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Abstract—In Bounded Model Checking (BMC) a system is
modeled with a finite automaton and various desired properties
with temporal logic formulae. Property verification is achieved
by translation into boolean logic and the application of SAT-
solvers. Bounded Satisfiability Checking (BSC) adopts a similar
approach, but both the system and the properties are modeled
with temporal logic formulae, without an underlying operational
model. Hence, BSC supports a higher-level, descriptive approach
to system specification and analysis. We compare the performance
of BMC and BSC over a set of case studies, using the Zot tool
to translate automata and temporal logic formulae into boolean
logic. We also propose a method to check whether an operational
model is a correct implementation (refinement) of a temporal
logic model, and assess its effectiveness on the same set of case
studies. Our experimental results show the feasibility of BSC and
refinement checking, with modest performance loss w.r.t. BMC.

Index Terms—Model checking, Satisfiability checking, Tempo-
ral logic, SAT-solver.

I. I NTRODUCTION

Bounded Model Checking is a well established technique
for analyzing timed reactive systems [1]. The system under
analysis is modeled as a finite-state transition system and
the property to be checked is expressed as a formula in
temporal logic. Infinite, ultimately periodic temporal structures
that assign a value to every element of the model alphabet
are encoded through a finite set of boolean variables, and
the cyclic structure of the time domain is encoded into a
set of loop selector variablesthat mark the start and end
points of the period. The model and the property are also
suitably translated into boolean logic formulae, so that the
model checking problem is expressed as an instance of a
SAT problem, that can be solved efficiently thanks to the
significant improvements that occurred in recent years in the
technology of the SAT-solver tools [2], [3]. As it usually
occurs in a model checking framework, a (bounded) model-
checker tool can either prove a property or disprove it by
exhibiting a counter example, thus providing means to support
simulation, test case generation, etc. Among the various SAT-
based verification tools we citeNuSMV[4], a symbolic model
checker which supports bounded model checking; andAlloy
[5], oriented towards the analysis of descriptive models, but
without full support to the verification of temporal properties.

In our past work [6] we have introduced a variant of
bounded model checking where the underlying, ultimately
periodic timing structure was not bounded to be infinite only
in the future, but may extend indefinitely also towards the
past, thus allowing for a simple and intuitive modeling of
continuously functioning systems like monitoring and control
devices. Most important, however, in our approach both the
system under analysis and the property to be checked are
expressed in a single uniform notation as formulae of temporal
logic. In this novel setting, which we called boundedsatisfia-
bility checking (BSC), the system under analysis is modeled
through the set of all its fundamental properties as a formulaφ
(that in all non-trivial cases would be of significant size) and
the additional property to be checked (e.g. a further desired
requirement) is expressed as another (usually much smaller)
formulaψ. A bounded model checker in this case is used to
prove that any implementation of the system under analysis
possessing the assumed fundamental propertiesφ would also
ensure the additional propertyψ; in other terms, the model
checker would prove that the formulaφ → ψ is valid, or
equivalently that its negation is not satisfiable (hence theterm
satisfiability checking).

Satisfiability verification is very useful, in its simplest form,
as a means for performing a sort of testing [7] orsanity check
of the specification [8], [9] and, more generally, it allows
the designer to perform System Requirement Analysis [10],
i.e., to investigate which system properties and behaviorsare
implied by (or are compatible with) the assumed requirements
considered as a high level specification. This kind of activity,
being centered on the requirements, is naturally performed
at the initial stages of the development cycle. This has the
advantages of allowing the designer to reason at a high level
of abstraction, using simple and readable artifacts like the
requirements specification, and without imposing any prema-
ture constraint on the implementation. On the other hand,
an analysis performed at an early stage of the development
process does not provide any support to the design phase and
maypotentially be less efficient that an analysis performed, as
in traditional model checking, with reference to an operational
model consisting, as it is customary, of a state transition
system.



In the present work, we take a significant further step
in investigating the feasibility and usefulness of BSC by
exploiting its generality and flexibility to providetwo kinds
of models for the system under analysis:

• the descriptive model, which consists essentially of a
compact, high level, readable requirements specification
expressed as a set of formulae in timed temporal logic
with past operators, and

• the operational model, which is written in a simple but
rather general language to characterize a state-transition
system.

Through a running example we introduce a method to build
the two models in such a way as to facilitate their analysis and
comparison. In particular we focus on the interfaces through
which they can be related and we investigate the notions of
equivalence and implementation among a descriptive and an
operational model. These ideas are also validated by applying
them to a set of significant examples consisting of benchmark
case studies.

The results here reported can be the basis for a unified,
encompassing development framework for reactive, embedded,
(time) critical systems that supports a seamless transition from
requirements elicitation and analysis (carried out by means of
satisfiability checking on the first, descriptive model of the
system), to a refinement-based, and hence provably correct,
high-level design supported by proof of correct implementa-
tion and by verification through model checking.

The paper is structured as follows. Section II presents
background material on temporal logic and bounded model-
and satisfiability-checking. Section III introduces, by means of
a running example, the notions of descriptive and operational
models. Section IV illustrates, still on the running example,
the operations of refinement, proof of correct implementation
and equivalence among models. In Section V we report and
comment on the experimental results on applying our method
and tool to the benchmark case studies. In the concluding
section we summarize the obtained results and outline possible
future developments.

II. PRELIMINARIES

We first recall here Linear Temporal Logic with past oper-
ators (PLTL), in the version introduced by Kamp [11].

