
Snake-deterministic tiling systems?

Violetta Lonati1 and Matteo Pradella2

1 Dipartimento di Scienze dell’Informazione, Università degli Studi di Milano
Via Comelico 39/41, 20135 Milano, Italy – lonati@dsi.unimi.it

2 IEIIT, Consiglio Nazionale delle Ricerche
Via Golgi 40, 20133 Milano, Italy – matteo.pradella@polimi.it

Abstract. The concept of determinism, while clear and well assessed for string
languages, is still matter of research as far as picture languages are concerned.
We introduce here a new kind of determinism, called snake, based on the bous-
trophedonic scanning strategy, that is a natural scanning strategy used by many
algorithms on 2D arrays and pictures. We consider a snake-deterministic variant
of tiling systems, which defines the so-called Snake-DREC class of languages.
Snake-DREC properly extends the more traditional approach of diagonal-based
determinism, used e.g. by deterministic tiling systems, and by online tessellation
automata. Our main result is showing that the concept of snake-determinism of
tiles coincides with row (or column) unambiguity.

Keywords: picture language, 2D language, tiling systems, online tessellation
automata, determinism, unambiguity.

1 Introduction

Picture languages are a generalization of string languages to two dimensions: a picture
is a two-dimensional array of elements from a finite alphabet. Several classes of picture
languages have been considered in the literature [8,10,6,12]. In particular, here we refer
to class REC introduced in [8] with the aim to generalize to 2D the class of regular
string languages. REC is a robust class that has various characterizations; in particular,
it is the class of picture languages that can be generated by tiling systems, a model
introduced in [7], where pictures are specified as alphabetic projection of a local 2D
language defined by a set of tiles.

For string regular languages, two central notions are those of determinism and un-
ambiguity. Going towards 2D, the concept of unambiguity is straightforward and yields
to class UREC [7]. UREC defines unambiguously tiling recognizable languages, whose
pictures are the projection of a unique element in the corresponding local language. In
an effort to go towards determinism, the authors of [1] introduced an intermediate no-
tion of “line” unambiguity, embodied in classes Row-UREC and Col-UREC, and based
on backtracking at most linear in one dimension of the picture.

? This work has been supported by the MIUR PRIN project “Mathematical aspects and emerg-
ing applications of automata and formal languages”, and CNR RSTL 760 “2D grammars for
defining pictures”.

The concept of determinism for picture languages is far from being well understood.
The most relevant difficulty is that in 2D any notion of determinism seems to require
some pre-established “scanning strategy” for reading the picture. Tiling systems are
implicitly nondeterministic: REC is not closed under complement, and the membership
problem is NP-complete [11]. Clearly, this latter fact severely hinders the potential ap-
plicability of the notation. The identification of a reasonably “rich” deterministic subset
of REC would spur its application, since it would allow linear parsing w.r.t. the number
of pixels of the input picture.

In past and more recent years, several different deterministic subclasses of REC
have been studied, e.g. the classes defined by deterministic 4-way automata [10] or
deterministic online tessellation automata [9]. This latter model inspired the notion of
determinism of [1], that relies on four diagonal-based scanning strategies, each starting
from one of the four corners of the picture. To mark this aspect, in this paper we will
call the corresponding deterministic class Diag-DREC3.

In a effort to generalize their approach, the same authors in [2] suggest other kinds
of strategies. Inspired by their work, we introduce here a new kind of determinism for
tiles, based on a boustrophedonic scanning strategy, that is a natural scanning strategy
used by many algorithms on pictures and 2D arrays (such as shearsort) [4,2,5]. This
leads to a class called Snake-DREC, which can be defined equivalently in terms of
tiling systems or online tessellation acceptors.

Snake-DREC properly extends Diag-DREC while keeping some important closure
properties. For instance, it is still closed under complement, rotation and symmetries.
However, like Diag-DREC, it is not closed under intersection. When pictures of only
one row (or column) are considered, this model reduces to deterministic finite state au-
tomata. Quite surprisingly, we found that our notion of determinism coincides with line
unambiguity of Row-UREC (or Col-UREC): our main result is showing that the lan-
guages of this class can actually be recognized deterministically by following a bous-
trophedonic scanning strategy.

The paper is organized as follows. In Section 2 we recall some basic definitions and
properties on two-dimensional languages and tiling systems. In Section 3 we introduce
snake-deterministic tiling systems. In Section 4 we present our main result. In the last
section we define and characterize class Snake-DREC.

