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Abstract—In Bounded Model Checking (BMC) a system is In our past work [6] we have introduced a variant of
modeled with a finite automaton and various desired propertés pounded model checking where the underlying, ultimately
with temporal logic formulae. Property verification is achieved periodic timing structure was not bounded to be infinite only

by translation into boolean logic and the application of SAF . .
solvers. Bounded Satisfiability Checking (BSC) adopts a siitar in the future, but may extend indefinitely also towards the

approach, but both the system and the properties are modeled Past, thus allowing for a simple and intuitive modeling of
with temporal logic formulae, without an underlying operational  continuously functioning systems like monitoring and eoht

model. Hence, BSC supports a higher-level, descriptive appach  devices. Most important, however, in our approach both the
to system specification and analysis. We compare the perforance system under analysis and the property to be checked are

of BMC and BSC over a set of case studies, using the Zot tool di inal if tai f | f teal
to translate automata and temporal logic formulae into bookan expressed in a singie uniform notation as formulae ot temipor

logic. We also propose a method to check whether an operatiah  10giC. In this novel setting, which we called boundeatisfia-
model is a correct implementation (refinement) of a temporal bility checking BSC), the system under analysis is modeled

logic model, and assess its effectiveness on the same setadec through the set of all its fundamental properties as a foamul
studies. Our experimental results show the feasibility of BC and 15t in all non-trivial cases would be of significant sizeyla
refinement checking, with mo.dest pe.rfqrmglnce Iosslw.r.t. BNL. the additional property to be checked (e.g. a further désire
Index Terms—Model checking, Satisfiability checking, Tempo- . . A
ral logic, SAT-solver. requirement) is expressed as another (usually much smaller
formulay. A bounded model checker in this case is used to
prove that any implementation of the system under analysis
possessing the assumed fundamental propeftisuld also
Bounded Model Checking is a well established techniqusure the additional property; in other terms, the model
for analyzing timed reactive systems [1]. The system undenecker would prove that the formula — « is valid, or
analysis is modeled as a finite-state transition system apguivalently that its negation is not satisfiable (hencetd¢nm
the property to be checked is expressed as a formula satisfiability checking).
temporal logic. Infinite, ultimately periodic temporalsttures Satisfiability verification is very useful, in its simplestrn,
that assign a value to every element of the model alphalasta means for performing a sort of testing [7}sanity check
are encoded through a finite set of boolean variables, apfdthe specification [8], [9] and, more generally, it allows
the cyclic structure of the time domain is encoded into the designer to perform System Requirement Analysis [10],
set of loop selector variableghat mark the start and endi.e., to investigate which system properties and behadogs
points of the period. The model and the property are aldmplied by (or are compatible with) the assumed requiresent
suitably translated into boolean logic formulae, so tha tttonsidered as a high level specification. This kind of afstivi
model checking problem is expressed as an instance obeing centered on the requirements, is naturally performed
SAT problem, that can be solved efficiently thanks to that the initial stages of the development cycle. This has the
significant improvements that occurred in recent years én thdvantages of allowing the designer to reason at a high level
technology of the SAT-solver tools [2], [3]. As it usuallyof abstraction, using simple and readable artifacts like th
occurs in a model checking framework, a (bounded) modekquirements specification, and without imposing any prema
checker tool can either prove a property or disprove it kyre constraint on the implementation. On the other hand,
exhibiting a counter example, thus providing means to sttppan analysis performed at an early stage of the development
simulation, test case generation, etc. Among the variols SArocess does not provide any support to the design phase and
based verification tools we citduSMV[4], a symbolic model maypotentially be less efficient that an analysis performed, as
checker which supports bounded model checking; Altdy in traditional model checking, with reference to an operzdi
[5], oriented towards the analysis of descriptive modeld, bmodel consisting, as it is customary, of a state transition
without full support to the verification of temporal progeg. system.

I. INTRODUCTION



In the present work, we take a significant further stegdiw ¢ := O¢ A B¢. The intended meaning odiw ¢ is that
in investigating the feasibility and usefulness of BSC by must hold in every instant in the future and in the past. Its
exploiting its generality and flexibility to providewo kinds dual is the Sometimes operatSom ¢ defined as-Alw—¢.
of models for the system under analysis: Semantics of PLTL A bi-infinite word w over alphabet
« the descriptive modelwhich consists essentially of a2“? (also called aZ-word) is a functionw : Z — 247,
compact, high level, readable requirements specificatibtence,w(j) € 247 for every j. Word w is also denoted as
expressed as a set of formulae in timed temporal logic. w(—1)w(0)w(1) ... and eachw(j) also asw;. The set of
with past operators, and all bi-infinite words over24? is denoted by(247)%. An w-
« the operational modelwhich is written in a simple but word over24? is a function fromN — 247, i.e., it has the
rather general language to characterize a state-tramsitiorm w(0)w(1).. ..
system. The semantics of PLTL may be defined @rwords (i.e.,
Through a running example we introduce a method to buii-infinite time) or onw-words (i.e., mono-infinite time). We
the two models in such a way as to facilitate their analysis aRresent here only the former case, even if the latter is much
comparison. In particular we focus on the interfaces thhougnore common in BMC, since bi-infinite semantics is actually
which they can be related and we investigate the notions ¥Mpler and includes the mono-infinite one as a special case.
equivalence and implementation among a descriptive and Al§0, our tool Zot supports both mono-infinite and bi-infenit
operational model. These ideas are also validated by ayplyFases, and some of the experiments of Section V use bi-mfinit
them to a set of significant examples consisting of benchmdhie-
case studies. For all PLTL formulaeg, for all w € (247)Z, for all integer
The results here reported can be the basis for a unifigimbersi, the satisfaction relation,i = ¢ is defined as
encompassing development framework for reactive, emtkdd®llows. _
(time) critical systems that supports a seamless trandftamn w,? Fpe=pe 1,”(2)7 for p € Ap
requirements elicitation and analysis (carried out by reezn w,? F ¢ = w,i F& ¢ ,
satisfiability checking on the first, descriptive model oeth ~ “»* Fovy = W, Foorwifd
system), to a refinement-based, and hence provably correct,”>" Fop=witliEg
high-level design supported by proof of correct implementa +* = UY = Tk =20 | w,i+k =1, and
tion and by verification through model checking. Wit jEPVOS <k
The paper is structured as follows. Section Il presents “»* Fep=wi—-1f¢ .
background material on temporal logic and bounded model- ¥+* = ¢_S¢,‘:’ 3k > 0 | w,i =k =1, and
and satisfiability-checking. Section Il introduces, byane of w,i—jlFEVO<j<k