Syntax of PLTL The alphabet of PLTL includes: a finite
set Ap of propositional letters; two propositional connec-
tives ¬,∨ (from which other traditional connectives such as
⊤,⊥,¬,∨,∧,→, . . . may be defined); four temporal operators
(from which other temporal operators can be derived): the “un-
til” operatorU , the “next-time” operator◦, the “since” operator
S and the “past-time” (or Yesterday) operator,• . Formulae
are defined in the usual inductive way: a propositional letter
p ∈ Ap is a formula;¬φ, φ∨ψ, φUψ, ◦φ, φSψ, •φ, whereφ, ψ
are formulae, are formulae; nothing else is a formula.

The traditional eventually and globally operators may be
defined as:♦φ is ⊤Uφ, �φ is ¬♦¬φ. Their past counterparts
are: �φ is ⊤Sφ, �φ is ¬�¬φ. Another useful operator for
PLTL is the Always operatorAlw, which can be defined by

Alw φ := 2φ ∧ �φ. The intended meaning ofAlw φ is that
φ must hold in every instant in the future and in the past. Its
dual is the Sometimes operatorSom φ defined as¬Alw¬φ.

Semantics of PLTL A bi-infinite word w over alphabet
2Ap (also called aZ-word) is a functionw : Z −→ 2Ap.
Hence,w(j) ∈ 2Ap for every j. Word w is also denoted as
. . . w(−1)w(0)w(1) . . . and eachw(j) also aswj . The set of
all bi-infinite words over2Ap is denoted by(2Ap)Z. An ω-
word over2Ap is a function fromN → 2Ap, i.e., it has the
form w(0)w(1) . . . .

The semantics of PLTL may be defined onZ-words (i.e.,
bi-infinite time) or onω-words (i.e., mono-infinite time). We
present here only the former case, even if the latter is much
more common in BMC, since bi-infinite semantics is actually
simpler and includes the mono-infinite one as a special case.
Also, our tool Zot supports both mono-infinite and bi-infinite
cases, and some of the experiments of Section V use bi-infinite
time.

For all PLTL formulaeφ, for all w ∈ (2Ap)Z, for all integer
numbersi, the satisfaction relationw, i |= φ is defined as
follows.

w, i |= p,⇐⇒ p ∈ w(i), for p ∈ Ap

w, i |= ¬φ⇐⇒ w, i 6|= φ

w, i |= φ ∨ ψ ⇐⇒ w, i |= φ or w, i |= ψ

w, i |= ◦φ⇐⇒ w, i+ 1 |= φ

w, i |= φUψ ⇐⇒ ∃k ≥ 0 | w, i+ k |= ψ, and
w, i+ j |= φ ∀0 ≤ j < k

w, i |= •φ⇐⇒ w, i− 1 |= φ

w, i |= φSψ ⇐⇒ ∃k ≥ 0 | w, i− k |= ψ, and
w, i− j |= φ ∀0 ≤ j < k

Metric PLTL PLTL can also be extended by adding metric
operators, on discrete time. Metric operators are very conve-
nient for modeling hard real time systems, with quantitative
time constraints. The resulting logic, calledMetric PLTL,
does not actually extend the expressive power of PLTL: it
is a syntactically-sugared, but considerably more succinct and
convenient, version of PLTL.

Metric PLTL extends the alphabet of PLTL with abounded
until operatorU∼c and abounded sinceoperatorS∼c , where
∼ represents any relational operator (i.e.,∼∈ {≤,=,≥}), and
c is a natural number. Also, we allown-ary predicate letters
(with n ≥ 1) and the∀, ∃ quantifiers as long as their domains
are finite. Hence, one can write, e.g., formulae of the form:
∃p gr(p), with p ranging over{1, 2, 3} as a shorthand for
∨

p∈{1,2,3} grp.
The bounded globally and bounded eventually operators are

defined as follows:♦∼cφ is ⊤U∼cφ, �∼cφ. The past versions
of the bounded eventually and globally operators may be
defined symmetrically to their future counterparts:�∼cφ is
⊤S∼cφ, �∼cφ is ¬�∼c¬φ.

Versions of the bounded operators with a strict bound may
be introduced as a shorthand. For instance,φU>0ψ stands for
◦(φU≥0ψ).

The semantics of Metric PLTL may be defined by a straight-
forward translationτ of its operators into PLTL:



τ(φ1U≤0φ2) := φ2

τ(φ1U≤tφ2) := φ2 ∨ φ1 ∧ ◦τ(φ1U≤t−1φ2),with t > 0
τ(φ1U≥0φ2) := φ1Uφ2

τ(φ1U≥tφ2) := φ1 ∧ ◦τ(φ1U≥t−1φ2),with t > 0
τ(φ1U=0φ2) := φ2

τ(φ1U=tφ2) := φ1 ∧ ◦τ(φ1U=t−1φ2),with t > 0
and symmetrically for the operators in the past.

A. The Zot toolkit

Zot is an agile and easily extendible bounded model
checker, which can be downloaded at http://home.dei.polimi.-
it/pradella/, together with the case studies and results described
in Section V.

The tool supports different logic languages through a multi-
layered approach: its core uses PLTL, and on top of it a decid-
able predicative fragment of TRIO [12] is defined (essentially,
equivalent to Metric PLTL). An interesting feature of Zot is
its ability to support different encodings of temporal logic as
SAT problems by means of plugins. This approach encourages
experimentation, as plugins are expected to be quite simple,
compact (usually around 500 lines of code), easily modifiable,
and extendible. At the moment, a few variants of some of the
encodings presented in [13] are supported, a dense-time variant
of MTL [14], and the bi-infinite encoding presented in [6].