2 Preliminaries

2.1 Tiling recognizable picture languages

The following definitions are taken and adapted from [8].
Let Σ be a finite alphabet. A two-dimensional array of elements of Σ is a picture

over Σ. The set of all pictures over Σ is Σ++. A picture language is a subset of Σ++. If C
denotes some kind of picture-accepting device, then L(C) denotes the class of picture
languages recognized by such devices.

For h, k ≥ 1, Σh,k denotes the set of pictures of size (h, k); # < Σ is used when needed
as a boundary symbol; p̂ refers to the bordered version of picture p. That is, for p ∈ Σh,k,

3 The original name is DREC.

it is

p =

p(1, 1) . . . p(1, k)
...

. . .
...

p(h, 1) . . . p(h, k)

p̂ =

. . . #
p(1, 1) . . . p(1, k)
...

...
. . .

...
...

p(h, 1) . . . p(h, k)
. . . #

.

A pixel is an element p(i, j) of p. We call (i, j) the position in p of the pixel. We will
sometimes use position (i, j) with i or j equal to 0, or h + 1, or k + 1 for referring to
borders.

We will sometimes consider the 90o clockwise rotation, the horizontal mirror, and

the vertical mirror of a picture p. E.g. if p =
a b
c d

, then
c a
d b

,
c d
a b

, and
b a
d c

are its rotation, horizontal mirror and vertical mirror, respectively. Naturally, the same
operations can be applied to languages, and classes of languages, too.

We call tile a square picture of size (2,2). We denote by T (p) the set of all tiles
contained in a picture p.

Let Σ be a finite alphabet. A (two-dimensional) language L ⊆ Σ++ is local if there
exists a finite setΘ of tiles over the alphabet Σ∪{#} such that L = {p ∈ Σ++ | T (p̂) ⊆ Θ}.
We will refer to such language as L(Θ).

Let π : Γ → Σ be a mapping between two alphabets. Given a picture p ∈ Γ++,
the projection of p by π is the picture π(p) ∈ Σ++ such that π(p) (i, j) = π(p(i, j)) for
every position (i, j). Analogously, the projection of a language L ⊆ Γ++ by π is the set
π(L) = {π(p) | p ∈ Γ++} ⊆ Σ++.

A tiling system (TS) is a 4-tuple τ = 〈Σ, Γ, Θ, π〉 where Σ and Γ are two finite
alphabets, Θ is a finite set of tiles over the alphabet Γ ∪ {#} and π : Γ → Σ is a
projection. A picture language L ⊆ Σ++ is tiling recognizable if there exists a tiling
system 〈Σ, Γ, Θ, π〉 such that L = π(L(Θ)). We say that τ generates L and denote by
REC the class of picture languages that are tiling recognizable, i.e, REC = L(TS).
Notice in particular that any local language is tiling recognizable.

Example 1. The language Lcenter of square pictures over {0, 1} with odd size, greater
than 2, and having 1 only in the center is generated by the tiling system 〈Σ, Γ, Θ, π〉,
where: Γ = {1,� ,� , · }; π(1) = 1, π(x) = 0 for x , 1, and the set of tiles is Θ = T (p̂),

p =

� · · · · · �

· � · · · � ·

· · � · � · ·

· · · 1 · · ·

· · � · � · ·

· � · · · � ·

� · · · · · �

.

Notice that it is straightforward to extend the previous tiling system to define the
language L′center of square pictures with odd size, and having 1 not only in the center,

but possibly elsewhere. E.g., we may set Γ = ({0, 1} × {� ,� , · }) ∪ {(1, 1)} and π:
π(0, y) = 0, π(1, x) = 1.

REC coincides with the class of languages recognized by online tessellation accep-
tors (OTA), that are special acceptors related to cellular automata [9]. Informally, an
online tessellation acceptor can be described as an infinite two-dimensional array of
identical finite-state automata, where the computation proceeds by counter-diagonals
starting from top-left towards bottom-right corner of the input picture. A run of a OTA
on a picture consists in associating a state to each position of the picture. At the begin-
ning, an initial state is assigned to all top and left border positions. The state at position
(i, j) is given by the transition function and depends both on the symbol of the picture
at that position, and on the states already associated with positions (i, j−1), (i−1, j−1)
and (i−1, j). The picture is accepted if the state associated with the bottom-right corner
is final.

A natural subclass of REC, already introduced in [7], is UREC consisting of the
tiling recognizable languages whose pictures are the projection of a unique element in
the corresponding local language. Formally, a tiling system 〈Σ, Γ, Θ, π〉 is called unam-
biguous if, for every q, q′ ∈ L(Θ), π(q) = π(q′) implies q = q′. UREC is the class of
all unambiguous languages. It is known that UREC ⊂ REC and that it is undecidable
whether a tiling system is unambiguous [3].