i le, th ti fd ipti d i . . .
a running exampye, the NOLoNS of descriplive and operation Metric PLTL PLTL can also be extended by adding metric

models. Section IV illustrates, still on the running exaepl ¢ di te ti Metri A
the operations of refinement, proof of correct implemeatati operalors, on giscrete ime. Metric operalors are very @onv

and equivalence among models. In Section V we report a {?nt for modeling hard real time systems, with quantigativ

comment on the experimental results on applying our meth jgie constraints. The resulting Ioglc,_caIIeMetrlc PLTL, .
and tool to the benchmark case studies. In the concludifig®® not actually extend the expressive power of PLTL: it

section we summarize the obtained results and outlinetpiessiIS a syn.taincallyl-suga;ridl_:r?ut considerably more su¢and
future developments. convenient, version o '

Metric PLTL extends the alphabet of PLTL withteunded

Il. PRELIMINARIES until operator/... and abounded sinc@peratorS... , where
We first recall here Linear Temporal Logic with past oper= represents any relational operator (i {<,=,>}), and
ators (PLTL), in the version introduced by Kamp [11]. c is a natural number. Also, we allow-ary predicate letters

Syntax of PLTL The alphabet of PLTL includes: a finite(With » > 1) and theV, 3 quantifiers as long as their domains
set Ap of propositional letters; two propositional connecare finite. Hence, one can write, e.g., formulae of the form:
tives =, v (from which other traditional connectives such agp gr(p), with p ranging over{1,2,3} as a shorthand for
T,1,-,V,A,—,... may be defined); four temporal operatoré/pe{l,gyg} gry,.

(from which other temporal operators can be derived): te “u  The bounded globally and bounded eventually operators are
til” operatorl/, the “next-time” operatos, the “since” operator defined as follows)..¢ is TU..¢, O ¢. The past versions

S and the “past-time” (or Yesterday) operater, Formulae Of the bounded eventually and globally operators may be
are defined in the usual inductive way: a propositional tettdefined symmetrically to their future counterpards..¢ is

p € Apis aformula;—¢, pVi), pUrp, o, pS1), ep, wherep, 1y TSwctd, B iS 4. ..

are formulae, are formulae; nothing else is a formula. Versions of the bounded operators with a strict bound may

The traditional eventually and globally operators may bee introduced as a shorthand. For instargé, v stands for
defined as¢ is TU®, O¢ is =O—¢. Their past counterparts o(dU>ov).
are: ¢¢ is TS¢, Mo is —4—¢. Another useful operator for The semantics of Metric PLTL may be defined by a straight-
PLTL is the Always operatordiw, which can be defined by forward translation of its operators into PLTL:



T(¢1l<o2) := 2 ALl L L L L L L L 1 L
T(¢1U§t¢2) = ¢2\/(]51/\OT((blZ/{St_1¢2),Witht>0 + Iolnl ——— '0'n' Iolffl Iolnl + Iolnl ———
T(p1U>002) == p1lUp2
T(1U>192) == ¢1 A oT(p1lz1-1¢2), with £ > 0 Fig. 1. A history for the example of the timed lamp
T(1U=092) := ¢2
T(prl=¢¢2) := P1 N oT(p1ld=¢—1¢2), with £ > 0

and symmetrically for the operators in the past. languages. On the other hand, in practice its performances

A The 7ot toolkit are usually acceptable, because for non-trivial verificetithe
' bottleneck typically resides in the SAT solver rather than i
Zot is an agile and easily extendible bounded modgle translator.
checker, which can be downloaded at http://home.dei.pelim 7ot supports the model checkers MiniSat [3], zChaff, [2],
it/pradella/, together with the case studies and resulsriteed 41 the recent multi-threaded MiraXT solver [15].
in Section V.
The tool supports different logic languages through a multi I1l. DESCRIPTIVE VS OPERATIONAL MODELS
layered approach: its core uses PLTL, and on top of it a decid\ye now remind of two different, complementary ways to
able predicative fragment of TRIO [12] is defined (esselytial yefine a model of a system.
equivalent to Metric PLTL). An interesting feature of ZOtis pg first one, called descriptive model, is based on the
its ability to support different encodings of temporal lo@is jeq of characterizing the modeled system throughfuits