Zot offers three basic usage modalities:

1) Bounded satisfiability checking (BSC): given as input a
specification formula, the tool returns a (possibly empty)
history (i.e., an execution trace of the specified sys-
tem) which satisfies the specification. An empty history
means that it is impossible to satisfy the specification.

2) Bounded model checking (BMC): given as input an
operational model of the system, the tool returns a
(possibly empty) history (i.e., an execution trace of the
specified system) which satisfies it.

3) History checking and completion (HCC): The input file
can also contain a partial (or complete) historyH . In
this case, ifH complies with the specification, then a
completed version ofH is returned as output, otherwise
the output is empty.

The provided output histories have temporal length≤ k, the
bound given by the user, but may represent infinite behaviors
thanks to the loop selector variables, marking the start of the
periodic sections of the history. The BSC/BMC modalities can
be used to check if a propertyprop of the given specification
specholds over every periodic behavior with period≤ k. In
this case, the input file containsspec ∧ ¬prop, and, if prop
indeed holds, then the output history is empty. If this is not
the case, the output history is a counterexample, explaining
why prop does not hold.

The tool and its plugins were validated on mono-infinite
examples, such as the Mutex examples included in the distri-
bution of NuSMV. The results were exactly the same as those
obtained by using NuSMV [4] with the same encoding. On
one hand, Zot is in general slower than NuSMV, but being
quite small and written inCommon Lispis quite flexible, and
promotes experimentation with different encodings and logic

Fig. 1. A history for the example of the timed lamp

languages. On the other hand, in practice its performances
are usually acceptable, because for non-trivial verifications the
bottleneck typically resides in the SAT solver rather than in
the translator.

Zot supports the model checkers MiniSat [3], zChaff, [2],
and the recent multi-threaded MiraXT solver [15].

III. D ESCRIPTIVE VS. OPERATIONAL MODELS

We now remind of two different, complementary ways to
define a model of a system.

The first one, called descriptive model, is based on the
idea of characterizing the modeled system through itsfun-
damental properties, described by means of LTL formulae
on an alphabet of items that correspond to the interface of
the system with the external world, without considering any
possible further internal components that might be necessary
for its functioning. Such LTL formulae arenot constrained in
any way in their form: they may refer to any time instant,
possibly relating actions and events occurring at any arbitrary
distance in time, or they may constrain values and behaviors
for arbitrarily long time intervals.

On the other hand the second way of modeling, theop-
erational modelconsists of a set of clauses that constrain the
transition of the system from a state valid in one given instant,
the current state, to the next state, reached by the modeled
system in the successive time instants. The Zot toolkit provides
a simple language to describe both descriptive and operational
models, and to mix them freely. This is possible since both
models are finally to be translated into boolean logic, to be
fed to a SAT solver.

A. An example: a lamp with a timer

As a simplest example on which to discuss the introduced
concepts we consider a so-calledtimer-reset-lamp(TRL), i.e.,
a lamp with two buttons, calledON andOFF. When theON
button is pressed the lamp is lighted and it remains so for∆
time units (t.u.) and then it goes off, unless theOFF button is
pushed before the∆ time-out expires (in which case the light
goes off immediately after the push of theOFF button , even
is this occurs before the end of the time-out period), or unless
the ON button is pressed again, before the time-out, in which
case the lamp will remain lighted for more∆ t.u. (unless the
OFF button is pressed before the time-out expires, etc.). To
ensure that the pressure of a button is always meaningful, itis
assumed thatON andOFF cannot be pressed simultaneously.

An example of a trace of execution of the TRL system
(a so-calledhistory) is represented in Figure 1, for the case
∆ = 5. The history shows typical behaviors of the modeled
system: the lamp being off is turned on by pushing button
ON and then it turns off “spontaneously” after∆ t.u.; then



the lamp is lighted again and then turned off within∆ t.u. by
pressing buttonOFF; the lamp is kept on by pushing again
buttonON before the∆ time-out, and then it finally goes off
spontaneously.

The descriptive model of the TRL is based on following
three propositional letters, with the indicated meaning:

L the light is on,
ON the button to turn it on is pressed,
OFF the button to turn it off is pressed.

To distinguish the present, descriptive model from the oper-
ational model that will be presented next, we add a subscriptde

to the names of the propositional letters, which thus become
Lde, ONde, OFFde. The first sub formula of the descriptive
model is:

(D1) Lde ↔ ∃x





0 < x ≤ ∆∧
�=xONde∧
¬�<xOFFde





Which states that the lamp is on (at the current time) if and
only if the ON button was pressed not more than∆ time units
ago and since then theOFF button was never pressed. The
second sub formula expresses the mutual exclusion between
the pressing of theON andOFF buttons

(D2) ¬(ONde ∧ OFFde)

The descriptive model of the formula simply consists of the
conjunction of these two formulae, enclosed in a universal
temporal quantification (anAlw operator) asserting that they
hold for all instants of the temporal domain.

(DM) Alw(D1 ∧D2)

The descriptive model, despite its simplicity and succinctness,
characterizes completely the TRL system: starting from it the
history depicted in Figure 1 can be generated using the Zot
tool, or one can prove that the following (conjectured) property

(DP1) Alw(¬�≤∆+1Lde)

(i.e., the lamp will never remain on for more than∆ time units)
doesnot hold, by generating, through the Zot tool, a counter-
example consisting of a history similar to the one shown in
Figure 1, including two push actions of theON button at
distance less than∆; the Zot tool can instead prove, from
the descriptive model, the following property

(DP2)
Som(�≤∆+1Lde) →

Som(ONde ∧ ♦≤∆ONde)

(i.e., the lamp remains lighted for more than∆ time units only
in case of two consecutive press actions of theON button at a
distance of less than∆ t.u.). The latter property is proved by
the Zot tool in 1.45 seconds with a time structure ofk = 15
time points.