2.2 Diagonal-deterministic languages

Here we present the notion of determinism proposed in [1]. This is inspired by the
deterministic version of online tessellation acceptors [9], which are directed according
to a corner-to-corner direction (namely, from top-left to bottom-right, or tl2br).

Consider a scanning strategy that respects the tl2br direction: any position (x, y) is
read only if all the positions that are above and to the left of (x, y) have already been
read. Roughly speaking, tl2br determinism means that, given a picture p ∈ Σ++, its
preimage p′ ∈ L(Θ) ⊆ Γ++ can be build deterministically when scanning p with any
such strategy. Formally, a tiling system τ = 〈Σ, Γ, Θ, π〉 is called tl2br-deterministic if
for any X,Y,Z ∈ Γ ∪ {#} and a ∈ Σ, there exists at most one tile

X Y
Z A

∈ Θ with π(A) = a.

By rotation, one can define d-deterministic tiling systems (d-DTS) for any corner-
to-corner direction d in {tl2br, tr2bl, bl2tr, br2tl}, where t, b, l, and r stand for top, bot-
tom, left, and right, respectively.

Example 2. The language L f r= f c of square pictures where the first row equals the first
column is in L(tl2br-DTS) ∩ L(tr2bl-DTS) ∩ L(bl2tr-DTS), but does not belong to
L(br2tl-DTS) [1].

We use Diag-DREC to denote the family of languages recognized by some d-DTS (for
all corner-to-corner directions d). Diag-DREC is equal to the closure by rotation of the
class of languages recognized by deterministic OTAs (denoted as DOTAs).

Example 3. The language L∃r=lr of square pictures where there is one row that equals
the last one cannot be recognized neither by any tl2br-DTS [9, Theorem 3.1], nor (sym-
metrically) by any tr2bl-DTS. However, L∃r=lr ∈ Diag-DREC since one can prove that
it is recognized both by bl2tr-DTS and br2tl-DTS.

Diag-DREC is properly included in UREC, as the following example testifies.

Example 4. Let Lframes = L f r= f c∩Llr=lc∩L2 f r=2lc∩L2lr=2 f c be the language of square pic-
tures such that: the first row equals the first column, the last row equals the last column,
the second row equals the reverse of the second last column, the second last row equals
the reverse of the second column. Then Lframes is in UREC but not in Diag-DREC [1].

2.3 Row and column unambiguity

In [1] a hierarchy of classes between determinism and unambiguity is also exhibited.
Here we adapt the basic definitions, results, and examples from [1].

Consider the side-to-side direction t2b (from top to bottom). A tiling system 〈Σ, Γ,
Θ, π〉 is called t2b-unambiguous if, for any rows X = (X1, X2, · · · , Xm) ∈ Γ1,m ∪ {#}1,m

and a = (a1, a2, · · · , am) ∈ Σ1,m, there exists at most one row A = (A1, A2, · · · , Am) ∈
Γ1,m such that

π(A) = a and T

 # X1 X2 . . . Xm #
A1 A2 . . . Am

 ⊆ Θ . (1)

Example 5. Let L = L∃c= f c ∩ L∃c=lc of square pictures where there are one column that
equals the first one and one column that equals the last one. L is not in Diag-DREC, but
it can be recognized by a t2b-unambiguous tiling system.

Similar properties define d-unambiguous tiling systems (d-UTS) for any side-to-
side direction d ∈ {t2b, b2t, l2r, r2l}. Row-UREC (resp. Col-UREC) denotes the class of
row-unambiguous (resp. column-unambiguous) languages, i.e., the languages generated
by t2b-UTS or b2t-UTS (resp. l2r-UTS or r2l-UTS). The following relation holds, with
all strict inclusions:

Diag-DREC ⊂ (Col-UREC ∩ Row-UREC) ⊂ (Col-UREC ∪ Row-UREC) ⊂ UREC. (2)

In the rest of the paper we will use the informal term line unambiguity for referring both
to row and to column unambiguity.

3 Snake-deterministic tiling systems

Given a tiling system τ = 〈Σ, Γ, Θ, π〉 and a picture p ∈ Σ++, imagine to build one
preimage p′ ∈ L(Θ), π(p′) = p, by scanning p with a boustrophedonic strategy. More
precisely, start from the top-left corner, scan the first row of p rightwards, then scan
the second row leftwards, and so on, like in the following picture, where the number in
each pixel denotes its scanning order:

1 2 3 4

8 7 6 5

9 10 11 12

.

