed by POMC. First, we
consider the termination check experiment. Following the approach of [37, 74], we abstract away from the array content
and just regard the local variables, thus generating a smaller model. With respect to Fig. 6, we replace the comparison
a[hi] > piv with a nondeterministic choice (except for the first loop iteration, when we know that the outcome is
false). The main model parameter is now N, the number of bits used to represent the local variables. An example with
N = 3 is given in Fig. 22. The model does not have global variables, while it has 4 local variables: left, right, lo, hi.
The values of left and high are chosen nondeterministically before the first call to qs(), hence the number of initial
states is 22N. The formula we verify is 3(ret ∧ main) (BQ.1), which is equivalent to the POTL formula 𝜒𝑢𝐹 (ret ∧ main),
as there is a single initial call to the main procedure. The results, for different values of N, are reported in Table 7, left
side, where a timeout of 1 h is used.

Secondly, we report on the verification of the model’s correctness of sorting. In order to do so, we reintroduce the
array values and consider the model of Fig. 6. The formula is 𝜒𝑢𝐹 sorted (BQ.2). As the first position is a call to the
main procedure, and there are no exceptions in this model, the matching position in the 𝜒 relation can only be the
corresponding ret statement. Then, the previous experiment implies the falsehood of this one. Results are reported in
Table 7 (right side), with varying values of 𝐾 and𝑀 .

Manuscript submitted to ACM

2757

2758

2759

2760

2761

2762

2763

2764

2765

2766

2767

2768

2769

2770

2771

2772

2773

2774

2775

2776

2777

2778

2779

2780

2781

2782

2783

2784

2785

2786

2787

2788

2789

2790

2791

2792

2793

2794

2795

2796

2797

2798

2799

2800

2801

2802

2803

2804

2805

2806

2807

2808

54 Michele Chiari, Dino Mandrioli, Francesco Pontiggia, and Matteo Pradella

program:

main() {
u3 left, right;
left = *;
right = *;
qs(left, right);

}

qs(u3 left, u3 right) {
u3 lo, hi;
bool nondet;

if (left < right) {
lo = left; hi = right;
while (lo <= hi) {

if (*) { nondet = true; }
else { nondet = false; }

if (hi == right || nondet) {
lo = lo + 1u3;

} else {
hi = hi - 1u3;

}
}
qs(left, hi);
qs(lo, right);

}
}

Fig. 22. An abstract version of the “Buggy”QuickSort algorithm in MiniProc.

Table 7. Results of termination check (BQ.1, left) and sorting correctness (BQ.2, right) for the (abstracted) BuggyQuickSort.

N Time (s) Total memory (KiB) Result
3 0.011 52,972 False
5 0.022 52,972 False
7 0.072 52,964 False
9 0.320 55,920 False
10 0.649 92,576 False

K M Time (s) Total memory (KiB) Result
1 2 0.167 58176 False
2 4 0.312 52,932 False
2 7 0.522 66,356 False
3 4 0.323 52,804 False
4 6 0.579 54,856 False

7.3 Related tools

Two well-established formalisms that model recursive programs are Pushdown Systems (PDS’s) [18, 38] and (Extended)

Recursive State Machines (ERSMs) [3]. Despite taking different perspectives, they have equivalent expressive power [3].
PDS’s are supported by the model checker Moped [37]. Informally, they are Transition Systems equipped with a

stack and a set of control locations, and allowing for nondeterministic branches. Variables can be local or global, and
supported types are Boolean or bounded-integer, which is simulated with multiple Boolean variables. Arrays of variables
are also allowed. PDS’s are a lower-level formalism, essentially pushdown automata. Moped can verify on these models
LTL properties, and perform reachability queries, implementing the algorithms presented in [34]. A second version
of Moped has been developed with a friendlier interface, Remopla, and a Java front-end called jMoped. It features an
automatic abstraction loop based on the CEGAR paradigm to target real world Java programs [35], but, unlike the
first version, it performs only reachability checks. To cope with the state-space explosion problem, Moped enforces a
symbolic representation through Boolean Decision Diagrams (BDDs).

ERSMs adopt a higher-level procedural approach. [3] presents an algorithm for Reachability analysis on ERSMs
based on a fixpoint computation which is asymptotically slightly better than translating them into PDS’s. To the best
of our knowledge, the only ERSM-based tool that has been developed is VERA [5], which supports only reachability
and fair-cycle detection queries, given a monitor for an LTL property or a set of target states. In its implementation, it
Manuscript submitted to ACM

2809

2810

2811

2812

2813

2814

2815

2816

2817

2818

2819

2820

2821

2822

2823

2824

2825

2826

2827

2828

2829

2830

2831

2832

2833

2834

2835

2836

2837

2838

2839

2840

2841

2842

2843

2844

2845

2846

2847

2848

2849

2850

2851

2852

2853

2854

2855

2856

2857

2858

2859

2860

A Model Checker for Operator Precedence Languages 55

takes a more practical approach and adapts a nested DFS to the presence of summary transitions; moreover, instead of
encoding the state space with BDDs, it uses an on-the-fly explicit-state automaton representation.

The SLAM toolkit [15] has obtained remarkable results in the verification of procedural programs, through reachability
analysis [14]. To model C programs, it uses the formalism of Boolean Programs, which are supported by Moped and
VERA, too. They are equipped with all the common imperative control-flow structures, as well as recursive procedures
with call-by-value parameter passing, and a restricted form of control nondeterminism. In Boolean Programs all variables
are of Boolean type. Procedures can return multiple values, and parallel assignment is allowed; however, there are no
arrays. Similarly to the second version of Moped, it implements a cyclic abstraction refinement technique, where the
first step is to generate an overapproximated model of the C program to be verified. If an error trace for a desired safety
property is found to be spurious, this trace is used to refine the overapproximation, and to restart the cycle. In this cycle
trace properties are verified by the reachability checker Bebop [13].

A spontaneous question is then how the performances of the above tools compare with each other and with POMC;
in fact we purposely took inspiration for our benchmarks from the QuickSort algorithm which was introduced and
adopted also to check other tools (i.e., MOPED, but VERA too targeted the buggy QuickSort program [5]). However,
VERA is not available online. While the code base of Moped is publicly available8, the project has not been maintained
in recent years, and we did not manage to rerun the experiments on the same device we used for the MiniProc ones,
because of the unavailability of some packages. SLAM, instead, is an industrial-level tool which is available within the
Microsoft Static Driver Verifier Research Platform, but is highly specialized at checking the correct use of Windows
APIs. We figure that it could be adapted to check properties expressible as reachability questions —but only those— in
the QuickSort program, and in those cases we expect high-level performances of the tool.

Hence, we do not offer a comparative evaluation in terms of performances in the few cases where programs and
specifying formulas could be compared; we just draw some qualitative findings.

Our tool, up to certain limits, is extremely fast in finding a counterexample for a formula that does not hold (with the
exception regarding formula Q.7 shown by Fig. 20). This is in line with the general implementation strategy: the early
termination and on-the-fly properties are met. In this regard POMC shows a similar behavior as VERA, with which it
shares the search space exploration approach. Moreover, we observe that the increase in complexity and number of
automaton construction rules do not affect the performances when a simple LTL formula is verified, which was another
non-trivial requirement for our implementation effort.

We emphasize, however, that the main comparison must be done, rather than in terms of performances on comparable
benchmarks —if possible— in terms of the generality of verifiable properties.

None of these formalisms models exceptions and exception-handling constructs, and the only feature on this matter
is the assert statement of Boolean Programs. More importantly, all tools examined here support (at most) the limited
class of LTL specifications, which includes only some simple properties such as the termination guarantee. They cannot
investigate the stack-based behavior of these programs, which is the key feature of POTL9.

8 CONCLUSIONS

To the best of our knowledge of the literature, OPLs are the largest family of CFLs that enjoys all algebraic, logic, and
decidability properties needed to apply the classical model-checking schema; POTL, being FO-complete and therefore

8http://www2.informatik.uni-stuttgart.de/fmi/szs/tools/moped/
9The only reference to an implementation of CaRet model checking we could find is [69]. However, the tool downloadable from the author’s website [67]
does not seem to accept CaRet specifications.

Manuscript submitted to ACM

http://www2.informatik.uni-stuttgart.de/fmi/szs/tools/moped/

2861

2862

2863

2864

2865

2866

2867

2868

2869

2870

2871

2872

2873

2874

2875

2876

2877

2878

2879

2880

2881

2882

2883

2884

2885

2886

2887

2888

2889

2890

2891

2892

2893

2894

2895

2896

2897

2898

2899

2900

2901

2902

2903

2904

2905

2906

2907

2908

2909

2910

2911

2912

56 Michele Chiari, Dino Mandrioli, Francesco Pontiggia, and Matteo Pradella

equivalent to aperiodic OPLs [60], is the most expressive temporal logic among the few ones that can express “nested
properties” of tree-shaped programs; the object of this paper, the POMC model-checker is the only freely available one
performing such a complete model-checking of pushdown automata against properties expressed in a “nested temporal
logic”.

Thus, on one hand this paper represents the conclusion of a long-standing research aimed at extending the classic
properties connected to the finite-state formalism to a suitable subclass of pushdown automata; on the other hand we
envision various types of practical tools for automatic verification exploiting the proof of concept obtained from the
POMC prototype and the early experimentation with our benchmarks.

For instance, our approach based on on-the-fly state exploration may be counterproductive for applications where
many “implementations” must be checked against one or few fixed specifications, possibly for comparative purposes: in
such cases pre-computing the complete automaton for the negation of the POTL formula would leave the rest of the
verification with a polynomial time complexity.

We plan to explore symbolic techniques that brought considerable performance improvements to model checking of
“classical” temporal logics, such as bounded model checking [17] through SAT or SMT encodings, or methods based on
tree-shaped tableaux (and encodings thereof) [41]. The recent proposal of exploiting the antichain approach to formal
verification of OPL properties [48] is also promising.

Finally, it is intriguing to investigate variations of the POTL logic in a parallel way as Computation Tree Logic (CTL),
CTL* and other logics for nondeterministic computation have been obtained as variations of LTL10.

ACKNOWLEDGMENTS

We are grateful to an anonymous reviewer for their valuable suggestions.
This work has been partially funded by the Vienna Science and Technology Fund (WWTF) [10.47379/ICT19018]

within project ProbInG and by the EU Commission in the Horizon 2020 research and innovation programme under grant
agreement No. 101000162 (PIACERE), and under grant agreement No. 101034440 (Marie Sklodowska-Curie Doctoral
Network LogiCS@TU Wien).