We now show how anoperational modelfor the TRL system
can be provided. As mentioned above, the idea is to define,
for each instant, the next system state based on the current
state and, possibly, of the stimuli coming, still at the current
time, from the environment. A brief reflection shows however

Fig. 2. An automaton for the example of the timed lamp

that the current state of the TRL system isnot completely
characterized by the value of predicate letterL; e.g., if at a
given time we know that the lamp is on (predicate letterLop

holds, notice subscriptop on the predicate letter standing for
operational) and that no button is pressed, this doesnot allow
us to conclude that the lamp will still be on at the next time
instant, since this obviously depends on the time that the lamp
has been on (more precisely, it depends on the time that has
elapsed from the last press action on theON button). To model
explicitly this component of the state it is therefore necessary
to introduce a further element in the alphabet of the model:
a counter variable ranging in the interval[0 . . .∆] to store
exactly this information. With this addition the definitionof
the operational model becomes an easy exercise. The model
(not reported here for the sake of brevity) consists of a set
of propositional formulae that relate the present state with
the next state, and it corresponds to a classical finite state
automaton depicted, with customary graphical conventions, in
Figure 2.

Clearly, the operational model (OM) provides a complete
and unambiguous characterization of the TRL system, as well
as the descriptive model (DM). For instance, the following
properties, at all similar to DP1 and DP2,

(OP1) Alw(¬�≤∆+1Lop)

(OP2)
Som(�≤∆+1Lop) →

Som(ONop ∧ ♦≤∆ONop)

can easily be (dis)proved by the Zot tool with the same
results as in the descriptive model. It is also interesting to
note that property (OP2) is proved by the tool in 0.86 seconds
(as opposed to the 1.45 seconds for the descriptive model).



IV. M ODEL DEVELOPMENT, ANALYSIS AND

VERIFICATION, REFINEMENT, AND EQUIVALENCE

Let us now step back and reconsider the conceptual path
that we have followed so far, and add a few methodological
remarks.

We started from an informal description of the TRL system.
Then we characterized it by means of a set of LTL formulae
with a minimal alphabet of specification items and without
imposing any particular constraint of the structure of the for-
mulae: we called the result of this formalization the descriptive
model. Next we provided a further, alternative characteriza-
tion of the TRL system in an operational style (through a
set of boolean formulae relating current-state and next-state)
maintaining the same alphabet of specification items for the
external, visible part of the model; not surprisingly, going from
a descriptive model to an operational one we were led to add
elements of the model alphabet to represent the system internal
state variables (here, in a typical way, a counter variable). The
internal state variables are necessary in the operational model
to “carry the information” on the current system configuration
from one instant to the next, because of the constrained form
of the clauses composing the operational model.

The descriptive model is typically more compact and con-
cise than the operational one, being composed of compact
formulae, often with a high level of temporal nesting, that
express more abstractly its characteristic properties without
any reference to its internal state.

In fact, the descriptive model constitutes both the formaliza-
tion of the system requirements and an abstract specification.
Writing an operational model with reference to the same spec-
ification alphabet and adding other items representing internal
state variables corresponds to what is typically done in thefirst
phases of the development cycle, when one outlines the system
architectures and the means by which the required properties
can be ensured. Often these first steps in the development cycle
are formalized in terms of arefinementoperation, that provides
a relation between two models (often one being derived from
the other one) showing that certain logical-algebraic properties
among them hold, which ensure that one of the two models
is a correct implementation of the other one.

In our TRL example, we have two models that are obviously
comparable because (except for thede or op subscripts) they
refer to the same alphabet for the external predicate letters
L, ON, OFF, and we are led to conjecture that they are
equivalent, also based on the fact that the properties (DP1)
and (DP2) on one side, and (OP1) and (OP2) on the other
side, are (dis)proved by the Zot tool with the same results for
the two models.

We can intuitively be convinced that the two models are
equivalent because of their simplicity, but of course we seek
for a method and a procedure to prove formally the equiv-
alence, to be applied to practical cases, which are far more
complex (so that our intuition can be easily deceived) and often
critical (so that the consequences of a misjudgment would be
severe).

We can exploit the generality and flexibility of our LTL-
based approach and the availability of the Zot tool to provide
a framework supporting analysis and verification, where we
consider the two models (DM) and (OM) and assert their
equivalence, under the obvious condition that the elementsthat
correspond to the “external” components of the alphabet in
the two models are identical. We therefore add the following
identity condition:

(ID) Alw





Lop ↔ Lde∧
ONop ↔ ONde∧
OFFop ↔ OFFde





and we verify, using the Zot tool, the property of equivalence
of the two models, namely(DM ↔ OM), which for conve-
nience we divide into the two implications(OM → DM)
and (DM → OM). It is worth noticing that the first
property (OM → DM) asserts that the operational model
constitutes a correct implementation of the descriptive one,
i.e., all executions/histories of the operational model related to
the descriptive model by means of the identity condition (ID),
satisfy it, while the second property,(DM → OM), added
to the first one, states that the two models are completely
equivalent.