This means that we scan odd rows rightwards and even row leftwards, assigning a sym-
bol in Γ to each position. The choice of the symbol clearly depends on the symbols
in the neighbourhood, and it is determined by a tile in Θ. In general, the choice is not
unique and hence the procedure may not be deterministic. We introduce the following
definition to guarantee such condition.

Definition 1. A tiling system τ = 〈Σ, Γ, Θ, π〉 is snake-deterministic if Γ and Θ can be
partitioned as Γ = Γ1 ∪ Γ2, Θ = Θ1 ∪ Θ2, where

– 〈Σ, Γ, Θ1, π〉 is tl2br-deterministic and Θ1 contains only tiles like

a2 b2

a1 b1
, with ai, bi ∈ Γi ∪ {#} for i = 1, 2;

– 〈Σ, Γ, Θ2, π〉 is tr2bl-deterministic and Θ2 contains only tiles like

a1 b1

a2 b2
, with ai, bi ∈ Γi ∪ {#} for i = 1, 2, and (a1, b1) , (#, #).

Snake-deterministic tiling systems are abbreviated as snake-DTS.

In the following we shall always use this notation: symbols on light gray background
belong to Γ1 ∪ {#}, symbols on dark gray background belong to Γ2 ∪ {#}. Hence tiles in

Θ1 or Θ2 will appear as
a b
c d

or
c d
a b

, respectively.

In [1], it is proved that tl2br-deterministic tiling systems are equivalent to determin-
istic online tessellation acceptors (DOTA). Analogously, here we introduce a similar
model of acceptor equivalent to snake-deterministic tiling systems.

Definition 2. A deterministic snake online tessellation acceptor (ZOTA) is a 7-tuple
〈Σ,Q1,Q2, q01, q02, F, δ〉 where:

- Σ is the input alphabet;
- Q1 and Q2 are two disjoint set of states;
- q0i ∈ Qi are the initial states;
- F ⊂ Q1 ∪ Q2 = Q;
- δ : Q × Q × Q × Σ 7→ Q is the transition function satisfying δ(p1, q1, p2, a) ∈ Q2,
δ(p2, q2, p1, a) ∈ Q1, for every pi, qi ∈ Qi and a ∈ Σ.

A run of any ZOTA on a picture consists in scanning the picture following the snake-
like strategy, associating, at each step, a state with the current position in the picture. At
step 0, the initial state q01 is assigned to all the border positions (0, j) and (i, 0) with i
even, whereas the initial state q02 is assigned to all positions (i, 0) with i odd. The state at
position (i, j) is given by the transition function and depends on the input symbol at that
position and on the states already associated with some of the neighbouring positions:
for odd i, the positions considered are (i − 1, j), (i − 1, j − 1), and (i, j − 1); for even i,
(i − 1, j), (i − 1, j + 1), and (i, j + 1). The picture is accepted if the state associated with
the last position (i.e. the bottom-rightmost for pictures with an odd number of rows, the
bottom-leftmost otherwise) is in F.

Reasoning as in [8, Theorem 8.1] one can easily prove that deterministic snake
tessellation automata are equivalent to snake-deterministic tiling systems.

Proposition 1. L(ZOTA) = L(snake-DTS).

Proposition 2. L(snake-DTS) is a boolean algebra.

Proof (sketch). If L is recognized by a ZOTA, then so is its complement (it is sufficient
to exchange final states with non-final ones). Hence, by Proposition 1, L(snake-DTS)
is closed under complement.

Moreover, given two snake-DTSs recognizing two languages L1 and L2 respectively,
one can follow the construction defined in [8] to build a new TS recognizing the in-
tersection L1 ∩ L2. Such construction preserves snake-determinism, hence we get the
closure under intersection. ut

The following example shows how a snake-DTS, or, equivalently, a ZOTA, can
“propagate signals” both in tl2br and tr2bl corner-to-corner directions. This property
does not hold in general for tl2br-DTSs or tr2bl-DTSs. Indeed, we will show in Sec-
tion 4 that they are strictly less powerful than snake-DTSs.

Example 6. The language Lcenter described in Example 1 is recognized by the following
snake-DTS. Γ = Γ1 ∪ Γ2 where

Γ0 = {�,�,↘,↙,→,←,−, ·, 1}, Γ1 = {1} × Γ0, Γ2 = {2} × Γ0,

and π is such that π(x, 1) = 1, π(x, y) = 0, for y , 1. Θ = T (p̂) ∪ T (q̂) where p and q
are the following pictures. For better readability, the first component of symbols in Γ1
is depicted as a light gray background, instead of the symbol 1; analogously, the first
component of symbols in Γ2 is depicted as a dark gray background.

p =

�→ − − − − − − −

· � · · · · ←� −

· · �→ · · � · ·

· · · ↘←� · · ·

· · · · 1 → · · ·
· · ←� · � · · ·

· · � · · · �→ ·

←� · · · · · � ·

� · · · · · · · �

, q =

�→ − − − − −

· � · · ←� −

· · �→↙ · ·

· · ← 1 · · ·
· · � · �→ ·

←� · · · � ·

� · · · · · �

.