SAT problems by means of plugins. This approach encouragegnental propertiesdescribed by means of LTL formulae
experimentation, as plugins are expected to be quite SIMRLG 4, gphabet of items that correspond to the interface of
compact (usually around 500 lines of code), easily mod#iablne gystem with the external world, without considering any
and extendible. At the moment, a few variants of some of thgyssiple further internal components that might be necgssa
encodings presented in [13] are supported, a dense-tim@var,; jis functioning. Such LTL formulae aneot constrained in

of MTL [14], and the bi-infinite encoding presented in [6]. any way in their form: they may refer to any time instant,

Zot offers three basic usage modalities: possibly relating actions and events occurring at any rayit
1) Bounded satisfiability checking (BS@)iven as input a distance in time, or they may constrain values and behaviors
specification formula, the tool returns a (possibly emptypr arbitrarily long time intervals.
history (i.e., an execution trace of the specified sys- On the other hand the second way of modeling, tpe
tem) which satisfies the specification. An empty historgrational modelconsists of a set of clauses that constrain the
means that it is impossible to satisfy the specificationtransition of the system from a state valid in one given imsta
2) Bounded model checking (BMCyiven as input an the current state to the next state reached by the modeled
operational model of the system, the tool returns gstem in the successive time instants. The Zot toolkit iles/
(possibly empty) history (i.e., an execution trace of thg simple language to describe both descriptive and opegitio
specified system) which satisfies it. models, and to mix them freely. This is possible since both
3) History checking and completion (HCCJhe input file  models are finally to be translated into boolean logic, to be
can also contain a partial (or complete) histdily In  fed to a SAT solver.
this case, ifH complies with the specification, then a
completed version off is returned as output, otherwiseA. An example: a lamp with a timer

the output is empty. As a simplest example on which to discuss the introduced

The provided output histories have temporal lengtk, the concepts we consider a so-callémher-reset-lamgTRL), i.e.,
bound given by the user, but may represent infinite behavi@adamp with two buttons, calle®N and OFF. When theON
thanks to the loop selector variables, marking the starhef tbutton is pressed the lamp is lighted and it remains saXor
periodic sections of the history. The BSC/BMC modalities caime units (t.u.) and then it goes off, unless BEF button is
be used to check if a properprop of the given specification pushed before thé& time-out expires (in which case the light
specholds over every periodic behavior with perigdk. In  goes off immediately after the push of tRE-F button , even
this case, the input file contaispec A —prop, and, if prop is this occurs before the end of the time-out period), or smle
indeed holds, then the output history is empty. If this is ndthe ON button is pressed again, before the time-out, in which
the case, the output history is a counterexample, explginicase the lamp will remain lighted for mor® t.u. (unless the
why prop does not hold. OFF button is pressed before the time-out expires, etc.). To

The tool and its plugins were validated on mono-infinitensure that the pressure of a button is always meaningfal, it
examples, such as the Mutex examples included in the diseissumed tha®N and OFF cannot be pressed simultaneously.
bution of NuSMV. The results were exactly the same as thoseAn example of a trace of execution of the TRL system
obtained by using NuSMV [4] with the same encoding. Ofa so-calledhistory) is represented in Figure 1, for the case
one hand, Zot is in general slower than NuSMV, but beindg = 5. The history shows typical behaviors of the modeled
quite small and written itCommon Lisgs quite flexible, and system: the lamp being off is turned on by pushing button
promotes experimentation with different encodings andclogON and then it turns off “spontaneously” afték t.u.; then



the lamp is lighted again and then turned off witkint.u. by
pressing buttorOFF; the lamp is kept on by pushing again
button ON before theA time-out, and then it finally goes off
spontaneously.

The descriptive model of the TRL is based on following
three propositional letters, with the indicated meaning:

L the light is on,
ON the button to turn it on is pressed,
OFF the button to turn it off is pressed.

To distinguish the present, descriptive model from the oper
ational model that will be presented next, we add a subsgript
to the names of the propositional letters, which thus become
Lge, ONye, OFF4.. The first sub formula of the descriptive
model is:

0<z<AA
(D1) Lae <3z | #_.ONgA
_“<mOFFde

Which states that the lamp is on (at the current time) if and
only if the ON button was pressed not more thantime units

ago and since then th®FF button was never pressed. The
second sub formula expresses the mutual exclusion between
the pressing of th€©N and OFF buttons

Fig. 2. An automaton for the example of the timed lamp

that the current state of the TRL systemnst completely
(D2) —(ONye A OFFg.) characterized by the value of predicate letfere.g., if at a

The descriptive model of the formula simply consists of th ven tlme_ we know_that the lamp 'S on (predicate 'e?ﬁ’%
. ) . : Ids, notice subscripip on the predicate letter standing for
conjunction of these two formulae, enclosed in a universap

e . operationa) and that no button is pressed, this doesallow
temporal quantification (anliw operator) asserting that they L .
. ; us to conclude that the lamp will still be on at the next time
hold for all instants of the temporal domain.

instant, since this obviously depends on the time that thpla
(DM) Alw(D1 A D2) has been on (more precisely, it depends on the time that has

- o . elapsed from the last press action on @M button). To model
The descriptive model, despite its simplicity and succirss,

h eri letelv the TRL svstem: starting frorhét texplicitly this component of the state it is therefore neseeg
characterizes comp'etely the system. starting 1ro 0 introduce a further element in the alphabet of the model:
history depicted in Figure 1 can be generated using the