The Zot tool proves the correct implementation:

(OM ∧ ID) → DM

in 1.43 seconds with a time structure ofk = 15 time points.
On the contrary the opposite property, formalized by:

(DM ∧ ID) → OM

is not proved, because Zot finds a counterexample: the two
models, the operational and the descriptive one, are therefore
not equivalent. An inspection of the counterexample shows
that it satisfies the premise of the implication,(DM∧ID), and
falsifies the consequence, OM, by a combination of pressing
of buttons and on or off light states of the lamp that satisfies
the properties of the system (and hence the descriptive model
DM) but it contains a set of values for thecount variable
that are inconsistent with the operational model OM, which is
therefore, considered as a boolean formula, falsified.

Hence, if we wish to obtain a complete equivalence between
the two models DM and OM, we should add further constraints
to the identity condition (ID), to state that the values of the
counter are consistent with the values of the other variables of
the descriptive model, and in particular with the pressing ac-
tions on the buttons. The formulae that assert this consistence
are stated in the following, with brief comments:

count= 0
↔

�≤∆¬ONde ∨ (¬OFFde ∧ (¬ONde S OFFde))

(the counter is null if and only if theON button was not
pushed in the last∆ t.u. or if no push of theON button



followed the last push in the past of theOFF button)

∀x













0 < x ≤ ∆ →













count= x

↔
�=∆+1−xONde∧

¬OFFde∧
(¬OFFde S ONde)

























(countis equal to x greater than 0 if and only if theON button
was pressed∆+1-x t.u. ago and no push of theOFF button
occurred in the past since then)

With the addition of these two constraints the Zot tool
completes the proof of equivalence of the two models in 2.9
seconds with a time structure ofk = 15 time points.

It can be remarked that, even in the simplest example of
the TRL system, the conditions added to relate the values of
the internalcount variable of the operational model to the
values of the external variables of the descriptive model, with
the purpose of proving the complete equivalence of the two
models, are nontrivial. In non-toy examples or in practical
cases the required effort, and the likelihood of errors in writing
these constraints, which essentially formalize the meaning and
the purpose of the internal state variables, can be comparable
to those encountered in defining the operational model itself.

It is also to be noticed that in a typical process of system
development through refinement of requirement specifications
-formalized by a descriptive model- into an operational model
that implements it, the formal proof of the relation of correct
implementation (i.e., of the validity of the formulaOM ∧
ID → DM ) can suffice, if one does not intend to use the
operational model as a sort of benchmark with respect to
which the descriptive model (i.e., the original requirement
specification itself) should be validated in order to check that it
ensures all the properties formalized by the operational model.

In a refinement-based development process then question
may arise if, when one has produced both a descriptive model
that abstractly specifies the requirements and an operational
one that has been proved to be a correct implementation of
it, it would be preferable to analyze some further, desired
properties of the system under development with reference
to the descriptive model or to the operational one. In the
simple example of the TRL we have seen that the proof of the
property P2 (in the two versions DP2 and OP2) was carried out
more efficiently with respect to the operational model (proof
time 1.6 versus 4 seconds). A possible cause for this could
be that the operational model is more ”deterministic” than the
descriptive one, so that the state space that the tool has to
explore to prove the property is more limited in size. This is
however only a conjecture, as the time needed to complete
the proof might depend, in subtle and involved ways, on the
size of the formula, on the depth of nesting of its temporal
operators, on the size of the model alphabet, and possibly on
other factors.

In the next section we further elaborate on these and other
questions with reference to a series of less trivial examples and
to benchmark case studies frequently adopted in the literature
on timed, critical systems.

V. EXPERIMENTAL RESULTS

Here we briefly describe our three case studies. The inter-
ested reader can find a complete archive with the Zot input
files used for the experiments, and the detailed outcomes in
the Zot web page http://home.dei.polimi.it/pradella/.

A. Fischer’s protocol

As a first case study, we consider Fischer’s algorithm [16],
a timed mutual exclusion algorithm that allows a number of
timed processes to access a shared resource. These processes
are usually described as timed automata, and are often used
as a benchmark for timed automata verification tools.

We considered the system in two variants. The first one,
called Fischer1, considers 3 processes with a delay after the
request of 4 time units. The second one, called Fischer2,
considers 4 processes with a delay after the request of 5 time
units.

We used the tool to check the safety property of the system
(safetyin the tables of the following section), i.e. it is never
possible that two different processes enter their criticalsections
at the same time instant.

As a last test for this system, we added a constraint to
generate a behavior in which there is always at least an alive
process in the system (alive in the tables).

For this case study, we used the mono-infinite encoding.

B. Kernel Railway Crossing

The Railway Crossing problem is a standard benchmark
in real time systems verification [17]. It considers a railway
crossing composed of a sensor, a gate and a controller. When a
train is sensed to approach the crossing, a signal is sent to the
controller. The controller then sends a command to the gate,
closing the railway crossing to cars. The system operates in
real time, ensuring safety (when the train is inside the railway
crossing then the bar gate is closed) while maximizing utility
(the bar should be open as long as possible). To this end,
we adopt various assumptions on the minimum and maximum
speed of trains (e.g., the minimum time it takes for a train to
enter the crossing after being sensed) and on the bar speed (the
time it takes for the bar to be moved up or down). The Kernel
Railroad crossing problem is a simplified version, where there
is only one track and hence only one train at a time may enter
the crossing. The goal of the KRC specification is twofold:
a formal definition of the KRC system, and the proof of the
safety and utility properties.