The basic mechanism of this tiling system is the same as the one of Example 1:
the two diagonals are used to identify the center. To make the tiles snake-deterministic,
we have first to distinguish odd and even rows, by using in Γ a first component 1,
and 2, respectively. First, notice that we have to use two prototypal pictures p and q
to define the tile-set: p represents pictures in which the center symbol is found during
a left-to-right scan, while q represents the other direction. Symbols → and ← mark
the fact that there is a diagonal at the position immediately below. This information is
needed for the right-to-left component of the boustrophedonic movement, to mark the
top-left to bottom-right diagonal (symbol →), and analogously for the other direction
and diagonal (symbol ←). Symbol − is used to identify the start of the top-right to

bottom-left diagonal. Symbols↘ and↙ are used both to mark diagonals, and to state
that at the following row the center will be found. Notice that the language generated
by this tiling system does not contain pictures having side less than 7 - it is clearly
straightforward to extend it to cover those cases as well.

A simple extension of the same structure can be used to define a snake-deterministic
tiling system for the language L′center, mentioned at the end of Example 1. ut

4 Snake determinism is equivalent to line unambiguity

In this section we prove our main result, showing that snake-deterministic tiling systems
are equivalent to t2b-unambiguous tiling systems.

Theorem 1. L(snake-DTS) = L(t2b-UTS).

In one direction, the result is easy (any snake-deterministic tiling system is also t2b-
unambiguous). The converse is less intuitive; in order to prove it, from now on let
τ = 〈Σ, Γ, Θ π〉 be a t2b-UTS.

First of all, let Γ1 (resp. Γ2) be the set of symbols in Γ that may appear only in odd
(resp. even) rows, and w.l.o.g assume that Γ1 and Γ2 are disjoint. (Otherwise we can
mark with subscript i all elements that may appear in Γi, possibly duplicating symbols
and tiles.) Consequently, as in the definition of snake-DTS, split the set of tiles into two
sets Θ1 and Θ2. If the resulting tiling system is not snake-deterministic, then we build
a snake-deterministic tiling system τ̃ = 〈Σ, Γ̃, Θ̃, π̃〉 that simulates τ. Before formally
defining τ̃, let us first point out some important remarks.

Given any X = (X1, X2, . . . , Xm) ∈ Γ1,m ∪ {#}1,m and a = (a1, a2, . . . , am) ∈ Σ1,m,
there exists at most one preimage A = (A1, A2, . . . , Am) ∈ Γ1,m satisfying relation (1).
However, we have no guarantees that A can be built from left to right deterministically.
For instance, for m = 4, τ may allow the choices represented in Figure 1 (left).

//

""EEE
E

��3
33

33
33

A1
//

$$HHH
H A2

// A3 //

##HHH A4
// #

A′1
##GGG A′2 // A′3 A′4

A′′1 // A′′2 // A′′3

//

""EEE
E

��3
33

33
33

A1
//

##HHH A2
// A3 //

##GG
G A4

// #

A′1 A′2 // A′3 A′4

A′′1

Fig. 1. Graph (left) and tree (right) of the preimages of row (a1, a2, a3, a4).

Clearly, τ being t2b-unambiguous, only one branch of the graph ends with #: the one
corresponding to A. In the other cases, a backtracking linear in the length of the row is
always sufficient to (eventually) determine A.

Remark 1. Since we are building a preimage of a fixed row a, at each position we can
choose among symbols that all have the same image through π. E.g., π(A1) = π(A′1) =

π(A′′1) = a1.

Remark 2. Since τ is t2b-unambiguous, the branch corresponding to A cannot con-
tain symbols with in-degree greater that one (otherwise there would exist two different
preimages of row a satisfying relation (1), a contradiction). In other words, if two or

more branches “collapse”, the successive symbols may be ignored. Then we can as-
sume that the graph of the preimages of a is actually a tree, where each symbol has
exactly one predecessor. We call it the tree of the preimages of a in Γ. For the previous
example, the tree is depicted in Figure 1 (right).