: . 'counter variable ranging in the interv@...A] to store
tool, or one can prove that the following (conjectured) mndyp

exactly this information. With this addition the definitiaf
(DP1) Alw(—-O<a+1Lge) the operational model becomes an easy exercise. The model
_ ) _ ) _ (not reported here for the sake of brevity) consists of a set
(i.e., the lamp will never remain on for more thantime units) ¢ ronositional formulae that relate the present staten wit
doesnot hold, by generating, through the Zot tool, a Countefhe next state, and it corresponds to a classical finite state

example consisting of a history similar to the one shown ig 1omaton depicted, with customary graphical conventions
Figure 1, including two push actions of tH@N button at Figure 2

distance less thar\; the Zot tool can instead prove, from

Clearly, th tional model (OM id let
the descriptive model, the following property early, the operational model (OM) provides a complete

and unambiguous characterization of the TRL system, as well

(DP2) Som(O<at+1Lge) — as the descriptive model (DM). For instance, the following
Som(ONge A O<AONge) properties, at all similar to DP1 and DP2,
(i.e., the lamp remains lighted for more thantime units only
in case of two consecutive press actions of @ button at a (OP1) Alw(-O<ay1Lop)
distance of less tha t.u.). The latter property is proved by
the Zot tool in 1.45 seconds with a time structurekof 15 Som(O<as1Lop) —
time points. (OP2) Som(ONO; A O<AON,,)

We now show how apperational modefor the TRL system
can be provided. As mentioned above, the idea is to definecan easily be (dis)proved by the Zot tool with the same
for each instant, the next system state based on the curnesults as in the descriptive model. It is also interesting t
state and, possibly, of the stimuli coming, still at the eutr note that property (OP2) is proved by the tool in 0.86 seconds
time, from the environment. A brief reflection shows howevdas opposed to the 1.45 seconds for the descriptive model).



IV. M ODEL DEVELOPMENT, ANALYSIS AND We can exploit the generality and flexibility of our LTL-
VERIFICATION, REFINEMENT, AND EQUIVALENCE based approach and the availability of the Zot tool to previd

) a framework supporting analysis and verification, where we
Let us now step back and reconsider the conceptual paibhsider the two models (DM) and (OM) and assert their

that we have followed so far, and add a few methodologicg), jyalence, under the obvious condition that the elentbats
remarks. correspond to the “external” components of the alphabet in

We started from an informal description of the TRL systempe two models are identical. We therefore add the following
Then we characterized it by means of a set of LTL formulqemity condition:

with a minimal alphabet of specification items and without

imposing any particular constraint of the structure of tbe f Loy < LgeN
mulae: we called the result of this formalization the dqsore (ID) Alw ON,p <> ONgeA
model. Next we provided a further, alternative characteriz OFF,, < OFFg

tion of the TRL system in an operational style (through a
set of boolean formulae relating current-state and neate)t and we verify, using the Zot tool, the property of equivakenc
maintaining the same alphabet of specification items for tié the two models, namelyDM < OM), which for conve-
external, visible part of the model; not surprisingly, gpfrom  hience we divide into the two implication®M — DM)

a descriptive model to an operational one we were led to agdd (DM — OM). It is worth noticing that the first
elements of the model alphabet to represent the systemmatteiProperty (OM — DAM) asserts that the operational model
state variables (here, in a typical way, a counter variafleg Constitutes a correct implementation of the descriptive,on
internal state variables are necessary in the operationdehm i.€., all executions/histories of the operational modeitesi to

to “carry the information” on the current system configusati the descriptive model by means of the identity condition)(ID
from one instant to the next, because of the constrained fop@fisfy it, while the second propertypDM — OM), added

of the clauses composing the operational model. to the first one, states that the two models are completely

The descriptive model is typically more compact and coduivalent.
cise than the operational one, being composed of compact he Zot tool proves the correct implementation:
formulae, often with a high level of temporal nesting, that
express more abstractly its characteristic propertiebouit (OM ANID) — DM
any reference to its internal state.

In fact, the descriptive model constitutes both the formaali
tion of the system requirements and an abstract specificati
Writing an operational model with reference to the same-spec
ification alphabet and adding other items representingriate

state variables corresponds to what is typically done irfitee is not proved, because Zot finds a counterexample: the two

phas_es of the development cycle, when one outli_nes themys'i_’?mdels, the operational and the descriptive one, are theref
architectures and the means by which the required properti equivalent. An inspection of the counterexample shows

can be ensureq. Often these.first steps in the deveIopmg!et CYfiat it satisfies the premise of the implicati¢® M A1D), and
are formalized in terms of @finemenbperation, that provides falsifies the consequence, OM, by a combination of pressing

a relation between t.WO models ((_)ften one being o!enve_d frog') buttons and on or off light states of the lamp that satisfies
the other one) showing that certain logical-algebraic prtes

4 the properties of the system (and hence the descriptive Imode
among them hold, which ensure that one of the two mod ) but it contains a set of values for thepbunt variable
is a correct implementation of the other one.