KRC is a toy example per se, but in this case we are
completely defining it with a temporal logic specification, thus
obtaining a logic formula much bigger and more complex than
those used in traditional model checking, where the KRC is
defined with an automaton and short temporal logic formulae
are used only to model safety or utility properties.

In our example we studied the KRC problem with a set of
time constants that allow a high degree of nondeterminism on
train behavior. In particular, the set of constants is:dMax = 9
anddmin = 5 time units for the maximum and minimum time
for a train to reach the critical region,hMax = 6 andhmin = 3



for the maximum and minimum time for a train to be inside
the critical region, andγ = 3 for the movement of the bar
from up to down and viceversa.

Satisfiability of the specification, a safety property and
refinement were considered for the experiments, using a mono-
infinite encoding. We also considered a special case of refine-
ment, that we called “mixed refinement”. In fact, the KRC
specification is composed of three modules: the bar, the train
and the controller. The only system to be implemented in
software or digital hardware is the controller, while the bar
and the train are a part of the environment. Hence, in SW
development it would not make sense to define operational
models also for the bar and the train. The mixed refinement
experiments consider exactly this case: only the controller is
refined. This is possible, thanks to the flexibility of Zot that
allows mixing operational and descriptive constraints.

C. Real-time allocator

The last case study consists of a real-time allocator which
serves a set of client processes, competing for a shared
resource. The purely descriptive version of it was originally
presented in [6]. Here we compare the descriptive version with
a new operational version.

Each processp requires the resource by issuing the message
rq(p), by which it identifies itself to the allocator. Requests
have a time out: they must be served withinTreq time units,
or else be ignored by the allocator. If the allocator is able
to satisfy p’s request within the time-out, then it grants the
resource top by agr(p) signal. Once a process is assigned the
resource by the allocator, it releases the resource, by issuing a
rel signal, within a maximum ofTrel time units. The allocator
grants the request to processes according to a FIFO policy,
considering only requests that are not timed out yet and in
a timely manner, i.e., no process will have to wait for the
resource while it is not assigned to any other process.

In the following experiments we considered the case of a
system with three processes andTrel = Treq = 3. As in the
previous case studies, we first used Zot to generate a simple
“run” of the system (history generation); then we considered
the following four hard real time properties.

Simple FairnessThe first is a simple fairness property. If
a process that does not obtain the resource always requests
it again immediately after the request is expired, then if it
requests the resource it will eventually obtain it. This property
holds only forTrel < Treq, hence not in our case, and Zot
generates a counterexample.

Conditional Fairness A second, more complex property
may be intuitively described as a sort of “conditional fairness”.
Let us first define the notion of “unconstrained rotation”
among processes: a process will require the resource only after
all other ones have requested and obtained it. Notice that this
requirement does not impose any precise ordering among the
requests made by the processes (though, once requests take
place in a given order, the order remains unchanged from one
round among processes to the next one). Under this assumption
of “unconstrained rotation” the allocator system is fair for

all processes: if a process, when it requests the resource and
does not obtain it, always requests it again after the request is
expired, then, when it requests the resource, it will eventually
obtain it.

PrecedenceThe third property is about precedence: the
allocator system cannot grant the resource to a processa

asking for it after another processb, if the resource has not
yet been granted tob.

Suspend FairnessThe last considered property is used to
provesimple fairness, under the assumption that every process,
after obtaining the resource, suspends itself forTrel · np t.u.,
wherenp is the number of processes.

For simplicity, we used the bi-infinite encoding for this case
study, because the assumption of a sequence of events that
extends itself indefinitely in the past is a useful abstraction
with respect to the start of the allocator system: a designer
might prefer to ignore the behavior of the allocator right after
its start and consider its properties only on regime behavior.

D. Results

The experimental results for the case studies described
above are shown in Figure 3, with the figures of the simplest
Lamp example reported in the first lines as a reference for
further comparison. The table reports, for various values of
the boundk (30, 60, 90 and 120), SAT time and memory
for various properties and systems. To give an idea of the
size of the examples, the total number of boolean clauses
fed to the SAT solver are also included. Another measure,
called SAT2CNF, reports on the time involved in traslating
Zot output into the conjunctive normal form required by
SAT solvers. This by far dominates translation into boolean
formulae, especially on large examples. The experiments were
run on a single core of a 4 Gbyte RAM machine with a 2.67
Ghz Intel Core 2 Quad Processor Q6700 (on a Optiplex Dell
755). The SAT solver is MiniSat 1.14 (the only experiment
marked with “*” was performed with MiraXT - which does
not indicate the memory used - in a case where MiniSat was
not able to complete the proof before the cutoff).

For every example, the suffix-de indicates the descriptive
version of the model, while-op is used for the operational
version. Every row considers an experiment:sat stands for a
satisfiability check (i.e., an unconstrained history generation);
refinementnaturally stands for refinement proofs, i.e. that the
operational model implies the descriptive one.Equiv refers
to the reverse implication, i.e., the descriptive model implies
the operational one, used together with refinement to actually
prove the satisfiability equivalence of the two models. For the
latter experiment we considered only one significant case each,
just to validate our comparison. Experiments had a cut-off time
at 24 hours. The cut-off occurred only for the largest bounds
(k = 90, 120) and only for some of the computationally most
expensive models (e.g. the real-time allocator).