Similar remarks can be done if we try to build the preimage of row a from right to left.
To simulate τ deterministically on a picture p, we proceed as follows. Let p′ be

the unique preimage of p in L(Θ). When scanning rightwards the first row of p, we
compute and keep trace of the tree of its preimages in Γ; at the end of the row, we
determine which branch is successful (i.e, the one that corresponds to the first row of
p′). When scanning the second row backwards, we use such information (together with
the traces we left in the previous scan) to reconstruct backwards the successful branch
and, at the same time, we compute and keep trace of the tree of the preimages in Γ of
the current row. This procedure continues till the last row has been scanned.

To represent locally the tree of preimages of the current row, we store at each po-
sition the set of symbols of Γ that may appear at the corresponding position of p′,
together with their predecessors in the tree. To represent the correspondence between a
symbol and its predecessors, which is unique by Remark 2, we use partial functions. For
instance, the tree of the previous example is represented by the sequence of partial func-
tions (α1, α2, α3, α4, α5), where α1(A1) = α1(A′1) = α1(A′′1) = #, α2(A2) = α2(A′2) = A1,
α3(A3) = A2, α3(A′3) = A′2, α4(A4) = α4(A′4) = A3, and α5(#) = A4.

We shall need some notation. Given a partial function f : X → Y , we set I f = f (∆ f);
moreover, we write f (x) =⊥ if f (x) is not defined, set ∆ f = {x ∈ X | f (x) ,⊥}, and
say that f is non-empty if ∆ f , ∅. For i = 1, 2, let Γ̂i = Γi ∪ {#} and call Φi the set
of non-empty partial functions ϕ : Γ̂i → Γ̂i such that |π(∆ϕ)| = |π(Iϕ)| = 1 (this last
condition is the formalization of Remark 1). In particular, for every A ∈ Γi, let]A be the
function in Φi with domain {#} such that]A(#) = A; moreover, let] be the function with
domain {#} such that](#) = #. Finally, we abbreviate π(∆ϕ) by π(ϕ).

Recall that during the simulation we perform two operations at the same time: we
reconstruct the successful branch in the tree of preimages of the previous row, and
compute the tree of preimages of the current row. Hence the local alphabet of τ̃ must
contain both pieces of information. This leads to the following definition:

Γ̃ = Γ̃1 ∪ Γ̃2 where Γ̃1 = Γ̂2 ×Φ1, and Γ̃2 = Γ̂1 ×Φ2, (3)
∀(A, ϕ) ∈ Γ̃ : π̃(A, ϕ) = π(ϕ). (4)

The role of symbol (A, ϕ) is the following: A is the correct symbol that one should have
chosen when scanning the above position (i.e., the symbol appearing at that position
in p′), whereas ϕ keeps trace of all possible symbols that may appear in the current
position, together with their predecessors in the computation. Notice that w.l.o.g we
define more than one border symbol in Γ̃, i.e., all pairs (A, ϕ) with π(ϕ) = #.

In order to define the set of tiles, we need some other notations. For any b ∈
Σ ∪ {#}, we introduce the partial function r-nextb : Γ̂2 × Γ̂2 × Φ1 → Φ1 by setting
r-nextb(X,Y, α) = β, where, for every B ∈ Γ̂1:

β(B) =

A if π(B) = b and A is the unique element in ∆α s.t.
X Y
A B

∈ Θ1,

⊥ otherwise.

Informally, r-nextb(X,Y, α) represents all possible symbols that can appear in next po-
sition, when going rightwards, reading symbol b, and given previous neighbours like
X Y
A

, with A ∈ ∆α.

Symmetrically, for any d ∈ Σ let l-nextd : Γ̂1× Γ̂1×Φ2 → Φ2 be the partial function
defined by l-nextd(A, B, γ) = δ, where, for every D ∈ Γ̂2:

δ(D) =

C if π(D) = d and C is the unique element in ∆γ s.t.
A B
D C

∈ Θ2,

⊥ otherwise.

Lemma 1. Let τ = 〈Σ, Γ, Θ, π〉 be t2b-unambiguous and let X = (X1, X2, . . . , Xm), A =

(A1, A2, . . . , Am) and a = (a1, a2, . . . , am) satisfying relation (1), with Xi ∈ Γ2 ∪ {#} for
every i. Moreover set

α1 = r-nexta1 (#, X1,]), ∀ j = 2, . . . ,m : α j = r-nexta j (X j−1, X j, α j−1)

Then, for every j = 1, 2, . . . ,m, A j ∈ ∆αi , α1(A1) = #, α j(A j) = A j−1 for j , 1. Similar
results hold for the symmetric direction.