. that are inconsistent with the operational model OM, whih i
In our TRL example, we have two models that are obviouslyarefore. considered as a boolean formula, falsified.

comparable because (except for theor op subscripts) they Hence, if we wish to obtain a complete equivalence between

refer to the same alphabet for the ex_ternal predicate %tt%etwo models DM and OM, we should add further constraints
L, QN’ OFF, and we are led to conjecture that t_hey argy the identity condition (ID), to state that the values o th
equivalent, also based on the fact that the properties (D nter are consistent with the values of the other varsatie

. : : QRE descriptive model, and in particular with the pressiog a
side, are (dis)proved by the Zot tool with the same results fﬁons on the buttons. The formulae that assert this comsiste

the two mo.dels-.. , are stated in the following, with brief comments:
We can intuitively be convinced that the two models are
equivalent because of their simplicity, but of course weksee count= 0
for a method and a procedure to prove formally the equiv- —
alence, to be applied to practical cases, which are far more B, —ON,. V (-OFF, A (-ONg. S OFF,.))
complex (so that our intuition can be easily deceived) atghof
critical (so that the consequences of a misjudgment would bethe counter is null if and only if th®©N button was not
severe). pushed in the lastA t.u. or if no push of theON button

in 1.43 seconds with a time structure of= 15 time points.
9n the contrary the opposite property, formalized by:

(DM AID) — OM



followed the last push in the past of ti@FF button) V. EXPERIMENTAL RESULTS

count= = Here we briefly describe our three case studies. The inter-

JN ested reader can find a complete archive with the Zot input

Ve l0o<z<A— ®_ri1-20NgA files used for the experiments, and the detailed outcomes in
—OFF . A the Zot web page http://home.dei.polimi.it/pradella/.

(-OFFqc S ONge) A. Fischer's protocol

(countis equal to x greater than 0 if and only if tl@N button  As a first case study, we consider Fischer's algorithm [16],
was pressed\+1-x t.u. ago and no push of tHeFF button 3 timed mutual exclusion algorithm that allows a number of
occurred in the past since then) timed processes to access a shared resource. These psocesse
With the addition of these two constraints the Zot todre usually described as timed automata, and are often used
completes the proof of equivalence of the two models in 24% a benchmark for timed automata verification tools.
seconds with a time structure 6f= 15 time points. We considered the system in two variants. The first one,
It can be remarked that, even in the simplest example @lled Fischerl, considers 3 processes with a delay aféer th
the TRL system, the conditions added to relate the valuesighuest of 4 time units. The second one, called Fischer2,
the internalcount variable of the operational model to theconsiders 4 processes with a delay after the request of 5 time
values of the external variables of the descriptive modéh w ynits.
the purpose of proving the complete equivalence of the twowe used the tool to check the safety property of the system
models, are nontrivial. In non-toy examples or in practicgkafetyin the tables of the following section), i.e. it is never
cases the required effort, and the likelihood of errors ittimg  possible that two different processes enter their criseations
these constraints, which essentially formalize the mepaimd 3t the same time instant.
the purpose of the internal state variables, can be comigarab As a last test for this system, we added a constraint to
to those encountered in defining the operational modef.itsejenerate a behavior in which there is always at least an alive
It is also to be noticed that in a typical process of systeptocess in the systenaljve in the tables).

development through refinement of requirement specifioatio For this case study, we used the mono-infinite encoding.
-formalized by a descriptive model- into an operational glod

that implements it, the formal proof of the relation of catre B- Kernel Railway Crossing
implementation (i.e., of the validity of the formul@M A The Railway Crossing problem is a standard benchmark
ID — DM) can suffice, if one does not intend to use thim real time systems verification [17]. It considers a raijwa
operational model as a sort of benchmark with respect ¢oossing composed of a sensor, a gate and a controller. When a
which the descriptive model (i.e., the original requiremerrain is sensed to approach the crossing, a signal is seheto t
specification itself) should be validated in order to chéek it controller. The controller then sends a command to the gate,
ensures all the properties formalized by the operationaleho closing the railway crossing to cars. The system operates in
In a refinement-based development process then questieal time, ensuring safety (when the train is inside thevajl
may arise if, when one has produced both a descriptive modebssing then the bar gate is closed) while maximizingtutili
that abstractly specifies the requirements and an opesadtiofthe bar should be open as long as possible). To this end,
one that has been proved to be a correct implementationved adopt various assumptions on the minimum and maximum
it, it would be preferable to analyze some further, desiregpeed of trains (e.g., the minimum time it takes for a train to
properties of the system under development with referenepter the crossing after being sensed) and on the bar speed (t
to the descriptive model or to the operational one. In thene it takes for the bar to be moved up or down). The Kernel
simple example of the TRL we have seen that the proof of tiRailroad crossing problem is a simplified version, whereahe
property P2 (in the two versions DP2 and OP2) was carried asitonly one track and hence only one train at a time may enter
more efficiently with respect to the operational model (frodhe crossing. The goal of the KRC specification is twofold:
time 1.6 versus 4 seconds). A possible cause for this coadormal definition of the KRC system, and the proof of the
be that the operational model is more "deterministic” tHam t safety and utility properties.
descriptive one, so that the state space that the tool has t&«RC is a toy example per se, but in this case we are
explore to prove the property is more limited in size. This isompletely defining it with a temporal logic specificatiomys
however only a conjecture, as the time needed to completetaining a logic formula much bigger and more complex than
the proof might depend, in subtle and involved ways, on thieose used in traditional model checking, where the KRC is
size of the formula, on the depth of nesting of its tempordefined with an automaton and short temporal logic formulae
operators, on the size of the model alphabet, and possibly ane used only to model safety or utility properties.
other factors. In our example we studied the KRC problem with a set of
In the next section we further elaborate on these and othiene constants that allow a high degree of nondeterminism on
guestions with reference to a series of less trivial examatel train behavior. In particular, the set of constantsdig,, = 9
to benchmark case studies frequently adopted in the literatandd,,,;,, = 5 time units for the maximum and minimum time
on timed, critical systems. for a train to reach the critical regiohy;q, = 6 andh,,;, = 3