Refinement is by far the most time-consuming operation,
affecting mostly SAT solver time. In fact, SAT2CNF time is
only dependent on the size of the model, while SAT solving
time depends more on the “intrinsic” hardness of the problem,



Kilo-Clauses (#)SAT memory (MB)SAT time (s)SAT2CNF Time (s)Case Prop

k=30 k=60 k=90 k=120 k=30 k=60 k=90 k=120 k=30 k=60 k=90 k=120 k=30 k=60 k=90 k=120

Lamp P1-de 2.0 6.3 18.6 54.2 0.1 0.3 0.4 0.8 24.9 36.8 47.8 57.5 170 339 507 676

P1-op 1.0 2.5 4.7 8.9 0.1 0.2 0.3 0.3 20.9 27.2 33.4 38.9 101 202 302 402

P2-de 2.5 9.0 33.7 92.3 1.5 4.5 16.5 20.4 26.6 38.0 50.0 64.6 197 393 588 783

P2-op 1.4 3.5 7.7 18.0 0.2 0.8 3.3 4.4 22.4 29.9 37.7 47.4 128 255 382 509

refinement 2.2 7.0 23.2 65.5 1.0 5.8 16.4 49.6 25.1 37.0 48.6 62.7 182 363 543 724

equiv 227.5 108.8 89.9 1093

KRC sat-de 2.1 6.0 15.9 37.6 0.1 0.2 0.4 0.5 8.8 16.8 24.3 33.4 173 344 515 686

sat-op 2.9 9.1 28.0 77.0 0.3 2.5 5.2 14.2 11.3 20.7 29.9 37.7 219 435 651 866

safety-de 2.2 6.7 16.9 40.9 0.1 0.2 0.3 0.4 9.6 16.7 23.9 33.4 181 359 537 715

safety-op 3.0 9.1 28.7 78.1 0.1 0.2 0.3 0.4 11.0 19.8 28.7 36.1 222 441 660 879

refinement 6.3 39.7 142.5 304.8 96.2 5926.0 10217.1 46652.6 24.5 300.3 377.7 1131.1 365 723 1082 1441

mix-ref 3.2 11.5 37.0 97.2 12.9 443.3 4334.7 6488.3 13.1 80.6 316.0 355.7 229 454 680 905

Fisch1 sat-de 6.5 57.0 184.9 368.0 0.5 0.6 4.3 1.8 36.9 57.4 78.9 98.4 339 672 1005 1338

sat-op 3.4 16.4 69.5 161.9 0.3 1.2 2.5 7.6 29.8 46.1 61.9 76.5 243 481 720 959

mutex-de 6.9 64.6 193.2 396.2 0.7 3.0 9.8 41.8 36.5 60.3 83.3 96.6 343 681 1018 1356

mutex-op 3.5 17.5 71.8 166.4 3.2 13.9 53.9 130.3 29.6 46.5 63.7 82.2 247 490 734 977

refinement 47.1 334.6 793.8 694.1 17365.4 8986.1 81.1 404.4 304.9 638 1264 1890

equiv 1123.4 844.0 187.9 2234

Fisch2 sat-de 19.0 169.8 447.5 877.4 4.1 3.8 4.8 23.3 47.9 77.7 109.4 137.0 492 976 1460 1944

sat-op 6.2 52.5 182.1 367.5 3.5 2.5 5.2 11.4 36.2 56.8 78.2 97.3 343 681 1018 1355

mutex-de 20.3 182.9 476.3 877.4 1.5 16.1 22.6 119.8 47.0 76.9 108.2 136.4 499 989 1479 1969

mutex-op 6.4 58.6 191.6 387.5 10.4 31.7 66.7 106.3 36.5 60.6 84.2 105.0 350 693 1037 1380

refinement 151.3 717.9 1689.2 1115.2 24558.7 3420.3* 114.5 452.4 n.a.* 912 1808 2703

equiv 1014.4 1338.8 238.0 2138

Alloc sat-de 24.0 194.1 509.9 958.5 0.9 7.7 7.8 61.0 48.4 80.9 114.6 141.2 528 1047 1567 2087

sat-op 2.9 10.9 41.1 103.7 0.5 0.6 1.8 3.0 29.6 43.5 57.9 70.4 236 470 703 937

simple-fair-de 40.5 279.7 703.5 1305.5 2.5 8.7 29.8 2.3 52.0 92.8 132.4 180.0 620 1232 1844 2455

simple-fair-op 5.3 33.9 120.6 253.1 1.8 1.8 5.7 13.6 36.6 56.3 77.2 95.6 330 657 983 1310

cond-fair-de 59.1 378.3 921.9 1685.1 3.3 10.9 28.6 47.8 62.0 105.0 149.1 189.9 712 1414 2115 2817

cond-fair-op 8.5 74.4 227.3 450.1 1.8 1.8 11.2 13.6 40.9 65.7 91.6 124.1 422 838 1255 1671

prec-de 62.9 393.8 959.2 1755.7 0.5 1.2 1.4 1.9 57.6 97.7 137.2 187.1 700 1390 2080 2770

prec-op 9.1 82.0 250.2 489.5 0.4 0.8 1.7 4.6 38.6 65.2 90.0 122.6 411 818 1224 1630

susp-fair-de 71.4 429.3 1043.2 1906.3 19.6 28.8 82.9 195.0 63.4 108.5 154.8 196.2 749 1487 2225 2963

susp-fair-op 11.7 101.3 293.4 567.7 7.6 17.9 23.7 21.3 42.8 68.9 95.9 129.2 459 912 1365 1818

refinement 194.9 953.0 2206.8 4661.9 8887.9 18482.8 257.1 409.4 760.9 1067 2118 3170

equiv 2698.6 2221.5 266.2 3522

Ratio op/de ClausesRatio op/de SAT memoryRatio op/de SAT timeRatio op/de SAT2CNF TimeRatios

k=30 k=60 k=90 k=120 k=30 k=60 k=90 k=120 k=30 k=60 k=90 k=120 k=30 k=60 k=90 k=120