Proof. We reason by induction on j = 1, 2, . . . ,m. For sake of brevity, we use ∆i to
denote ∆αi . Clearly, A1 ∈ ∆1 with α1(A1) = #. Now, assuming that the statement

holds for k ≤ j, we prove it for j + 1. We have
X j X j+1

A j A j+1
∈ Θ. If

X j X j+1

A′j A j+1
∈ Θ

for some other A′j ∈ ∆ j then, setting A′k−1 = αk(A′k) for every k = j, . . . , 2, 1, we ob-

tain that
X1 . . . X j X j+1 . . . Xm
A′1 . . . A′j A j+1 . . . Am # ∈ Θ̃1. This yields a contradiction, since also rela-

tion (1) holds but τ is 2tb-unambiguous. Thus, A j is unique and hence A j+1 ∈ ∆ j+1 with
α j+1(A j+1) = A j. ut

We are ready to prove Theorem 1, as a straightforward consequence of the following
proposition.

Proposition 3. Given a t2b-unambiguous tiling system τ = 〈Σ, Γ, Θ, π〉, let τ̃ be the
tiling system = 〈Σ, Γ̃, Θ̃, π̃〉 where Γ̃ and π̃ are defined as in (3) and (4), while Θ̃ =

Θ̃1 ∪ Θ̃2, where

Θ̃1 =

 (A, δ) (B, γ)
(D, λ) (δ(D), µ)

(π(δ), π(γ)) = (#, #) ⇒ (A, B) = (#, #),
D ∈ ∆δ, δ(D) ∈ ∆γ, π(λ) = # ⇒ λ =],

µ = r-nextπ̃(µ)(D, δ(D), λ)

Θ̃2 =

 (X, α) (Y, β)
(β(B), δ) (B, γ)

(π(α), π(β)) , (#, #),
B ∈ ∆β, β(B) ∈ ∆α, π(γ) = # ⇒ γ =],

δ = l-nextπ̃(δ)(β(B), B, γ)

Then, τ̃ is a snake-DTS equivalent to τ.

Proof. The TS τ̃ is snake-deterministic by definition. We prove that π̃(L(Θ̃) = π(L(Θ)).
First let p̃ ∈ L(Θ̃). W.l.o.g assume that the number of rows of p̃ is odd; then ̂̃p is as in

(#,]) (#,]) (#,]) · · · (#,]) (#,])
(#,]) (#, α1,1) (#, α1,2) · · · (#, α1,m) (#,]A1,m)
(#,]A2,1) (A1,1, α2,1) (A1,2, α2,2) · · · (A1,m, α2,m) (#,])
(#,]) (A2,1, α3,1) (A2,2, α3,2) · · · (A2,m, α3,m) (#,]A3,m)
· · · · · · · · · · · · · · · · · ·

(#,]) (An−1,1, αn,1) (An−1,2, αn,2) · · · (An−1,m, αn,m) (#,]An,m)
(#,]) (An,1,]) (An,2,]) · · · (An,m,]) (#,])

· · · # #
A1,1 A1,2 · · · A1,m−1 A1,m
A2,1 A2,2 · · · A2,m−1 A2,m
A3,1 A3,2 · · · A3,m−1 A3,m
· ·

An,1 An,2 · · · An,m−1 An,m
· · · # #

Fig. 2. Examples of bordered pictures in L(Θ̃) (left), and L(Θ) (right).

Figure 2 (left). By the definition of Θ̃, this implies that the picture p in Figure 2 (right)
belongs to L(Θ). Moreover, one can easily see that π(p) = π̃(p̃). Hence, π̃(L(Θ̃)) ⊆
π(L(Θ)).

On the other hand, consider a picture p as in Figure 2 (right). Then, let p̃ be a picture
as in Figure 2 (left), where symbols Ai, j are from p, whereas the partial functions αi, j

are defined inductively according to the boustrophedonic order of positions (i, j):

α1,1 = r-nextπ(A1,1)(#, #,]), α1, j = r-nextπ(A1, j)(#, #, α1, j−1) j = 2, . . . ,m,
α2,m = l-nextπ(A2,m)(A1,m, #,]), α2, j = l-nextπ(A2, j)(A1, j, Aa, j+1, α2, j+1) j = m − 1, . . . , 2,
α3,1 = r-nextπ(A3,1)(#, A2,1,]), α3, j = r-nextπ(A3, j)(A2, j−1, A2, j, α1, j−1) j = 2, . . . ,m,
. . .

One can verify that each αi j is well defined. Indeed, using Lemma 1 one can prove that,
for every i = 1, 2, . . . , n and j = 1, 2, . . . ,m, Ai, j ∈ ∆αi, j and αi, j(Ai, j) is Ai, j−1 if i is odd,
or Ai, j+1 if i is even. By the definition of Θ̃, this implies that p̃ ∈ L(Θ̃). Since obviously
π̃(p̃) = π(p), we get π(L(Θ) ⊆ π̃(L(Θ̃)) and this concludes the proof. ut

5 Class Snake-DREC

Theorem 1 implies that snake-DTS can simulate both tl2br-DTS and tl2br-DTS. Actu-
ally, this extension is proper as shown in next proposition.