REFERENCES
[1] David Abrahams. 1998. Exception-Safety in Generic Components. In Generic Programming (LNCS, Vol. 1766). Springer, Berlin, Heidelberg, 69–79.

https://doi.org/10.1007/3-540-39953-4_6
[2] Rajeev Alur, Marcelo Arenas, Pablo Barceló, Kousha Etessami, Neil Immerman, and Leonid Libkin. 2008. First-Order and Temporal Logics for

Nested Words. LMCS 4, 4 (2008), 44 pages. https://doi.org/10.2168/LMCS-4(4:11)2008
[3] Rajeev Alur, Michael Benedikt, Kousha Etessami, Patrice Godefroid, Thomas Reps, and Mihalis Yannakakis. 2005. Analysis of Recursive State

Machines. ACM Trans. Program. Lang. Syst. 27, 4 (2005), 786–818. https://doi.org/10.1145/1075382.1075387
[4] Rajeev Alur, Ahmed Bouajjani, and Javier Esparza. 2018. Model Checking Procedural Programs. In Handbook of Model Checking. Springer, 541–572.

https://doi.org/10.1007/978-3-319-10575-8_17
[5] Rajeev Alur, Swarat Chaudhuri, Kousha Etessami, and Parthasarathy Madhusudan. 2005. On-the-Fly Reachability and Cycle Detection for Recursive

State Machines. In TACAS ’05 (LNCS, Vol. 3440). Springer, Berlin, Heidelberg, 61–76. https://doi.org/10.1007/978-3-540-31980-1_5
[6] Rajeev Alur, Swarat Chaudhuri, and Parthasarathy Madhusudan. 2011. Software model checking using languages of nested trees. ACM Trans.

Program. Lang. Syst. 33, 5 (2011), 15:1–15:45. https://doi.org/10.1145/2039346.2039347
[7] Rajeev Alur, Kousha Etessami, and P. Madhusudan. 2004. A Temporal Logic of Nested Calls and Returns. In TACAS ’04 (LNCS, Vol. 2988). Springer,

Berlin, Heidelberg, 467–481. https://doi.org/10.1007/978-3-540-24730-2_35
[8] Rajeev Alur and Dana Fisman. 2016. Colored Nested Words. In LATA 2016 (LNCS, Vol. 9618). Springer, 143–155. https://doi.org/10.1007/978-3-319-

30000-9_11

10A few steps of such a path have been done with reference to the VPA formalism [6].

Manuscript submitted to ACM

https://doi.org/10.1007/3-540-39953-4_6
https://doi.org/10.2168/LMCS-4(4:11)2008
https://doi.org/10.1145/1075382.1075387
https://doi.org/10.1007/978-3-319-10575-8_17
https://doi.org/10.1007/978-3-540-31980-1_5
https://doi.org/10.1145/2039346.2039347
https://doi.org/10.1007/978-3-540-24730-2_35
https://doi.org/10.1007/978-3-319-30000-9_11
https://doi.org/10.1007/978-3-319-30000-9_11

2913

2914

2915

2916

2917

2918

2919

2920

2921

2922

2923

2924

2925

2926

2927

2928

2929

2930

2931

2932

2933

2934

2935

2936

2937

2938

2939

2940

2941

2942

2943

2944

2945

2946

2947

2948

2949

2950

2951

2952

2953

2954

2955

2956

2957

2958

2959

2960

2961

2962

2963

2964

A Model Checker for Operator Precedence Languages 57

[9] Rajeev Alur and Parthasarathy Madhusudan. 2004. Visibly Pushdown Languages. In STOC ’04. ACM, 202–211. https://doi.org/10.1145/1007352.
1007390

[10] Rajeev Alur and Parthasarathy Madhusudan. 2009. Adding nesting structure to words. J. ACM 56, 3 (2009), 16:1–16:43. https://doi.org/10.1145/
1516512.1516518

[11] Tobias Amnell, Gerd Behrmann, Johan Bengtsson, Pedro R. D’Argenio, Alexandre David, Ansgar Fehnker, Thomas Hune, Bertrand Jeannet,
Kim Guldstrand Larsen, M. Oliver Möller, Paul Pettersson, Carsten Weise, and Wang Yi. 2000. UPPAAL - Now, Next, and Future. In MOVEP’00
(LNCS, Vol. 2067). Springer, 99–124. https://doi.org/10.1007/3-540-45510-8_4

[12] Christel Baier and Joost-Pieter Katoen. 2008. Principles of Model Checking. MIT Press.
[13] Thomas Ball and Sriram K. Rajamani. 2000. Bebop: A Symbolic Model Checker for Boolean Programs. In SPIN 2000 (LNCS, Vol. 1885). Springer,

113–130. https://doi.org/10.1007/10722468_7
[14] Thomas Ball and Sriram K. Rajamani. 2001. Automatically Validating Temporal Safety Properties of Interfaces. In SPIN’01 (LNCS, Vol. 2057). Springer,

103–122. https://doi.org/10.1007/3-540-45139-0_7
[15] Thomas Ball and Sriram K. Rajamani. 2001. The SLAM Toolkit. In CAV ’01 (LNCS, Vol. 2102). Springer, 260–264. https://doi.org/10.1007/3-540-

44585-4_25
[16] Alessandro Barenghi, Stefano Crespi Reghizzi, Dino Mandrioli, Federica Panella, and Matteo Pradella. 2015. Parallel parsing made practical. Sci.

Comput. Program. 112 (2015), 195–226. https://doi.org/10.1016/j.scico.2015.09.002
[17] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu. 1999. Symbolic Model Checking without BDDs. In TACAS’99 (LNCS,

Vol. 1579). Springer, 193–207. https://doi.org/10.1007/3-540-49059-0_14
[18] Ahmed Bouajjani, Javier Esparza, and Oded Maler. 1997. Reachability analysis of pushdown automata: application to model-checking. In CONCUR

’97 (LNCS, Vol. 1243). Springer, 135–150. https://doi.org/10.1007/3-540-63141-0_10
[19] Laura Bozzelli and César Sánchez. 2014. Visibly Linear Temporal Logic. In Automated Reasoning. Springer, 418–433. https://doi.org/10.1007/978-3-

319-08587-6_33
[20] Olaf Burkart and Bernhard Steffen. 1999. Model Checking the Full Modal mu-Calculus for Infinite Sequential Processes. Theor. Comput. Sci. 221, 1-2

(1999), 251–270. https://doi.org/10.1016/S0304-3975(99)00034-1
[21] Razvan Certezeanu, Sophia Drossopoulou, Benjamin Egelund-Müller, K. Rustan M. Leino, Sinduran Sivarajan, and Mark J. Wheelhouse. 2016.

Quicksort Revisited — Verifying Alternative Versions of Quicksort. In Theory and Practice of Formal Methods (LNCS, Vol. 9660). Springer, 407–426.
[22] Swarat Chaudhuri and Rajeev Alur. 2007. Instrumenting C Programs with Nested Word Monitors. In SPIN ’07 (LNCS, Vol. 4595). Springer, 279–283.

https://doi.org/10.1007/978-3-540-73370-6_20
[23] Michele Chiari, Davide Bergamaschi, and Francesco Pontiggia. 2021. POMC. https://github.com/michiari/POMC
[24] Michele Chiari, Dino Mandrioli, and Matteo Pradella. 2020. Operator precedence temporal logic and model checking. Theor. Comput. Sci. 848 (2020),

47–81. https://doi.org/10.1016/j.tcs.2020.08.034
[25] Michele Chiari, Dino Mandrioli, and Matteo Pradella. 2021. Model-Checking Structured Context-Free Languages. In CAV ’21 (LNCS, Vol. 12760).

Springer, 387–410. https://doi.org/10.1007/978-3-030-81688-9_18
[26] Michele Chiari, Dino Mandrioli, and Matteo Pradella. 2021. Model-Checking Structured Context-Free Languages (Artifact). Zenodo. https:

//doi.org/10.5281/zenodo.4723740
[27] Michele Chiari, Dino Mandrioli, and Matteo Pradella. 2022. A First-Order Complete Temporal Logic for Structured Context-Free Languages. Log.

Methods Comput. Sci. 18:3 (2022), 49 pages. https://doi.org/10.46298/LMCS-18(3:11)2022
[28] Alessandro Cimatti, Edmund M. Clarke, Enrico Giunchiglia, Fausto Giunchiglia, Marco Pistore, Marco Roveri, Roberto Sebastiani, and Armando

Tacchella. 2002. NuSMV 2: An OpenSource Tool for Symbolic Model Checking. In CAV’02 (LNCS, Vol. 2404). Springer, 359–364. https://doi.org/10.
1007/3-540-45657-0_29

[29] Stefano Crespi Reghizzi and Dino Mandrioli. 2012. Operator Precedence and the Visibly Pushdown Property. J. Comput. Syst. Sci. 78, 6 (2012),
1837–1867. https://doi.org/10.1016/j.jcss.2011.12.006

[30] Stefano Crespi Reghizzi, Dino Mandrioli, and Daniel F. Martin. 1978. Algebraic Properties of Operator Precedence Languages. Information and
Control 37, 2 (1978), 115–133. https://doi.org/10.1016/S0019-9958(78)90474-6

[31] Loris D’Antoni. 2014. A symbolic automata library. https://github.com/lorisdanto/symbolicautomata
[32] Koen De Bosschere. 1996. An Operator Precedence Parser for Standard Prolog Text. Softw., Pract. Exper. 26, 7 (1996), 763–779.
[33] Evan Driscoll, Aditya V. Thakur, and Thomas W. Reps. 2012. OpenNWA: A Nested-Word Automaton Library. In CAV ’12 (LNCS, Vol. 7358). Springer,

665–671.
[34] Javier Esparza, David Hansel, Peter Rossmanith, and Stefan Schwoon. 2000. Efficient Algorithms for Model Checking Pushdown Systems. In CAV

2000 (LNCS, Vol. 1855). Springer, 232–247. https://doi.org/10.1007/10722167_20
[35] Javier Esparza, Stefan Kiefer, and Stefan Schwoon. 2006. Abstraction Refinement with Craig Interpolation and Symbolic Pushdown Systems. In

TACAS’06 (LNCS, Vol. 3920). Springer, 489–503. https://doi.org/10.1007/11691372_35
[36] Javier Esparza, Antonín Kučera, and Stefan Schwoon. 2003. Model checking LTL with regular valuations for pushdown systems. Information and

Computation 186, 2 (2003), 355–376. https://doi.org/10.1016/S0890-5401(03)00139-1
[37] Javier Esparza and Stefan Schwoon. 2001. A BDD-Based Model Checker for Recursive Programs. In CAV ’01 (LNCS, Vol. 2102). Springer, Berlin,