Lamp P1 0.5 0.4 0.3 0.2 0.5 0.5 0.6 0.4 0.8 0.7 0.7 0.7 0.6 0.6 0.6 0.6

P2 0.6 0.4 0.2 0.2 0.2 0.2 0.2 0.2 0.8 0.8 0.8 0.7 0.6 0.6 0.6 0.7

KRC sat 1.4 1.5 1.8 2.0 3.0 12.5 13.3 28.4 1.3 1.2 1.2 1.1 1.3 1.3 1.3 1.3

safety 1.4 1.4 1.7 1.9 1.7 1.2 1.2 1.2 1.1 1.2 1.2 1.1 1.2 1.2 1.2 1.2

Fisch1 sat 0.5 0.3 0.4 0.4 0.7 2.0 0.6 4.2 0.8 0.8 0.8 0.8 0.7 0.7 0.7 0.7

mutex 0.5 0.3 0.4 0.4 4.6 4.6 5.5 3.1 0.8 0.8 0.8 0.9 0.7 0.7 0.7 0.7

Fisch2 sat 0.3 0.3 0.4 0.4 0.8 0.7 1.1 0.5 0.8 0.7 0.7 0.7 0.7 0.7 0.7 0.7

mutex 0.3 0.3 0.4 0.4 7.0 2.0 2.9 0.9 0.8 0.8 0.8 0.8 0.7 0.7 0.7 0.7

Alloc sat 0.1 0.1 0.1 0.1 0.6 0.1 0.2 0.0 0.6 0.5 0.5 0.5 0.4 0.4 0.4 0.4

simple-fair 0.1 0.1 0.2 0.2 0.7 0.2 0.2 5.8 0.7 0.6 0.6 0.5 0.5 0.5 0.5 0.5

cond-fair 0.1 0.2 0.2 0.3 0.5 0.2 0.4 0.3 0.7 0.6 0.6 0.7 0.6 0.6 0.6 0.6

prec 0.1 0.2 0.3 0.3 0.7 0.7 1.2 2.5 0.7 0.7 0.7 0.7 0.6 0.6 0.6 0.6

susp-fair 0.2 0.2 0.3 0.3 0.4 0.6 0.3 0.1 0.7 0.6 0.6 0.7 0.6 0.6 0.6 0.6

Fig. 3. Summary of collected experimental data (*: MiraXT solver, using 4 cores).

rather than only on its sheer size. This can be justified, on
an intuitive basis, considering that the proof of refinement
is analogous to the proof of a property in traditional model-
checking, where the size of the formula specifying the property
has roughly the same size as the model itself.

On the other hand, the proof of the specific system proper-
ties (e.g., safety and fairness, mutual exclusion etc.) arealways
feasible in a “reasonable” time for all cases studies, both w.r.t.
the descriptive and the operational model. It can be noticed
that, in most cases, the size of the formula to be analyzed by
the SAT-solver (measured in terms of Kilo-Clauses) is smaller

for the operational model than for the descriptive one, and,
when this occurs, in general also the time required for the
proof is inferior in the case of the operational model. Indeed,
for the timed lamp, Fischer’s protocol, and the real-time
allocator the size of the CNF boolean formula generated for
operational models is 40% to 70% of the corresponding size
for descriptive models. This fact directly impacts on translation
times, especially for SAT2CNF. An exception is provided by
the KRC, where both the number of clauses and proof time
are lower for the descriptive than for the operational case.A
possible reason for this could be the fact that, in designingthe



operational model for the KRC, we paid particular attentionto
partition the model into loosely-coupled modules, so to allow
for a mixed refinement, where only the controller module is
refined into an operational model. We conjecture that as a
consequence of its modular structure, the operational model for
the KRC could be redundant, e.g. having more state variables
than those strictly needed.

It is easy to check that the growth in the cost of the
analysis (both for the refinement correctness and for the
proof of properties) is more than proportional to the size of
the formulae (measured in terms of Kilo-clauses). A likely
explanation of this is that the cost of the analysis derives
primarily from the system’sdegree of nondeterminism: for
instance, in Fischer’s protocol the degree of nondeterminism
grows significantly with the number of processes.

As a general comment, however, we point out that more
extensive experimentations and deeper a analysis are needed
to better substantiate our tentative explanations of the reported
figures.

VI. CONCLUSIONS

We have illustrated and discussed a methodology for defin-
ing operational and descriptive models of time critical systems
and to state a relation of correct refinement among them.
The extensive use of an automatic tool has shown that the
analysis of desired properties can be conducted, most often
with comparable results, on both the descriptive and the
operational model of the system under development.

Further developments of the method here described may
originate by the remark that operational and descriptive models
are not incompatible and they may be combined, as shown in
the mixed refinement of the KRC example, where two modules
(the train and the bar) are left in the descriptive form, while the
controller module is refined into an operational version. Inthis
line, a complex, highly structured system could be designed
and developed by partitioning it into independent modules,
and its analysis and verification be performed incrementally:
some system components (the most critical ones or simply the
ones to be implemented in hardware and/or software) could
be developed by refining their requirements specification (i.e.,
their descriptive model) into a provably correct operational
model, while the other components could be left in the more
abstract form of a descriptive model, to be used as sort of
“stub” or “driver” modules during the integration phases.
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