Proposition 4. L(snake-DTS) properly extends L(tl2br-DTS) ∪ L(tr2bl-DTS).

Proof. Since both tl2br-DTS and tl2br-DTS are t2b-unambiguous, the inclusion is a
consequence of Theorem 1. The inclusion is proper as testified by the language L =

L∃c= f c ∩ L∃c=lc described in Example 5. ut

Notice that L(snake-DTS) does not extend the whole class Diag-DREC. For in-
stance the language L∃r=lr described in Example 3 is in Diag-DREC but, reasoning as
in [1], one can prove that it does not belong to L(snake-DTS). On the contrary, by
Proposition 4 we have that the closure under horizontal mirror of L(snake-DTS) prop-
erly includes Diag-DREC. However, it is not closed by rotation: for instance L∃c=lc ∈

L(snake-DTS) since it is in L(tr2bl-DTS), but its rotation is not (see again Example 3).
This leads to the following definition.

Definition 3. Snake-DREC is the closure under rotation of L(snake-DTS). The lan-
guages in Snake-DREC are called snake-deterministic.

We conclude characterizing Snake-DREC and summarizing its properties in the
following theorem.

Theorem 2. Snake-DREC = Row-UREC ∪ Col-UREC. Snake-DREC is properly in-
cluded between Diag-DREC and UREC. Snake-DREC is closed under complement,
rotation and mirrors, but not under intersection.

Proof. The first identity follows by Theorem 1, by applying rotations. Then, the inclu-
sions are a straightforward consequence of relation (2). Proposition 2 implies the clo-
sure under complement; the closure under rotation is obvious by definition; the closure
under mirrors follows by the closure under mirrors of both Row-UREC and Col-UREC.
L∃r= f r is in Snake-DREC, but its intersection with all its rotations is not [1]. ut

Acknowledgments. We thank Alberto Bertoni and Massimiliano Goldwurm for their
useful comments.

References
1. M. Anselmo, D. Giammarresi, and M. Madonia. From determinism to non-determinism in

recognizable two-dimensional languages. In Proc. DLT 2007, volume 4588 of Lecture Notes
in Computer Science, pages 36–47. Springer, 2007.

2. M. Anselmo, D. Giammarresi, and M. Madonia. A computational model for recognizable
two-dimensional languages. Theoretical Computer Science, 2009. To appear.

3. M. Anselmo, D. Giammarresi, M. Madonia, and A. Restivo. Unambiguous recognizable two-
dimensional languages. Theoretical Informatics and Applications, 40(2):277–293, 2006.

4. P. Behrooz. Introduction to Parallel Processing: Algorithms and Architectures. Kluwer
Academic Publishers, Norwell, MA, USA, 1999.

5. A. Bertoni, M. Goldwurm, and V. Lonati. On the complexity of unary tiling-recognizable
picture languages. Fundamenta Informaticae, 91(2):231–249, 2009.

6. A. Cherubini, S. Crespi Reghizzi, and M. Pradella. Regional languages and tiling: A unifying
approach to picture grammars. In Proc. MFCS 2008, volume 5162 of Lecture Notes in
Computer Science, pages 253–264. Springer, 2008.

7. D. Giammarresi and A. Restivo. Recognizable picture languages. International Journal Pat-
tern Recognition and Artificial Intelligence, 6(2-3):241–256, 1992. Special Issue on Parallel
Image Processing.

8. D. Giammarresi and A. Restivo. Two-dimensional languages. In A. Salomaa and G. Rozen-
berg, editors, Handbook of Formal Languages, volume 3, Beyond Words, pages 215–267.
Springer-Verlag, Berlin, 1997.

9. K. Inoue and A. Nakamura. Some properties of two-dimensional on-line tessellation accep-
tors. Information Sciences, 13:95–121, 1977.

10. K. Inoue and I. Takanami. A survey of two-dimensional automata theory. Information
Sciences, 55(1-3):99–121, 1991.

11. K. Lindgren, C. Moore, and M. Nordahl. Complexity of two-dimensional patterns. Journal
of Statistical Physics, 91(5-6):909–951, June 1998.

12. O. Matz. On piecewise testable, starfree, and recognizable picture languages. In M. Nivat,
editor, Proc. FoSSaCS’98, volume 1378 of Lecture Notes in Computer Science, pages 203–
210. Springer, 1998.