Heidelberg, 324–336. https://doi.org/10.1007/3-540-44585-4_30

Manuscript submitted to ACM

https://doi.org/10.1145/1007352.1007390
https://doi.org/10.1145/1007352.1007390
https://doi.org/10.1145/1516512.1516518
https://doi.org/10.1145/1516512.1516518
https://doi.org/10.1007/3-540-45510-8_4
https://doi.org/10.1007/10722468_7
https://doi.org/10.1007/3-540-45139-0_7
https://doi.org/10.1007/3-540-44585-4_25
https://doi.org/10.1007/3-540-44585-4_25
https://doi.org/10.1016/j.scico.2015.09.002
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/3-540-63141-0_10
https://doi.org/10.1007/978-3-319-08587-6_33
https://doi.org/10.1007/978-3-319-08587-6_33
https://doi.org/10.1016/S0304-3975(99)00034-1
https://doi.org/10.1007/978-3-540-73370-6_20
https://github.com/michiari/POMC
https://doi.org/10.1016/j.tcs.2020.08.034
https://doi.org/10.1007/978-3-030-81688-9_18
https://doi.org/10.5281/zenodo.4723740
https://doi.org/10.5281/zenodo.4723740
https://doi.org/10.46298/LMCS-18(3:11)2022
https://doi.org/10.1007/3-540-45657-0_29
https://doi.org/10.1007/3-540-45657-0_29
https://doi.org/10.1016/j.jcss.2011.12.006
https://doi.org/10.1016/S0019-9958(78)90474-6
https://github.com/lorisdanto/symbolicautomata
https://doi.org/10.1007/10722167_20
https://doi.org/10.1007/11691372_35
https://doi.org/10.1016/S0890-5401(03)00139-1
https://doi.org/10.1007/3-540-44585-4_30

2965

2966

2967

2968

2969

2970

2971

2972

2973

2974

2975

2976

2977

2978

2979

2980

2981

2982

2983

2984

2985

2986

2987

2988

2989

2990

2991

2992

2993

2994

2995

2996

2997

2998

2999

3000

3001

3002

3003

3004

3005

3006

3007

3008

3009

3010

3011

3012

3013

3014

3015

3016

58 Michele Chiari, Dino Mandrioli, Francesco Pontiggia, and Matteo Pradella

[38] Alain Finkel, Bernard Willems, and Pierre Wolper. 1997. A direct symbolic approach to model checking pushdown systems. In Infinity ’97 (ENTCS,
Vol. 9). Elsevier, 27–37. https://doi.org/10.1016/S1571-0661(05)80426-8

[39] Robert W. Floyd. 1963. Syntactic Analysis and Operator Precedence. J. ACM 10, 3 (1963), 316–333. https://doi.org/10.1145/321172.321179
[40] Harold N. Gabow. 2000. Path-based depth-first search for strong and biconnected components. Inf. Process. Lett. 74, 3-4 (2000), 107–114. https:

//doi.org/10.1016/S0020-0190(00)00051-X
[41] Luca Geatti, Nicola Gigante, Angelo Montanari, and Mark Reynolds. 2021. One-pass and tree-shaped tableau systems for TPTL and TPTLb+Past.

Inf. Comput. 278 (2021), 104599. https://doi.org/10.1016/j.ic.2020.104599
[42] Patrice Godefroid and Mihalis Yannakakis. 2013. Analysis of Boolean Programs. In TACAS ’13 (LNCS, Vol. 7795). Springer, 214–229. https:

//doi.org/10.1007/978-3-642-36742-7_16
[43] Dick Grune and Ceriel J. Jacobs. 2008. Parsing techniques: a practical guide. Springer, New York. 664 pages. https://doi.org/10.1007/978-0-387-68954-8
[44] Matthew Hague. 2013. Saturation of Concurrent Collapsible Pushdown Systems. In IARCS Annual Conference on Foundations of Software Technology

and Theoretical Computer Science, FSTTCS 2013, December 12-14, 2013, Guwahati, India (LIPIcs, Vol. 24), Anil Seth and Nisheeth K. Vishnoi (Eds.).
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 313–325. https://doi.org/10.4230/LIPIcs.FSTTCS.2013.313

[45] Jad Hamza, Nicolas Voirol, and Viktor Kunčak. 2019. System FR: Formalized Foundations for the Stainless Verifier. PACMPL 3, OOPSLA, Article 166
(oct 2019), 30 pages. https://doi.org/10.1145/3360592

[46] Michael A. Harrison. 1978. Introduction to Formal Language Theory. Addison Wesley, Boston, MA, USA.
[47] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Grégoire Sutre. 2003. Software Verification with BLAST. In SPIN 2003 (LNCS, Vol. 2648).

Springer, 235–239. https://doi.org/10.1007/3-540-44829-2_17
[48] Thomas A. Henzinger, Pavol Kebis, Nicolas Mazzocchi, and N. Ege Saraç. 2023. Regular Methods for Operator Precedence Languages. In ICALP’23.
[49] Uschi Heuter. 1991. First-order properties of trees, star-free expressions, and aperiodicity. ITA 25 (1991), 125–145. https://doi.org/10.1051/ita/

1991250201251
[50] Gerard J. Holzmann. 2004. The SPIN Model Checker - primer and reference manual. Addison-Wesley.
[51] Thomas P. Jensen, Daniel Le Métayer, and Tommy Thorn. 1999. Verification of Control Flow based Security Properties. In Proc. ’99 IEEE Symp. Secur.

Privacy. IEEE Computer Society, Oakland, California, USA, 89–103. https://doi.org/10.1109/SECPRI.1999.766902
[52] Stefan Kiefer, Stefan Schwoon, and Dejvuth Suwimonteerabuth. 2010. Moped, version 1.0.16. http://www2.informatik.uni-stuttgart.de/fmi/szs/

tools/moped/
[53] David J. King and John Launchbury. 1995. Structuring Depth-First Search Algorithms in Haskell. In POPL. ACM Press, 344–354.
[54] Orna Kupferman. 2018. Automata Theory and Model Checking. In Handbook of Model Checking. Springer, 107–151. https://doi.org/10.1007/978-3-

319-10575-8_4
[55] Orna Kupferman, Nir Piterman, and Moshe Y. Vardi. 2002. Model Checking Linear Properties of Prefix-Recognizable Systems. In CAV ’02 (LNCS,

Vol. 2404). Springer, 371–385. https://doi.org/10.1007/3-540-45657-0_31
[56] John Launchbury and Simon L. Peyton Jones. 1994. Lazy Functional State Threads. In PLDI’94. ACM, 24–35. https://doi.org/10.1145/178243.178246
[57] Clemens Lautemann, Thomas Schwentick, and Denis Thérien. 1994. Logics For Context-Free Languages. In CSL’94 (LNCS, Vol. 933). Springer, Berlin,

Heidelberg, 205–216. https://doi.org/10.1007/BFb0022257
[58] Violetta Lonati, Dino Mandrioli, Federica Panella, and Matteo Pradella. 2015. Operator Precedence Languages: Their Automata-Theoretic and Logic

Characterization. SIAM J. Comput. 44, 4 (2015), 1026–1088. https://doi.org/10.1137/140978818
[59] Dino Mandrioli and Matteo Pradella. 2018. Generalizing input-driven languages: Theoretical and practical benefits. Computer Science Review 27

(2018), 61–87. https://doi.org/10.1016/j.cosrev.2017.12.001
[60] Dino Mandrioli, Matteo Pradella, and Stefano Crespi Reghizzi. 2020. Aperiodicity, Star-freeness, and First-order Definability of Structured

Context-Free Languages. CoRR abs/2006.01236 (2020), 53 pages. arXiv:2006.01236 https://arxiv.org/abs/2006.01236
[61] Simon Marlow. 2010. Haskell 2010 Language Report. https://www.haskell.org/onlinereport/haskell2010/
[62] Robert McNaughton. 1967. Parenthesis Grammars. J. ACM 14, 3 (1967), 490–500. https://doi.org/10.1145/321406.321411
[63] Robert McNaughton and Seymour Papert. 1971. Counter-free Automata. MIT Press, Cambridge, USA.
[64] Kurt Mehlhorn. 1980. Pebbling Mountain Ranges and its Application of DCFL-Recognition. In ICALP ’80 (LNCS, Vol. 85). 422–435. https:

//doi.org/10.1007/3-540-10003-2_89
[65] Bertrand Meyer. 2005. Attached Types and Their Application to Three Open Problems of Object-Oriented Programming. In ECOOP’05 (LNCS,

Vol. 3586). Springer, 1–32. https://doi.org/10.1007/11531142_1
[66] Ha Nguyen. 2006. Visibly Pushdown Automata Library.
[67] Huu-Vu Nguyen and Tayssir Touili. 2013. PoMMaDe – A PushdOwn Model-checker for MAlware DEtection. https://lipn.univ-paris13.fr/~touili/

pommade/ Accessed on December 2nd, 2022.
[68] Huu-Vu Nguyen and Tayssir Touili. 2017. CARET model checking for malware detection. In SPIN 2017. ACM, 152–161. https://doi.org/10.1145/

3092282.3092301
[69] Huu-Vu Nguyen and Tayssir Touili. 2017. CARET model checking for pushdown systems. In SAC 2017. ACM, 1393–1400. https://doi.org/10.1145/

3019612.3019829
[70] Nir Piterman and Moshe Y. Vardi. 2004. Global Model-Checking of Infinite-State Systems. In CAV ’04 (LNCS, Vol. 3114). Springer, 387–400.