for the maximum and minimum time for a train to be insidall processes: if a process, when it requests the resourte an
the critical region, andy = 3 for the movement of the bar does not obtain it, always requests it again after the readsies
from up to down and viceversa. expired, then, when it requests the resource, it will evalhtu
Satisfiability of the specification, a safety property andbtain it.
refinement were considered for the experiments, using a monoPrecedenceThe third property is about precedence: the
infinite encoding. We also considered a special case of refimflocator system cannot grant the resource to a proaess
ment, that we called “mixed refinement”. In fact, the KRGsking for it after another process if the resource has not
specification is composed of three modules: the bar, the trgiet been granted té.
and the controller. The only system to be implemented in Suspend FairnessThe last considered property is used to
software or digital hardware is the controller, while the bgrovesimple fairnessunder the assumption that every process,
and the train are a part of the environment. Hence, in SHfter obtaining the resource, suspends itselffay - n,, t.u.,
development it would not make sense to define operationgheren, is the number of processes.
models also for the bar and the train. The mixed refinementFor simplicity, we used the bi-infinite encoding for this eas
experiments consider exactly this case: only the contridle study, because the assumption of a sequence of events that
refined. This is possible, thanks to the flexibility of Zot thaextends itself indefinitely in the past is a useful abstoacti
allows mixing operational and descriptive constraints. with respect to the start of the allocator system: a designer
might prefer to ignore the behavior of the allocator rightaf
its start and consider its properties only on regime bekavio
The last case study consists of a real-time allocator which
serves a set of client processes, competing for a shafédResults
resource. The purely descriptive version of it was oridinal The experimental results for the case studies described
presented in [6]. Here we compare the descriptive versithn wiabove are shown in Figure 3, with the figures of the simplest
a new operational version. Lamp example reported in the first lines as a reference for
Each processg requires the resource by issuing the messafierther comparison. The table reports, for various values o
rq(p), by which it identifies itself to the allocator. Requestshe boundk (30, 60, 90 and 120), SAT time and memory
have a time out: they must be served witfin, time units, for various properties and systems. To give an idea of the
or else be ignored by the allocator. If the allocator is abkize of the examples, the total number of boolean clauses
to satisfy p's request within the time-out, then it grants thded to the SAT solver are also included. Another measure,
resource t@ by agr(p) signal. Once a process is assigned thealled SAT2CNF, reports on the time involved in traslating
resource by the allocator, it releases the resource, binggsu Zot output into the conjunctive normal form required by
rel signal, within a maximum of.; time units. The allocator SAT solvers. This by far dominates translation into boolean
grants the request to processes according to a FIFO poliigrmulae, especially on large examples. The experimente we
considering only requests that are not timed out yet and rian on a single core of a 4 Gbyte RAM machine with a 2.67
a timely manner, i.e., no process will have to wait for th&hz Intel Core 2 Quad Processor Q6700 (on a Optiplex Dell
resource while it is not assigned to any other process. 755). The SAT solver is MiniSat 1.14 (the only experiment
In the following experiments we considered the case ofraarked with “*” was performed with MiraXT - which does
system with three processes &g, = 7T,., = 3. As in the not indicate the memory used - in a case where MiniSat was
previous case studies, we first used Zot to generate a simptg able to complete the proof before the cutoff).
“run” of the system (history generation); then we considere For every example, the suffbde indicates the descriptive
the following four hard real time properties. version of the model, whileop is used for the operational
Simple FairnessThe first is a simple fairness property. Ifversion. Every row considers an experimesdt stands for a
a process that does not obtain the resource always requseatssfiability check (i.e., an unconstrained history gatien);
it again immediately after the request is expired, then if fefinemennaturally stands for refinement proofs, i.e. that the
requests the resource it will eventually obtain it. Thisgady operational model implies the descriptive orequiv refers
holds only forT,., < 1,4, hence not in our case, and Zoto the reverse implication, i.e., the descriptive model ligg
generates a counterexample. the operational one, used together with refinement to dgtual
Conditional Fairness A second, more complex propertyprove the satisfiability equivalence of the two models. fer t
may be intuitively described as a sort of “conditional faiss”. latter experiment we considered only one significant cask,ea
Let us first define the notion of “unconstrained rotationjust to validate our comparison. Experiments had a cuthoié t
among processes: a process will require the resource dsly aht 24 hours. The cut-off occurred only for the largest bounds
all other ones have requested and obtained it. Notice thgt tfk = 90, 120) and only for some of the computationally most
requirement does not impose any precise ordering among &xpensive models (e.g. the real-time allocator).
requests made by the processes (though, once requests takefinement is by far the most time-consuming operation,
place in a given order, the order remains unchanged from caiféecting mostly SAT solver time. In fact, SAT2CNF time is
round among processes to the next one). Under this assumptialy dependent on the size of the model, while SAT solving
of “unconstrained rotation” the allocator system is fair fotime depends more on the “intrinsic” hardness of the problem