https://doi.org/10.1007/978-3-540-27813-9_30

Manuscript submitted to ACM

https://doi.org/10.1016/S1571-0661(05)80426-8
https://doi.org/10.1145/321172.321179
https://doi.org/10.1016/S0020-0190(00)00051-X
https://doi.org/10.1016/S0020-0190(00)00051-X
https://doi.org/10.1016/j.ic.2020.104599
https://doi.org/10.1007/978-3-642-36742-7_16
https://doi.org/10.1007/978-3-642-36742-7_16
https://doi.org/10.1007/978-0-387-68954-8
https://doi.org/10.4230/LIPIcs.FSTTCS.2013.313
https://doi.org/10.1145/3360592
https://doi.org/10.1007/3-540-44829-2_17
https://doi.org/10.1051/ita/1991250201251
https://doi.org/10.1051/ita/1991250201251
https://doi.org/10.1109/SECPRI.1999.766902
http://www2.informatik.uni-stuttgart.de/fmi/szs/tools/moped/
http://www2.informatik.uni-stuttgart.de/fmi/szs/tools/moped/
https://doi.org/10.1007/978-3-319-10575-8_4
https://doi.org/10.1007/978-3-319-10575-8_4
https://doi.org/10.1007/3-540-45657-0_31
https://doi.org/10.1145/178243.178246
https://doi.org/10.1007/BFb0022257
https://doi.org/10.1137/140978818
https://doi.org/10.1016/j.cosrev.2017.12.001
https://arxiv.org/abs/2006.01236
https://arxiv.org/abs/2006.01236
https://www.haskell.org/onlinereport/haskell2010/
https://doi.org/10.1145/321406.321411
https://doi.org/10.1007/3-540-10003-2_89
https://doi.org/10.1007/3-540-10003-2_89
https://doi.org/10.1007/11531142_1
https://lipn.univ-paris13.fr/~touili/pommade/
https://lipn.univ-paris13.fr/~touili/pommade/
https://doi.org/10.1145/3092282.3092301
https://doi.org/10.1145/3092282.3092301
https://doi.org/10.1145/3019612.3019829
https://doi.org/10.1145/3019612.3019829
https://doi.org/10.1007/978-3-540-27813-9_30

3017

3018

3019

3020

3021

3022

3023

3024

3025

3026

3027

3028

3029

3030

3031

3032

3033

3034

3035

3036

3037

3038

3039

3040

3041

3042

3043

3044

3045

3046

3047

3048

3049

3050

3051

3052

3053

3054

3055

3056

3057

3058

3059

3060

3061

3062

3063

3064

3065

3066

3067

3068

A Model Checker for Operator Precedence Languages 59

[71] Amir Pnueli. 1977. The Temporal Logic of Programs. In FOCS ’77. IEEE Computer Society, 46–57. https://doi.org/10.1109/SFCS.1977.32
[72] Francesco Pontiggia. 2021. POMC. A model checking tool for operator precedence languages on omega-words. Master’s thesis. Politecnico di Milano.

http://hdl.handle.net/10589/176028
[73] Francesco Pontiggia, Michele Chiari, and Matteo Pradella. 2021. Verification of Programs with Exceptions Through Operator Precedence Automata.

In SEFM’21 (LNCS, Vol. 13085). Springer, Berlin, Heidelberg, 293–311. https://doi.org/10.1007/978-3-030-92124-8_17
[74] Stefan Schwoon. 2002. Model checking pushdown systems. Ph. D. Dissertation. Technical University Munich, Germany. http://tumb1.biblio.tu-

muenchen.de/publ/diss/in/2002/schwoon.html
[75] Herb Sutter. 1997. Exception-Safe Generic Containers. C++ Report 9 (1997). https://ptgmedia.pearsoncmg.com/imprint_downloads/informit/aw/

meyerscddemo/DEMO/MAGAZINE/SU_FRAME.HTM
[76] Nguyen Van Tang and Hitoshi Ohsaki. 2011. Checking On-the-Fly Universality and Inclusion Problems of Visibly Pushdown Automata. IEICE

Trans. Fundam. Electron. Commun. Comput. Sci. 94-A, 12 (2011), 2794–2801. https://doi.org/10.1587/transfun.E94.A.2794
[77] James W. Thatcher. 1967. Characterizing derivation trees of context-free grammars through a generalization of finite automata theory. Journ. of

Comp. and Syst. Sc. 1 (1967), 317–322. https://doi.org/10.1016/S0022-0000(67)80022-9
[78] Wolfgang Thomas. 1984. Logical Aspects in the Study of Tree Languages. In CAAP’84. Cambridge University Press, 31–50.
[79] Moshe Y. Vardi and Pierre Wolper. 1986. An Automata-Theoretic Approach to Automatic Program Verification (Preliminary Report). In LICS ’86.

IEEE Computer Society, 332–344.
[80] IgorWalukiewicz. 2001. Pushdown Processes: Games andModel-Checking. Inf. Comput. 164, 2 (2001), 234–263. https://doi.org/10.1006/inco.2000.2894

Manuscript submitted to ACM

https://doi.org/10.1109/SFCS.1977.32
http://hdl.handle.net/10589/176028
https://doi.org/10.1007/978-3-030-92124-8_17
http://tumb1.biblio.tu-muenchen.de/publ/diss/in/2002/schwoon.html
http://tumb1.biblio.tu-muenchen.de/publ/diss/in/2002/schwoon.html
https://ptgmedia.pearsoncmg.com/imprint_downloads/informit/aw/meyerscddemo/DEMO/MAGAZINE/SU_FRAME.HTM
https://ptgmedia.pearsoncmg.com/imprint_downloads/informit/aw/meyerscddemo/DEMO/MAGAZINE/SU_FRAME.HTM
https://doi.org/10.1587/transfun.E94.A.2794
https://doi.org/10.1016/S0022-0000(67)80022-9
https://doi.org/10.1006/inco.2000.2894

3069

3070

3071

3072

3073

3074

3075

3076

3077

3078

3079

3080

3081

3082

3083

3084

3085

3086

3087

3088

3089

3090

3091

3092

3093

3094

3095

3096

3097

3098

3099

3100

3101

3102

3103

3104

3105

3106

3107

3108

3109

3110

3111

3112

3113

3114

3115

3116

3117

3118

3119

3120

60 Michele Chiari, Dino Mandrioli, Francesco Pontiggia, and Matteo Pradella

A OMITTED CORRECTNESS PROOFS OF MODEL CHECKING

Here we report the remaining lemmas and related proofs of the correctness of the model checking construction of
Section 4.

A.1 Chain Next Operators

Lemma A.1 proves the correctness of 𝒟ℛ rules for the 𝜒⋖𝐹 operator, while the proof for 𝜒⋗𝐹 is omitted altogether,
because it is very similar to the one for 𝜒�𝐹 in Lemma 4.2.

Lemma A.1 (𝜒⋖𝐹 operator). Given a finite set of atomic propositions 𝐴𝑃 , an OP alphabet (P(𝐴𝑃), 𝑀𝐴𝑃), and a formula

𝜒⋖𝐹 𝜓 , let A𝜑 be the OPA built for a formula 𝜑 such that 𝜒⋖𝐹 𝜓 ∈ Cl(𝜑); and let A𝜑−𝜒⋖𝐹 𝜓 be the OPA built as A𝜑 but using

𝒟ℛ \𝒟ℛ(𝜒⋖𝐹 𝜓) for 𝛿 .
Inductive assumption: in all accepting computations of A𝜑 for each position 𝑖 in the input word 𝑤 and for each

sub-formula𝜓 ′ ∈ ssubf (𝜒⋖𝐹 𝜓) we have (𝑤, 𝑖) |= 𝜓 ′ iff𝜓 ′ ∈ Φ
𝑔
𝑐 (𝑖).

Inductive claim 𝐼 : [𝐼1] A computation 𝜌 of A𝜑 is accepting if and only if [𝐼2] 𝜌 is accepting for A𝜑−𝜒⋖𝐹 𝜓 and for each

position 𝑖 in the input word𝑤 we have (𝑤, 𝑖) |= 𝜒⋖𝐹 𝜓 iff 𝜒⋖𝐹 𝜓 ∈ Φ
𝑔
𝑐 (𝑖).

Proof. We prove two auxiliary claims, based on the following assertions:

• let [𝐴1] be: (𝑤, 𝑖) |= 𝜒⋖𝐹 𝜓 ;
• let [𝐴2] be: all accepting computations of A𝜑 bring it from configuration ⟨𝑦𝑧,Φ𝑔 (𝑖), 𝛼𝛾⟩ with 𝜒⋖𝐹 𝜓 ∈ Φ

𝑔
𝑐 (𝑖) to a

configuration ⟨𝑧,Φ𝑔 (𝑖𝑧), 𝛼 ′𝛾⟩ such that 𝜒⋖𝐹 𝜓 ∉ Φ
𝑔
𝑝 (𝑖𝑧), |𝛼 | = 1 and |𝛼 ′ | = 1 if first(𝑦) is read by a shift move,

|𝛼 ′ | = 2 if it is read by a push move.

We prove that for any word𝑤 = #𝑥𝑦𝑧# and positions 𝑖 = |𝑥 | + 1, 𝑖𝑧 = |𝑥𝑦 | + 1 in𝑤 , 𝐴1 ⇐⇒ 𝐴2.
[𝐴1 ⇒ 𝐴2] Suppose 𝜒⋖𝐹 𝜓 holds in position 𝑖 , labeled 𝑎. Then, 𝑎 must be the left context of more than one chain,11

and the word being read must have one of the structures of Fig. 12, with 𝑛 ≥ 1. Let us call 𝑏𝑝 , 1 ≤ 𝑝 ≤ 𝑛, the right
contexts of those chains that are s.t. 𝑎 ⋖𝑏𝑝 (i.e., all except the rightmost context of 𝑖). There exists an index 𝑞, 1 ≤ 𝑞 ≤ 𝑛,
such that𝜓 holds in 𝑖𝑏𝑞 , the word position labeled with 𝑏𝑞 , and it does not hold in any other 𝑖𝑏𝑞′ , for 𝑞 < 𝑞′ ≤ 𝑛.

All accepting computations reach a configuration ⟨𝑎 . . . 𝑧,Φ𝑔 (𝑖), [𝑓 ,Φ𝑔 (𝑘)]𝛾⟩, where 𝑘 < 𝑖 and 𝛼 = [𝑓 ,Φ𝑔 (𝑘)], and
𝜒⋖𝐹 𝜓 ∈ Φ

𝑔
𝑐 (𝑖), because the OPA guesses that 𝜒⋖𝐹 𝜓 holds in 𝑖 . Symbol 𝑎 is read by a shift or a push transition, which leads

the OPA to configuration ⟨𝑐0
0 . . . 𝑧,Φ

𝑔 (𝑖𝑐0
0
), 𝜇′⟩, with 𝜇′ = 𝛼 ′𝛾 (as in claim 𝐴2), and either 𝛼 ′ = [𝑎,Φ𝑔 (𝑖)] [𝑓 ,Φ𝑔 (𝑘)] or

𝛼 ′ = [𝑎,Φ𝑔 (𝑘)], respectively. Due to rule (9), we have 𝜒⋖𝐹 𝜓 ∈ Φ
𝑔
𝑝 (𝑖𝑐0

0
) and 𝜁𝐿 ∈ Φ

𝑔
𝑝 (𝑖𝑐0

0
). As a result, the next move must

be a push, consistently with the hypothesis implying that 𝑎 is the left context of a chain. Then, starting with 𝑐0
0 , the

OPA reads the body of the innermost chain whose left context is 𝑎, until it reaches its right context 𝑏1. In this process,
the topmost stack symbol [𝑐0

0,Φ
𝑔 (𝑖𝑐0

0
)] may be updated by shift transitions reading other terminals 𝑐0

𝑝 , 1 ≤ 𝑝 ≤ 𝑚0, that
are part of the same simple chain as 𝑐0

0 . However, it is not popped until 𝑏1 is reached, since subchains cause the OPA
to only push, pop and update new stack symbols, but not existing ones. So, the OPA reaches configuration ⟨𝑏1 . . . 𝑧,

Φ(𝑖𝑏1), [𝑐0
𝑚0 ,Φ

𝑔 (𝑖𝑐0
0
)]𝜇′⟩, with 𝜒⋖𝐹 𝜓 ∈ Φ

𝑔
𝑝 (𝑖𝑐0

0
).

Suppose, first, 𝑞 > 1, and that𝜓 does not hold in 𝑏1. Since 𝑐0
𝑚0 ⋗𝑏1, the next transition is a pop. Due to rule (10), it leads

the OPA to configuration ⟨𝑏1 . . . 𝑧,Φ′ (𝑖𝑏1), 𝜇′⟩ with 𝜒⋖𝐹 𝜓 ∈ Φ′
𝑝 (𝑖𝑏1) and 𝜁𝐿 ∈ Φ′

𝑝 (𝑖𝑏1). If, instead,𝜓 holds in 𝑏1, the OPA
guesses that it will also hold in a future position 𝑖𝑏𝑝 (possibly 𝑝 = 𝑞), and puts 𝜒⋖𝐹 𝜓 ∈ Φ′

𝑝 (𝑖𝑏1) anyways. The presence of
𝜁𝐿 implies the next move is a push, a requirement that is satisfied because 𝑎⋖𝑏1. So, the OPA transitions to configuration
11By property 4 of the 𝜒 relation, a chain with contexts in the ⋖ relation must be embedded in a composed chain with contexts in another PR.

Manuscript submitted to ACM

3121

3122

3123

3124

3125

3126

3127

3128

3129

3130

3131

3132

3133

3134

3135

3136

3137

3138

3139

3140

3141

3142

3143

3144

3145

3146

3147

3148

3149

3150

3151

3152

3153

3154

3155

3156

3157

3158

3159

3160

3161

3162

3163

3164

3165

3166

3167

3168

3169

3170

3171

3172

A Model Checker for Operator Precedence Languages 61

⟨𝑣1
0 . . . 𝑧,Φ(𝑖𝑣1

0
), [𝑏1,Φ′ (𝑖𝑏1)]𝜇′⟩. The computation, then, goes on in the same way for each 𝑏𝑝 , 1 ≤ 𝑝 < 𝑞. Before 𝑏𝑞 is

read, (and possibly 𝑞 = 1), the OPA is in configuration ⟨𝑏𝑞 . . . 𝑧,Φ(𝑖𝑏𝑞), [𝑐
𝑞−1
𝑚𝑞−1,Φ

𝑔 (𝑖𝑏𝑞−1)]𝜇′⟩, with 𝜒⋖𝐹 𝜓 ∈ Φ
𝑔
𝑝 (𝑖𝑏𝑞−1).

Since 𝑐𝑞−1
𝑚𝑞−1 ⋗𝑏𝑞 , a pop transition brings the OPA to ⟨𝑏𝑞 . . . 𝑧,Φ′ (𝑖𝑏𝑞), 𝜇′⟩. Since by hypothesis𝜓 ∈ Φ𝑐 (𝑖𝑏𝑞), by rule (10)

we just have 𝜁𝐿 ∈ Φ′
𝑝 (𝑖𝑏𝑞), and the initial guess is verified. Since the topmost stack symbol contains 𝑎, and 𝑎 ⋖ 𝑏𝑞 , the

next transition is a push, which satisfies the requirement of 𝜁𝐿 . Note that 𝜒⋖𝐹 𝜓 ∉ Φ′
𝑝 (𝑖𝑏𝑞), and the stack is 𝜇′, which

satisfies 𝐴2.
[𝐴2 ⇒ 𝐴1] Suppose that during an accepting computation the OPA reaches configuration ⟨𝑎 . . . 𝑧,Φ(𝑖), [𝑓 ,Φ𝑔 (𝑘)]𝛾⟩,

with 𝑘 < 𝑖 and 𝜒⋖𝐹 𝜓 ∈ Φ𝑐 (𝑖). Again, 𝑎 must be read by either a push or a shift move. Since 𝜁𝐿 is inserted as a pending
requirement into the state resulting from this move, the next transition must be a push, so 𝑎 is the left context of
at least a chain. This chain has the form of Fig. 12. By rule (9), the OPA reaches configuration ⟨𝑐0

0 . . . 𝑧,Φ
𝑔 (𝑖𝑐0

0
), 𝛿⟩,

with 𝜒⋖𝐹 𝜓, 𝜁𝐿 ∈ Φ
𝑔
𝑝 (𝑖𝑐0

0
), and 𝜇′ as in the [𝐴1 ⇒ 𝐴2] part after reading 𝑎. The stack symbol pushed while reading 𝑐0

0
is [𝑐0

0,Φ
𝑔 (𝑖𝑐0

0
)]. The stack size is now greater by one w.r.t. what is required by assertion 𝐴2, so [𝑐0

0,Φ
𝑔 (𝑖𝑐0

0
)] must be

popped.
This happens when the OPA reaches a symbol 𝑒 s.t. the terminal symbol in the topmost stack symbol takes precedence

over 𝑒 . We claim that 𝑒 must be s.t. 𝑎 ⋖ 𝑒 and, according to the notation of Fig. 12, 𝑒 = 𝑏1. Suppose by contradiction
that, on the contrary, 𝑎 ⋗ 𝑒 or 𝑎 � 𝑒 (so 𝑒 = 𝑑 in Fig. 12, in which 𝑛 = 0 and 𝑐0

𝑚0 precedes 𝑑). In this case, after
popping [𝑐0

𝑚0 ,Φ
𝑔 (𝑖𝑐0

0
)], the automaton reaches configuration ⟨𝑑𝑧,Φ′ (𝑖𝑑), 𝜇′′⟩. Since 𝜒⋖𝐹 𝜓 ∈ Φ

𝑔
𝑝 (𝑖𝑐0

0
), by rule (10) we

have 𝜒⋖𝐹 𝜓 ∈ Φ′
𝑝 (𝑖𝑑), so this configuration does not satisfy the thesis statement. Moreover, 𝜁𝐿 ∈ Φ′

𝑝 (𝑖𝑑), which requires
the next transition to be a push. But 𝑎 � 𝑑 or 𝑎 ⋗ 𝑑 , and 𝑎 is the topmost stack symbol, so such a computation is blocked
by rule (4), never reaching a configuration complying with the thesis statement.

So, 𝑒 = 𝑏1, and the OPA reaches configuration ⟨𝑏1 . . . 𝑧,Φ(𝑖𝑏1), [𝑐0
𝑚0 ,Φ

𝑔 (𝑖𝑐0
0
)]𝜇′⟩. The subsequent pop move leads to

⟨𝑏1 . . . 𝑧,Φ′ (𝑖𝑏1), 𝜇′⟩.
Suppose𝜓 ∈ Φ𝑐 (𝑖𝑏1). Then, by rule (10) we only have 𝜁𝐿 ∈ Φ′

𝑝 (𝑖𝑏1), and 𝜒⋖𝐹 𝜓 ∉ Φ′
𝑝 (𝑖𝑏1). This configuration satisfies

claim 𝐴2, and since 𝑎 ⋖ 𝑏1, 𝑎 and 𝑏1 are the context of a chain, and𝜓 holds in 𝑏1, we can conclude that 𝜒⋖𝐹 𝜓 holds in 𝑎.
Otherwise, if𝜓 ∉ Φ𝑐 (𝑖𝑏1), by rule (10) we have 𝜒⋖𝐹 𝜓, 𝜁𝐿 ∈ Φ′

𝑝 (𝑖𝑏1). The next transition will therefore push [𝑏1,Φ′ (𝑖𝑏1)]
onto the stack, again with 𝜒⋖𝐹 𝜓 as a pending obligation in it. Then, the same argument done with [𝑐0

0,Φ
𝑔 (𝑖𝑐0

0
)] (and its

subsequent updates) can be repeated. The only way the target configuration of claim 𝐴2 can be reached is by reading a
position 𝑏𝑞 , s.t. 𝑎 ⋖ 𝑏𝑞 , the terminal in the topmost stack symbol takes precedence from 𝑏𝑞 (so 𝑎 and 𝑏𝑞 are the context
of a chain), and𝜓 ∈ Φ𝑐 (𝑖𝑏𝑞), so𝜓 holds in 𝑏𝑞 . This implies 𝜒⋖𝐹 𝜓 holds in 𝑎.

[𝐼1 ⇒ 𝐼2] follows from 𝐴1 ⇒ 𝐴2 and A𝜑−𝜒�𝐹 𝜓 ’s 𝒟ℛ rules being a strict subset of A𝜑 ’s. [𝐼2 ⇒ 𝐼1] again follows
from 𝐴2 ⇒ 𝐴1, and the fact that Φ𝑔 (𝑖𝑧) may not contain 𝜒⋖𝐹 𝜓 , nor do states in 𝛼 ′, so rules (9) and (10) may not prevent
the computation from reaching a final state. □

A.2 Chain Back Operators

Now, we prove the correctness of rules given in Section 4.1.3 for the 𝜒�𝑃 and 𝜒⋗𝑃 operators. The proof for 𝜒⋖𝑃 is very
similar to the one for 𝜒�𝑃 and is therefore omitted. The proof for 𝜒�𝑃 uses, again, the left tree of Fig. 12, whereas the one
for 𝜒⋖𝑃 would use both trees. The proof for 𝜒⋗𝑃 , instead, uses Fig. 23, which represents many-to-one chains, with the
outermost one expanded on the rightmost non-terminal in its body.