C. Real-time allocator



Case Prop SAT2CNF Time (s) SAT time (s) SAT memory (MB) Kilo-Clauses (#)
k=30 k=60 k=90 k=120] k=30 k=60 k=90 k=120]k=30 k=60 k=90 k=120] k=30 k=60 k=90 k=120

Lamp Pl-de 2.0 6.3 18.6 54.2 0.1 0.3 0.4 0.8] 249 368 47.8 57.5 170 339 507 676
Pl-op 1.0 2.5 4.7 8.9 0.1 0.2 0.3 03] 209 272 334 38.9 101 202 302 402
P2-de 2.5 9.0 33.7 92.3 1.5 4.5 16.5 20.4] 26.6 38.0 50.0 64.6 197 393 588 783
P2-op 1.4 3.5 7.7 18.0 0.2 0.8 3.3 4.4] 224 299 377 47.4 128 255 382 509
refinement 2.2 7.0 23.2 65.5 1.0 5.8 16.4 49.6] 251 37.0 48.6 62.7 182 363 543 724
equiv 227.5 108.8 89.9 1093

KRC sat-de 2.1 6.0 15.9 37.6 0.1 0.2 0.4 0.5 8.8 16.8 24.3 334 173 344 515 686
sat-op 2.9 9.1 28.0 77.0 0.3 2.5 5.2 142 113 207  29.9 37.7 219 435 651 866
safety-de 2.2 6.7 16.9 40.9 0.1 0.2 0.3 0.4 9.6 16.7 23.9 33.4 181 359 537 715
safety-op 3.0 9.1 28.7 78.1 0.1 0.2 0.3 0.4] 11.0 198 28.7 36.1 222 441 660 879
refinement 6.3 39.7 1425 304.8] 96.2 5926.0 10217.1 46652.6] 24.5 300.3 377.7 1131.1 365 723 1082 1441
mix-ref 3.2 11.5 37.0 97.2] 129 4433 43347 64883] 131 80.6 316.0 355.7 229 454 680 905

Fischl sat-de 6.5 57.0 184.9 368.0 0.5 0.6 4.3 18] 369 574 78.9 98.4 339 672 1005 1338
sat-op 3.4 16.4 69.5 161.9 0.3 1.2 2.5 7.6] 298 46.1  61.9 76.5 243 481 720 959
mutex-de 6.9 64.6 193.2 396.2 0.7 3.0 9.8 41.8] 36.5 60.3 83.3 96.6 343 681 1018 1356
mutex-op 3.5 17.5 71.8 166.4 3.2 13.9 53.9 130.3] 29.6 465  63.7 82.2 247 490 734 977
refinement 47.1 3346 793.8 694.1 17365.4 8986.1 81.1 404.4 304.9 638 1264 1890
equiv 11234 844.0 187.9 2234

Fisch2 sat-de 19.0 169.8 447.5 877.4 4.1 3.8 4.8 23.3| 479 77.7 1094 137.0 492 976 1460 1944
sat-op 6.2 52.5 182.1 367.5 3.5 2.5 5.2 11.4] 362 56.8  78.2 97.3 343 681 1018 1355
mutex-de 20.3 1829 476.3 877.4 1.5 16.1 22.6 119.8] 47.0 76.9 108.2 136.4 499 989 1479 1969
mutex-op 6.4 58.6  191.6 387.5] 10.4 31.7 66.7 106.3] 36.5 60.6  84.2 105.0 350 693 1037 1380
refinement 151.3  717.9 1689.2 1115.2 24558.7 3420.3* 1145 4524 nax* 912 1808 2703
equiv 1014.4 1338.8 238.0 2138

Alloc  sat-de 24.0 194.1 509.9 958.5 0.9 7.7 7.8 61.0] 484 809 114.6 141.2 528 1047 1567 2087
sat-op 2.9 10.9 41.1 103.7 0.5 0.6 1.8 3.0 29.6 435 579 70.4 236 470 703 937
simple-fair-de] 40.5 279.7 703.5 1305.5 2.5 8.7 29.8 23] 52.0 92.8 1324 180.0 620 1232 1844 2455
simple-fair-op| 5.3 33.9 1206 253.1 1.8 1.8 5.7 13.6] 36.6 563  77.2 95.6 330 657 983 1310
cond-fair-de 59.1 378.3 9219 1685.1 33 10.9 28.6 47.8] 62.0 105.0 149.1 189.9 712 1414 2115 2817
cond-fair-op 8.5 74.4 2273 450.1 1.8 1.8 11.2 13.6] 409 657 91.6 124.1 422 838 1255 1671
prec-de 62.9 393.8 959.2 1755.7 0.5 1.2 1.4 19| 576 97.7 1372 187.1 700 1390 2080 2770
prec-op 9.1 82.0  250.2 489.5 0.4 0.8 1.7 4.6] 386 652  90.0 122.6 411 818 1224 1630
susp-fair-de 71.4 4293 1043.2 1906.3] 19.6 28.8 82.9 195.0] 63.4 108.5 154.8 196.2 749 1487 2225 2963
susp-fair-op 11.7 101.3  293.4 567.7 7.6 17.9 23.7 21.3] 42.8 689 959 129.2 459 912 1365 1818
refinement 194.9 953.0 2206.8 4661.9 8887.9 18482.8 257.1 409.4 760.9 1067 2118 3170
equiv 2698.6 2221.5 266.2 3522

Ratios Ratio op/de SAT2CNF Time Ratio op/de SAT time Ratio op/de SAT memory Ratio op/de Clauses

k=30 k=60 k=90 k=120] k=30 k=60 k=90 k=120]k=30 k=60 k=90 k=120] k=30 k=60 k=90 k=120