Manuscript submitted to ACM

3173

3174

3175

3176

3177

3178

3179

3180

3181

3182

3183

3184

3185

3186

3187

3188

3189

3190

3191

3192

3193

3194

3195

3196

3197

3198

3199

3200

3201

3202

3203

3204

3205

3206

3207

3208

3209

3210

3211

3212

3213

3214

3215

3216

3217

3218

3219

3220

3221

3222

3223

3224

62 Michele Chiari, Dino Mandrioli, Francesco Pontiggia, and Matteo Pradella

Lemma A.2 (𝜒�𝑃 operator). Given a finite set of atomic propositions𝐴𝑃 , an OP alphabet (P(𝐴𝑃), 𝑀𝐴𝑃), and a formula

𝜒�𝑃 𝜓 , let A𝜑 be the OPA built for a formula 𝜑 such that 𝜒�𝑃 𝜓 ∈ Cl(𝜑); and let A𝜑−𝜒�𝑃 𝜓 be the OPA built as A𝜑 but using

𝒟ℛ \𝒟ℛ(𝜒�𝑃 𝜓) for 𝛿 .
Inductive assumption: in all accepting computations of A𝜑 for each position 𝑖 in the input word 𝑤 and for each

sub-formula𝜓 ′ ∈ ssubf (𝜒�𝑃 𝜓) we have (𝑤, 𝑖) |= 𝜓 ′ iff𝜓 ′ ∈ Φ
𝑔
𝑐 (𝑖).

Inductive claim 𝐼 : [𝐼1] A computation 𝜌 of A𝜑 is accepting if and only if [𝐼2] 𝜌 is accepting for A𝜑−𝜒�𝑃 𝜓 and for each

position 𝑗 in the input word𝑤 we have (𝑤, 𝑗) |= 𝜒�𝑃 𝜓 iff 𝜒�𝑃 𝜓 ∈ Φ
𝑔
𝑐 (𝑗).

Proof. We first prove an auxiliary claim based on the following assertions:

• let [𝐴1] be: (𝑤, 𝑗) |= 𝜒�𝑃 𝜓 ;
• let [𝐴2] be: all accepting computations of A𝜑 bring it from configuration ⟨𝑦𝑧,Φ𝑔 (𝑖), 𝛼𝛾⟩ to a configuration ⟨𝑧,

Φ𝑔 (𝑖𝑧), 𝛽𝛾⟩ such that |𝛼 | = 1, |𝛽 | = 1 if first(𝑦) is read by a shift move, |𝛽 | = 2 if it is read by a push move, and
𝜒�𝑃 𝜓 ∈ Φ

𝑔
𝑐 (𝑗).

We prove that for any word𝑤 = #𝑢𝑧# and position 𝑗 = |𝑢 | in𝑤 there exists a partition of 𝑢 = 𝑥𝑦, with 𝑦 not empty and
|𝑥 | = 𝑖 − 1 > 0, such that 𝐴1 ⇐⇒ 𝐴2.

[𝐴1 ⇒ 𝐴2] Suppose 𝜒�𝑃 𝜓 holds in position 𝑗 , labeled with 𝑑 . Then, there exists a position 𝑖 , labeled with 𝑎, s.t. 𝜒 (𝑖, 𝑗),
𝑎 � 𝑑 , and𝜓 holds in 𝑖 . Since 𝑎 and 𝑑 are the contexts of a chain,𝑤 must have the form of Fig. 12 (left). All accepting
computations of the OPA reach configuration ⟨𝑎 . . . 𝑧,Φ𝑔 (𝑖), [𝑓 ,Φ𝑔 (𝑘)]𝛾⟩ with 𝑘 < 𝑖 before reading 𝑎. By the assumption
on A𝜑 , we have𝜓 ∈ Φ

𝑔
𝑐 (𝑖). 𝑎 is read by a shift or a push move, bringing the OPA to ⟨𝑐0

0 . . . 𝑧,Φ
𝑔 (𝑖𝑐0

0
), 𝜇⟩, with 𝜇 = 𝛼 ′𝛾 ,

and either 𝛼 ′ = [𝑎,Φ𝑔 (𝑖)] [𝑓 ,Φ𝑔 (𝑘)] or 𝛼 ′ = [𝑎,Φ𝑔 (𝑘)], respectively. Due to rule (19), we have 𝜒�𝑃 𝜓 ∈ Φ
𝑔
𝑝 (𝑖𝑐0

0
). After

reading 𝑐0
0 , the OPA reaches configuration ⟨𝑣0

0 . . . 𝑧,Φ(𝑖𝑣0
0
), [𝑐0

0,Φ
𝑔 (𝑖𝑐0

0
)]𝜇⟩. Then, the automaton proceeds to read the

rest of the body delimited by relation 𝜒 (𝑖, 𝑗). If 𝑖 is the left context of multiple chains, the stack symbol [𝑐0
0,Φ

𝑔 (𝑖𝑐0
0
)],

containing 𝜒�𝑃 𝜓 as a pending obligation, is popped before reaching 𝑑 . Let 𝑏𝑝 , 1 ≤ 𝑝 ≤ 𝑛, be all labels of positions
𝑖𝑏𝑝 s.t. 𝜒 (𝑖, 𝑖𝑏𝑝) and 𝑎 ⋖ 𝑏𝑝 . It can be proved inductively that, before reading any of such positions, the OPA is in a

configuration ⟨𝑏𝑝 . . . 𝑧,Φ(𝑖𝑏𝑝), [𝑐
𝑝−1
𝑚𝑝−1 ,Φ

𝑔 (𝑖𝑏𝑝−1)]𝜇⟩, with 𝜒�𝑃 𝜓 ∈ Φ
𝑔
𝑝 (𝑖𝑏𝑝−1). Since 𝑐

𝑝−1
𝑚𝑝−1 ⋗ 𝑏𝑝 , the next move is a pop,

leading to a configuration ⟨𝑏𝑝 . . . 𝑧,Φ′ (𝑖𝑏𝑝), 𝜇⟩, with 𝜒�𝑃 𝜓 ∈ Φ′
𝑝 (𝑖𝑏𝑝), due to rule (18). Then, 𝑏𝑝 is read by a push move

because 𝑎 ⋖𝑏𝑝 , so 𝜒�𝑃 𝜓 is again stored in the topmost stack symbol as a pending obligation, in a configuration ⟨𝑣𝑝0 . . . 𝑧,
Φ(𝑖𝑣𝑝1), [𝑏𝑝 ,Φ

′ (𝑖𝑏𝑝)]𝜇⟩. The stack symbol containing 𝜒�𝑃 𝜓 is only popped in positions 𝑏𝑝 , or when reaching 𝑑 , since
subchains only cause the OPA to push and pop new symbols.

So, configuration ⟨𝑑𝑧,Φ(𝑗), [𝑐𝑛𝑚𝑛
,Φ′ (𝑖𝑏𝑝)]𝜇⟩ is reached, with 𝜒�𝑃 𝜓 ∈ Φ′

𝑝 (𝑖𝑏𝑝) (recall that 𝑑 labels 𝑗 , the last position
of 𝑦). Due to rule (18), a pop move leads the OPA to ⟨𝑑𝑧,Φ′ (𝑗), 𝜇⟩, with 𝜒�𝑃 𝜓 ∈ Φ′

𝑝 (𝑗). Then, since by hypothesis 𝑎 � 𝑑 ,
and 𝑎 is contained in the topmost stack symbol, 𝑑 is read by a shift move. Since this transition is preceded by a pop, we
have 𝜁𝑅 ∈ Φ′

𝑝 (𝑗). So, by rule (16), since 𝜒�𝑃 𝜓, 𝜁𝑅 ∈ Φ′
𝑝 (𝑗), we have 𝜒�𝑃 𝜓 ∈ Φ′

𝑐 (𝑗). Finally, the shift move reads 𝑑 and
leads the OPA to ⟨𝑧,Φ(𝑖𝑧), 𝛽𝛾⟩, with either 𝛽 = [𝑑,Φ𝑔 (𝑖)] [𝑓 ,Φ𝑔 (𝑘)] or 𝛽 = [𝑑,Φ𝑔 (𝑘)], satisfying claim 𝐴1.

[𝐴2 ⇒ 𝐴1] Suppose that, while reading𝑤 , an accepting computation of the OPA reaches a configuration ⟨𝑑𝑧,Φ𝑔 (𝑗),
𝜇⟩, where 𝑗 is the last position of 𝑦, labeled with 𝑑 , and 𝜒�𝑃 𝜓 ∈ Φ

𝑔
𝑐 (𝑗). By rule (16), we have 𝜒�𝑃 𝜓, 𝜁𝑅 ∈ Φ

𝑔
𝑝 (𝑗). The

presence of 𝜁𝑅 in Φ
𝑔
𝑝 (𝑗) requires the previous transition to be a pop, so 𝑑 is the right context of a chain. Let 𝑎, in position

𝑖 , be its left context. By hypothesis, the computation proceeds reading 𝑑 , and by rule (17) it must be read by a shift
transition. So, we have 𝑎 � 𝑑 , and𝑤 must be of the form of Fig. 12 (left). Going back to ⟨𝑑𝑧,Φ𝑔 (𝑗), 𝜇⟩, consider the pop
move leading to this configuration. It starts from configuration ⟨𝑑𝑧,Φ(𝑗), [𝑐𝑛𝑚𝑛

,Φ𝑔 (𝑖𝑏𝑛)]𝜇⟩, and by rule (18) we have
𝜒�𝑃 𝜓 ∈ Φ

𝑔
𝑝 (𝑖𝑏𝑛).

Manuscript submitted to ACM

3225

3226

3227

3228

3229

3230

3231

3232

3233

3234

3235

3236

3237

3238

3239

3240

3241

3242

3243

3244

3245

3246

3247

3248

3249

3250

3251

3252

3253

3254

3255

3256

3257

3258

3259

3260

3261

3262

3263

3264

3265

3266

3267

3268

3269

3270

3271

3272

3273

3274

3275

3276

A Model Checker for Operator Precedence Languages 63

Consider the move that pushed Φ𝑔 (𝑖𝑏𝑛) onto the stack. Suppose it was preceded by a pop move. Since Φ𝑔 (𝑖𝑏𝑛) is the
target state of this transition, and 𝜒�𝑃 𝜓 ∈ Φ

𝑔
𝑝 (𝑖𝑏𝑛), by rule (18) 𝜒�𝑃 𝜓 must be contained as a pending obligation in the

popped state as well. So, this obligation is propagated backwards every time the automaton encounters a position that
is the left context of a chain, i.e. positions 𝑏𝑝 , 1 ≤ 𝑝 ≤ 𝑛, in Fig. 12. In order to stop the propagation, a push of a state
with 𝜒�𝑃 𝜓 as a pending obligation, preceded by another push or shift move must be encountered. Such a transition
pushes or updates the stack symbol under the one containing 𝜒�𝑃 𝜓 , which means the left context 𝑎 s.t. 𝑎 � 𝑑 of a chain
whose right context is 𝑑 has been reached. In both cases, the target state of the push/shift transitions contains 𝜒�𝑃 𝜓
as a pending obligation, so by rule (19) we have𝜓 ∈ Φ

𝑔
𝑐 (𝑖). Hence, by the inductive assumption,𝜓 holds in position 𝑖

(corresponding to 𝑎), we have 𝑖 � 𝑗 and 𝜒 (𝑖, 𝑗), which implies 𝜒�𝑃 𝜓 holds in 𝑗 .
[𝐼1 ⇒ 𝐼2] follows from 𝐴1 ⇒ 𝐴2 and A𝜑−𝜒�𝑃 𝜓 ’s 𝒟ℛ rules being a strict subset of A𝜑 ’s. [𝐼2 ⇒ 𝐼1] again follows

from 𝐴2 ⇒ 𝐴1 and the fact that, after 𝑗 is read, the next state Φ𝑔 (𝑖𝑧) may not contain 𝜒�𝑃 𝜓 (unless𝜓 holds in 𝑗 , which
however cannot be required by 𝜒�𝑃 𝜓 holding in 𝑗), so rules 16-19 may not prevent the computation from reaching a
final state. □

Lemma A.3 (𝜒⋗𝑃 operator). Given a finite set of atomic propositions 𝐴𝑃 , an OP alphabet (P(𝐴𝑃), 𝑀𝐴𝑃), and a formula

𝜒⋗𝑃 𝜓 , let A𝜑 be the OPA built for a formula 𝜑 such that 𝜒⋗𝑃 𝜓 ∈ Cl(𝜑); and let A𝜑−𝜒⋗𝑃 𝜓 be the OPA built as A𝜑 but using

𝒟ℛ \𝒟ℛ(𝜒⋗𝑃 𝜓) for 𝛿 .
Inductive assumption: in all accepting computations of A𝜑 for each position 𝑖 in the input word 𝑤 and for each

sub-formula𝜓 ′ ∈ ssubf (𝜒⋗𝑃 𝜓) we have (𝑤, 𝑖) |= 𝜓 ′ iff𝜓 ′ ∈ Φ
𝑔
𝑐 (𝑖).

Inductive claim 𝐼 : [𝐼1] A computation 𝜌 of A𝜑 is accepting if and only if [𝐼2] 𝜌 is accepting for A𝜑−𝜒⋗𝑃 𝜓 and for each

position 𝑗 in the input word𝑤 we have (𝑤, 𝑗) |= 𝜒⋗𝑃 𝜓 iff 𝜒⋗𝑃 𝜓 ∈ Φ
𝑔
𝑐 (𝑗).

Proof. We first prove an auxiliary claim based on the following assertions:

• let [𝐴1] be: (𝑤, 𝑗) |= 𝜒⋗𝑃 𝜓 ;
• let [𝐴2] be: all accepting computations of A𝜑 bring it from configuration ⟨𝑦𝑧,Φ𝑔 (𝑖), 𝛼𝛾⟩ to a configuration ⟨𝑧,

Φ𝑔 (𝑖𝑧), 𝛽𝛾⟩ such that |𝛼 | = 1, |𝛽 | = 1 if first(𝑦) is read by a shift move, |𝛽 | = 2 if it is read by a push move, and
𝜒⋗𝑃 𝜓 ∈ Φ

𝑔
𝑐 (𝑗), where 𝑗 is the last position of 𝑦.

We prove that for any word𝑤 = #𝑥𝑦𝑧# and position 𝑗 = |𝑥𝑦 | in𝑤 , 𝐴1 ⇐⇒ 𝐴2, where 𝑖 = |𝑥 | + 1.
[𝐴1 ⇒ 𝐴2] Suppose 𝜒⋗𝑃 𝜓 holds in position 𝑗 . Then, 𝑗 is the right context of at least two chains, and the word𝑤 has

one of the structures of Fig. 23, with 𝑖 being the leftmost context of 𝑗 . Let positions 𝑖𝑏𝑝 , labeled with 𝑏𝑝 , 1 ≤ 𝑝 ≤ 𝑛, be
all other left contexts of chains sharing 𝑗 as their right context. There exists an index 𝑞, 1 ≤ 𝑞 ≤ 𝑛, s.t.𝜓 holds in 𝑖𝑏𝑞 .

During an accepting run, the OPA reads𝑤 normally, until it reaches 𝑏𝑞 , with configuration

⟨𝑏𝑞 . . . 𝑧,Φ(𝑖𝑏𝑞), [𝑐
𝑞
𝑚𝑞
,Φ𝑔 (𝑖𝑐𝑞0)] [𝑏𝑞+1,Φ

𝑔 (𝑖
𝑐
𝑞+1
0

)] . . . 𝜇⟩,

with𝜓 ∈ Φ𝑐 (𝑖𝑏𝑞), 𝜇 = [𝑎,Φ𝑔 (𝑘)]𝛾 , with 𝑘 ≤ 𝑖 depending on whether 𝑎 (the label of 𝑖) was read by a push or a shift move.
Note that if 𝑏𝑞 is the only character in its simple chain body (𝑢𝑞 = 𝜀 in Fig. 23), then [𝑐𝑞𝑚𝑞

,Φ𝑔 (𝑖𝑐𝑞0)] is not present on
the stack. In this case, 𝑏𝑞 is read by a push move instead of a shift. Suppose 𝑏𝑞 is the left context of one or more chains,
besides the one whose right context is 𝑗 . In Fig. 23, this means 𝑣𝑞−1

0 ≠ 𝜀. Consider the right context of the outermost
of such chains: assume, w.l.o.g., that it is 𝑐𝑞−1

0 (it may as well be 𝑏𝑞−1). Since 𝜓 holds in 𝑖𝑏𝑞 , 𝜒
⋖
𝑃 𝜓 holds in 𝑖

𝑐
𝑞−1
0

. If,

instead, 𝑣𝑞−1
0 = 𝜀, then 𝑐𝑞−1

0 is the successor of 𝑏𝑞 , and ⊖𝑑 𝜓 holds in it. In both cases, 𝜒⋖𝑃 𝜓 ∨ ⊖𝑑 𝜓 holds in 𝑖
𝑐
𝑞−1
0

. Since

Manuscript submitted to ACM

3277

3278

3279

3280

3281

3282

3283

3284

3285

3286

3287

3288

3289

3290

3291

3292

3293

3294

3295

3296

3297

3298

3299

3300

3301

3302

3303

3304

3305

3306

3307

3308

3309

3310

3311

3312

3313

3314

3315

3316

3317

3318

3319

3320

3321

3322

3323

3324

3325

3326

3327

3328

64 Michele Chiari, Dino Mandrioli, Francesco Pontiggia, and Matteo Pradella

·

·

·

0 ·

1= ·

1=−1 ·

...

·

11 ·

3

#

G I

D0

D=

D=−1

D1

·

·

·

0 ·

·

1= ·

1=−1 ·

...

·

11 ·

3

#

G I

D0

D=

D=−1

D1

⋖ 𝑥 𝜋𝑥 𝑎 ⋖ 𝑢𝑛 𝜋𝑛 𝑏𝑛 ⋖ 𝑢𝑛−1 𝜋𝑛−1 𝑏𝑛−1 ⋖ . . . ⋖ 𝑢1 𝜋1 𝑏1 ⋖ 𝑢0 ⋗ 𝑑 𝜋𝑧 𝑧 ⋗
0 𝑖 𝑖𝑏𝑛 𝑖𝑏𝑛−1 𝑖𝑏1 𝑗

⋖/�
⋗ ⋗

⋗

Fig. 23. The two possible STs of a generic OP word 𝑤 = 𝑥𝑦𝑧 (top) expanded on the rightmost non-terminal, and its flat representation
with chains (bottom). Wavy lines are placeholders for frontiers of subtrees or parts thereof. We have either 𝑎 � 𝑑 (top left) or 𝑎 ⋖ 𝑑
(top right), and 𝑏𝑘 ⋗𝑑 for 1 ≤ 𝑘 ≤ 𝑛. For 1 ≤ 𝑘 ≤ 𝑛, we either have 𝑏𝑘+1 [𝑢𝑘]𝑏𝑘 , or 𝑢𝑘 is of the form 𝑣𝑘0 𝑐

𝑘
0 𝑣

𝑘
1 𝑐

𝑘
1 . . . 𝑐𝑘𝑚𝑘

𝑣𝑘𝑚𝑘+1, where

𝑐𝑘𝑝 � 𝑐
𝑘
𝑝+1 for 0 ≤ 𝑝 <𝑚𝑘 , 𝑐𝑘𝑚𝑘

�𝑏𝑘 , and resp. 𝑎 ⋖𝑐𝑛0 and 𝑏𝑘+1 ⋖𝑐
𝑘
0 . Moreover, for each 0 ≤ 𝑝 <𝑚𝑘 , either 𝑣𝑘𝑝+1 = 𝜀 or 𝑐

𝑘
𝑝 [𝑣𝑘𝑝+1]

𝑐𝑘𝑝+1 ;

either 𝑣𝑘𝑚𝑘+1 = 𝜀 or 𝑐𝑘𝑚𝑘 [𝑣𝑘𝑚𝑘+1]𝑏𝑘 , and either 𝑣𝑘0 = 𝜀 or 𝑏𝑘+1 [𝑣𝑘0]𝑐
𝑘
0 (resp. 𝑎 [𝑣𝑛0]𝑐

𝑛
0). 𝑢0 has the same form, except 𝑣0

𝑚0 = 𝜀 and

𝑐0
𝑚0 ⋗ 𝑑 . The 𝜋𝑖 s are placeholders for precedence relations, and they vary depending on the surrounding terminal characters. Chains
that may or may not exist depending on the form of each 𝑢𝑘 are not shown by edges (e.g., between 𝑎 and 𝑏𝑛).

𝑏𝑞 ⋖ 𝑐
𝑞−1
0 , the latter is read by a push transition, pushing stack symbol [𝑐𝑞−1

0 ,Φ𝑔 (𝑖
𝑐
𝑞−1
0

)], with 𝜒⋖𝑃 𝜓 ∨ ⊖𝑑 𝜓 ∈ Φ
𝑔
𝑐 (𝑖𝑐𝑞−1

0
).

This symbol remains on stack until 𝑑 is reached, although its terminal symbol may be updated. The computation then
proceeds normally, until configuration ⟨𝑑𝑧,Φ(𝑞−1) (𝑗), [𝑏𝑞−1,Φ𝑔 (𝑖𝑐𝑞−1

0
)] . . . 𝜇⟩ is reached.