Lamp P1 0.5 0.4 0.3 0.2 0.5 0.5 0.6 0.4 0.8 0.7 0.7 0.7 0.6 0.6 0.6 0.6
P2 0.6 0.4 0.2 0.2 0.2 0.2 0.2 0.2 0.8 0.8 0.8 0.7 0.6 0.6 0.6 0.7

KRC sat 1.4 1.5 1.8 2.0 3.0 12.5 13.3 28.4 1.3 1.2 1.2 1.1 1.3 1.3 1.3 1.3
safety 1.4 1.4 1.7 1.9 1.7 1.2 1.2 1.2 1.1 1.2 1.2 1.1 1.2 1.2 1.2 1.2

Fischl sat 0.5 0.3 0.4 0.4 0.7 2.0 0.6 4.2 0.8 0.8 0.8 0.8 0.7 0.7 0.7 0.7
mutex 0.5 0.3 0.4 0.4 4.6 4.6 5.5 3.1 0.8 0.8 0.8 0.9 0.7 0.7 0.7 0.7

Fisch2 sat 0.3 0.3 0.4 0.4 0.8 0.7 1.1 0.5 0.8 0.7 0.7 0.7 0.7 0.7 0.7 0.7
mutex 0.3 0.3 0.4 0.4 7.0 2.0 29 0.9 0.8 0.8 0.8 0.8 0.7 0.7 0.7 0.7

Alloc  sat 0.1 0.1 0.1 0.1 0.6 0.1 0.2 0.0 0.6 0.5 0.5 0.5 0.4 0.4 0.4 0.4
simple-fair 0.1 0.1 0.2 0.2 0.7 0.2 0.2 5.8 0.7 0.6 0.6 0.5 0.5 0.5 0.5 0.5
cond-fair 0.1 0.2 0.2 0.3 0.5 0.2 0.4 0.3 0.7 0.6 0.6 0.7 0.6 0.6 0.6 0.6
prec 0.1 0.2 0.3 0.3 0.7 0.7 1.2 2.5 0.7 0.7 0.7 0.7 0.6 0.6 0.6 0.6
susp-fair 0.2 0.2 0.3 0.3 0.4 0.6 0.3 0.1 0.7 0.6 0.6 0.7 0.6 0.6 0.6 0.6

Fig. 3. Summary of collected experimental data (*: MiraXTveo, using 4 cores).

rather than only on its sheer size. This can be justified, éor the operational model than for the descriptive one, and,
an intuitive basis, considering that the proof of refinememthen this occurs, in general also the time required for the
is analogous to the proof of a property in traditional modeproof is inferior in the case of the operational model. Intlee

checking, where the size of the formula specifying the priype for the timed lamp, Fischer's protocol, and the real-time
has roughly the same size as the model itself. allocator the size of the CNF boolean formula generated for

On the other hand, the proof of the specific system propé&perational models is 40% to 70% of the corresponding size
ties (e.g., safety and fairness, mutual exclusion etc.jlvays for descriptive models. This fact directly impacts on tlatien
feasible in a “reasonable” time for all cases studies, both.w times, especially for SAT2CNF. An exception is provided by
the descriptive and the operational model. It can be noticte KRC, where both the number of clauses and proof time
that, in most cases, the size of the formula to be analyzed & lower for the descriptive than for the operational cése.
the SAT-solver (measured in terms of Kilo-Clauses) is senallPossible reason for this could be the fact that, in desigtiieg



operational model for the KRC, we paid particular attention
partition the model into loosely-coupled modules, so towll
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consequence of its modular structure, the operational hiode
the KRC could be redundant, e.g. having more state variables
than those strictly needed. 1]

It is easy to check that the growth in the cost of the
analysis (both for the refinement correctness and for the
proof of properties) is more than proportional to the size ofz]
the formulae (measured in terms of Kilo-clauses). A likely
explanation of this is that the cost of the analysis derives
primarily from the system’sdegree of nondeterminisnfor  [3]
instance, in Fischer’s protocol the degree of nondetesmini
grows significantly with the number of processes.

As a general comment, however, we point out that more
extensive experimentations and deeper a analysis are cheede
to better substantiate our tentative explanations of therted 5]
figures.

(6]

VI. CONCLUSIONS

We have illustrated and discussed a methodology for defin-
ing operational and descriptive models of time criticalteyss
and to state a relation of correct refinement among therrrfj
The extensive use of an automatic tool has shown that t
analysis of desired properties can be conducted, most often
with comparable results, on both the descriptive and thé!
operational model of the system under development.

Further developments of the method here described may
originate by the remark that operational and descriptivdei® [
are not incompatible and they may be combined, as shown in
the mixed refinement of the KRC example, where two modul@®]
(the train and the bar) are left in the descriptive form, eitiile
controller module is refined into an operational versiorthis ;55
line, a complex, highly structured system could be designed
and developed by partitioning it into independent moduled?!
and its analysis and verification be performed incrementall
some system components (the most critical ones or simply thg
ones to be implemented in hardware and/or software) could
be developed by refining their requirements specificati@, (i [14)
their descriptive model) into a provably correct operagion
model, while the other components could be left in the mo[le]
abstract form of a descriptive model, to be used as sort ?

0
“stub” or “driver” modules during the integration phases. [16]

[17]
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