Since 𝜒⋖𝑃 𝜓 ∨ ⊖𝑑 𝜓 ∈ Φ
𝑔
𝑐 (𝑖𝑐𝑞−1

0
), by rule (29), the OPA transitions to configuration ⟨𝑑𝑧,Φ(𝑞) (𝑗), [𝑏𝑞,Φ𝑔 (𝑖𝑐𝑞0)] . . . 𝜇⟩

with 𝜒⋗𝑃 𝜓 ∈ Φ
(𝑞)
𝑝 (𝑗) and 𝜁𝐿, 𝜁� ∉ Φ

(𝑞)
𝑝 (𝑗). (Note that the next transition must be a pop, since the topmost stack symbol

Manuscript submitted to ACM

3329

3330

3331

3332

3333

3334

3335

3336

3337

3338

3339

3340

3341

3342

3343

3344

3345

3346

3347

3348

3349

3350

3351

3352

3353

3354

3355

3356

3357

3358

3359

3360

3361

3362

3363

3364

3365

3366

3367

3368

3369

3370

3371

3372

3373

3374

3375

3376

3377

3378

3379

3380

A Model Checker for Operator Precedence Languages 65

is 𝑏𝑞 , and 𝑏𝑞 ⋗ 𝑑 .) Then, by rule (29), all subsequent pop transitions propagate 𝜒⋗𝑃 𝜓 as a pending obligation in the
OPA state, until configuration ⟨𝑑𝑧,Φ(𝑛−1) (𝑗), 𝜇⟩, with 𝜒⋗𝑃 𝜓 ∈ Φ

(𝑛−1)
𝑝 (𝑗). Now, the automaton guesses that this is the

last pop move, and the next one will be a push or a shift. So, it transitions to ⟨𝑑𝑧,Φ(𝑛) (𝑗), 𝜇⟩, with and 𝜁𝐿 ∈ Φ
(𝑛)
𝑝 (𝑗)

or 𝜁� ∈ Φ
(𝑛)
𝑝 (𝑗), and 𝜒⋗𝑃 𝜓 ∈ Φ

(𝑛)
𝑝 (𝑗), according to rule (28). Also, 𝜁𝑅 ∈ Φ

(𝑛)
𝑝 (𝑗), because the previous move was a

pop. At this point, 𝑑 is read by a shift or a push transition, so Φ𝑔 (𝑗) = Φ(𝑛) (𝑗), and the new stack is 𝛽𝛾 with either
𝛽 = [𝑑,Φ𝑔 (𝑘)] or 𝛽 = [𝑑,Φ𝑔 (𝑗)] [𝑎,Φ𝑔 (𝑘)]. According to rule (27), 𝜒⋗𝑃 𝜓 ∈ Φ

(𝑛)
𝑐 (𝑗), which satisfies claim 𝐴1.

[𝐴2 ⇒ 𝐴1] Suppose the automaton reaches a state Φ𝑔 (𝑗) = Φ(𝑛) (𝑗) s.t. 𝜒⋗𝑃 𝜓 ∈ Φ
𝑔
𝑐 (𝑗) during an accepting computa-

tion. Position 𝑗 must be read by either a push or a shift move, so either 𝜁𝐿 ∈ Φ
𝑔
𝑝 (𝑗) or 𝜁� ∈ Φ

𝑔
𝑝 (𝑗). By rule (27), for the

computation to continue, we have 𝜁𝑅 ∈ Φ
𝑔
𝑝 (𝑗). So, the transition leading to state Φ𝑔𝑝 (𝑗) must be a pop, and the related

word position 𝑑 is the right context of a chain. Let Φ(𝑛−1) (𝑗) be the starting state of this transition. Since 𝜒⋗𝑃 𝜓 ∈ Φ
𝑔
𝑝 (𝑗),

by rule (28) we have 𝜒⋗𝑃 𝜓 ∈ Φ
(𝑛−1)
𝑝 (𝑗). By rule (26), this transition must be preceded by another pop, so 𝑑 is the right

context of at least two chains, and the word being read has one of the forms of Fig. 23, with 𝑛 ≥ 1.
So, before reading 𝑑 , the OPA performs a pop transition for each inner chain having 𝑑 as a right context, i.e. those

having 𝑏𝑝 , 1 ≤ 𝑝 ≤ 𝑛, as left contexts in Fig. 23, plus one for the outermost chain (whose left context is 𝑎). By rule (29),
𝜒⋗𝑃 𝜓 is propagated backwards through such transitions from the one before 𝑑 is read, to one in which 𝜒⋖𝑃 𝜓 ∨ ⊖⋖𝜓 is
contained into the popped state.

By rule (26), for the computation to reach such pop transitions, the propagation of 𝜒⋗𝑃 𝜓 as a pending obligation must
stop. So, the OPA must reach a configuration ⟨𝑑𝑧,Φ(𝑞) (𝑗), [𝑏𝑞,Φ𝑔 (𝑖𝑐𝑞0)] . . . 𝜇⟩ with 𝜒

⋖
𝑃 𝜓 ∨ ⊖⋖𝜓 ∈ Φ

𝑔
𝑐 (𝑖𝑐𝑞0). Note that

the following argument also applies to the case in which, in Fig. 23, 𝑢𝑞 = 𝜀, by substituting 𝑏𝑞 for 𝑐𝑞0 . The topmost stack
symbol was pushed after configuration ⟨𝑐𝑞0 . . . 𝑧,Φ𝑔 (𝑖𝑐𝑞0), [𝑏𝑞−1,Φ𝑔 (𝑖𝑐𝑞−1

0
)] . . . 𝜇⟩. We have 𝑏𝑞−1 ⋖ 𝑐

𝑞
0 . If 𝑣

𝑞
0 = 𝜀, and 𝑐𝑞0 is

in the position next to 𝑏𝑞−1, ⊖⋖𝜓 holds, while if 𝑣𝑞0 ≠ 𝜀, since 𝑏𝑞−1 [𝑣𝑞0]𝑐
𝑞
0 is a chain, 𝜒⋖𝑃 𝜓 holds. Therefore,𝜓 holds in

𝑏𝑞−1. Since 𝑏𝑞−1 ⋗ 𝑑 and 𝜒 (𝑖𝑏𝑞−1 , 𝑗), 𝜒⋗𝑃 𝜓 holds in 𝑗 .
[𝐼1 ⇒ 𝐼2] follows from 𝐴1 ⇒ 𝐴2 and A𝜑−𝜒⋖𝑃 𝜓 ’s 𝒟ℛ rules being a strict subset of A𝜑 ’s. [𝐼2 ⇒ 𝐼1] again follows

from 𝐴2 ⇒ 𝐴1 and the fact that rules (26) and (27) do not propagate 𝜒⋗𝑃 𝜓 further during the transition that reads 𝑗 , so
rules 26-29 may not prevent the computation from reaching a final state. □

B OMITTED GRAPHS FROM THE EXPERIMENTAL EVALUATION

Here we report graphs from the experimental evaluation described in Section 7.2 for formulas Q.2–Q.6 and formulas
Q.8–Q.10 that have been omitted from the main text.

Manuscript submitted to ACM

3381

3382

3383

3384

3385

3386

3387

3388

3389

3390

3391

3392

3393

3394

3395

3396

3397

3398

3399

3400

3401

3402

3403

3404

3405

3406

3407

3408

3409

3410

3411

3412

3413

3414

3415

3416

3417

3418

3419

3420

3421

3422

3423

3424

3425

3426

3427

3428

3429

3430

3431

3432

66 Michele Chiari, Dino Mandrioli, Francesco Pontiggia, and Matteo Pradella

(1,2)

(1,3)

(1,4) (1,5)
(1,6)

(1,7)

(2,2)

(2,3)

(2,4)

(2,5)

(3,2)

(3,3)

(4,2)

0

500

1000

1500

2000

2 4 6 8 10
G

T
im

e(
s)

Fig. 24. Experimental results on property Q.2

(1,2)

(1,3) (1,4)
(1,5)

(1,6)

(1,7)

(2,2)

(2,3)

(2,4)

(3,2)

(3,3)

(4,2)

0

1000

2000

2 4 6 8
G

T
im

e(
s)

Fig. 25. Experimental results on property Q.3

(1,2) (1,3)

(1,4)
(1,5)

(1,6)

(1,7)

(2,2)

(2,3)

(2,4)

(3,2)

(3,3)

(4,2)

0

1000

2000

3000

2 4 6 8
G

T
im

e(
s)

Fig. 26. Experimental results on property Q.4

(1,2)

(1,3)

(1,4)

(1,5)

(2,2)

(3,2)

0

500

1000

1500

2000

2500

2 3 4 5 6
G

T
im

e(
s)

Fig. 27. Experimental results on property Q.5

Manuscript submitted to ACM

3433

3434

3435

3436

3437

3438

3439

3440

3441

3442

3443

3444

3445

3446

3447

3448

3449

3450

3451

3452

3453

3454

3455

3456

3457

3458

3459

3460

3461

3462

3463

3464

3465

3466

3467

3468

3469

3470

3471

3472

3473

3474

3475

3476

3477

3478

3479

3480

3481

3482

3483

3484

A Model Checker for Operator Precedence Languages 67

(1,2)

(1,3)

(1,4)

(1,5)

(2,2)

(3,2)

0

500

1000

1500

2000

2 3 4 5 6
G

T
im

e(
s)

Fig. 28. Experimental results on property Q.6

(1,2)

(1,3)

(1,4)

(1,5)

(2,2)

(3,2)

0

500

1000

1500

2000

2500

2 3 4 5 6
G

T
im

e(
s)

Fig. 29. Experimental results on property Q.9

(1,2) (1,3)

(1,4)

(1,5)

(1,6)

(1,7)

(2,2)

(2,3)

(2,4)

(3,2)

(4,2)

0

500

1000

1500

2000

2 4 6 8
G

T
im

e(
s)

Fig. 30. Experimental results on property Q.10

Manuscript submitted to ACM

	Abstract
	1 Introduction
	2 Operator Precedence Languages
	2.1 Operator Precedence Omega-Languages
	2.2 Modeling Procedural Programs by means of OPA

	3 Precedence Oriented Temporal Logic
	3.1 POTL Syntax and Semantics
	3.2 POTL on Omega-Words
	3.3 Expressing Requirements in POTL

	4 Finite-Word Model Checking
	4.1 Automaton Construction
	4.2 Correctness Proof
	4.3 Complexity

	5 Omega-Word Model Checking
	5.1 Complexity

	6 Implementation
	6.1 OPA Language Emptiness Checking
	6.2 Omega-OPBA Emptiness Checking

	7 Experimental Evaluation
	7.1 Basic Case Studies
	7.2 QuickSort
	7.3 Related tools

	8 Conclusions
	Acknowledgments
	References
	A Omitted Correctness Proofs of Model Checking
	A.1 Chain Next Operators
	A.2 Chain Back Operators

	B Omitted Graphs from the Experimental Evaluation

