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Abstract. Model checking techniques traditionally deal with temporal logic lan-
guages and automata interpreted over w-words, i.e., where time is infinite in the
future but finite in the past. This is motivated by the study of reactive systems,
which are typically nonterminating: system termination may be abstracted away
by allowing an infinite future. In the same way, if time is infinite also in the past
one is allowed to ignore the complexity of system initialization. Specifications
may then be simpler and more easily understandable, because they do not neces-
sarily include the description of operations (such as configuration or installation)
typically performed at system deployment time. In this paper, we investigate the
feasibility of bounded model checking and bounded satisfiability checking when
dealing with bi-infinite automata and logics. We present a tool and we discuss its
application to a set of case studies, arguing that bi-infinite time does not entail
significant penalties in verification time and space.

Keywords: Bounded model checking, bi-infinite words and automata, metric
temporal logic.

1 Introduction

Temporal logics and automata models used in specification and verification usually
consider time to be finite in the past, i.e., with a “first” time instant. The reason is both
pragmatical and historical: finite automata and temporal logic were applied to model
programs or hardware, where often there is an initialization step. Hence, automata and
temporal logics (the latter also extended with past operators) on w-words seemed ade-
quate for modeling and verification. The only concession to infinity was in the future:
a reactive system does not necessarily have a final state (i.e., it may not terminate). It
has been widely argued that allowing time to be infinite in the future is very conve-
nient when describing reactive systems and studying their properties (such as liveness
and fairness), even though obviously all real systems have to terminate, sooner or later.
For instance, the controller of a railroad crossing may be considered as nonterminating,
since one might simply not want to model explicitly the case when the controller is
stopped for failures, maintenance or replacement. Nontermination is only an abstrac-
tion, useful to write simpler models that avoid explicit consideration of the final dis-
posal of the analyzed system, and to verify and analyze properties that essentially refer
to infinite behaviors, such as fairness.
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However, philosophers and logicians such as Prior have always considered that time
may be bi-infinite, i.e., infinite both in the future and in the past. Also Automata Theory
has considered bi-infinite computations [10, 22]. Actually, bi-infinity may be a useful
abstraction, too. Analogously to the mono-infinite case where termination may be ig-
nored, bi-infinite time is convenient for modeling systems where initialization may be
ignored. One can write specifications that are simpler and more easily understandable,
because they do not include the description of the operations (such as configuration,
installation, ...) typically performed at system deployment time. For instance, for reac-
tive systems embedded into devices that continuously monitor or control some process,
one may often focus only on regime behavior, ignoring initialization. As an example,
consider a simple mutual exclusion problem, where, say, three processes may need to
gain exclusive access to a shared resource R. A resource allocator might have a policy,
in case of conflicting resource requests, to allocate I first to the process, among those
that are currently requesting R, that accessed the resource least recently. This fairness
property may be formalized more easily by assuming that every request by a process
is preceded by a previous request by some other process, i.e., that the sequence of re-
quests extends indefinitely in the past (a property similar to this one will be formalized
in Section 5).

Recent developments in the research on Bounded Model Checking (BMC), a ver-
ification technique originally defined only for Linear Time Temporal Logic (LTL) [2],
have extended its applicability also to PLTL (LTL with Past time operators) [1, 14]. In
these works, however, the time domain is infinite in the future only, so that the asym-
metrical definition of past and future in PLTL actually complicates the translation of
PLTL into a boolean formula. In our work [23] we presented a novel, bi-infinite en-
coding of PLTL for bounded model checking, which is significantly simpler than the
previous ones, because we consider past and future as completely symmetrical. Fur-
thermore, we introduced a variant of bounded model checking where both the system
under analysis and the property to be checked are expressed in a single uniform nota-
tion as formulae of temporal logic, without any reference to operational components. In
this novel setting, which we called bounded satisfiability checking (BSC), the system
under analysis is modeled through the set of all its fundamental properties as a formula
¢ (that in all non-trivial cases would be of significant size) and the additional property
to be checked (e.g. a further desired requirement) is expressed as another (usually much
smaller) formula 1. Aim of the verification activity is then to prove that any implemen-
tation of the system under analysis possessing the assumed fundamental properties ¢
would also ensure the additional property v; in other terms, the verification tool would
prove that the formula ¢ — 1 is valid, or equivalently that its negation is not satisfiable
(hence the term satisfiability checking).

The present paper provides two more contributions. First, the above outlined method
of satisfiability checking is generalized by permitting, also for the case of a bi-infinite
time, the more customary operation of bounded model checking, where the system un-
der analysis is modeled by means of a finite state automaton: to this end we provide
the definition of automata on bi-infinite strings and the encoding of the automaton on
bi-infinite time structures. Second, we validate our approach and the tool implemented
to support it by comparing the performance figures obtained on mono- and bi-infinite



Benchmarking Model- and Satisfiability-Checking on bi-infinite time 3

time structures, by performing either model or satisfiability checking on a set of se-
lected case studies. The results allow us to state that the bi-infinite approach is feasible
and can be applied with no significant penalty, also when considering a mono-infinite
specification. Since bi-infinite time is also more natural and more expressive, we argue
that one may use a bi-infinite approach to specification and verification, even when the
system to be modeled is mono-infinite.

The paper is structured as follows: Section 2 provides definitions of bi-infinite
words, automata and logic, while Section 3 motivates the usefulness of a bi-infinite
semantics. Section 4 briefly describes a toolkit, called Zot, extended with the new en-
coding, translating models and formulae into boolean logic. Section 5 presents exper-
imental results, using Zot and MiniSat solver, comparing mono-infinite and bi-infinite
verifications of a set of case studies, showing the feasibility of bi-infinite bounded model
checking. Finally, Section 6 draws some conclusions.

2 Automata and logics on bi-infinite words

Given a finite alphabet X/, 2* denotes the set of finite words over Y. A bi-infinite word
w over X (also called a Z-word) is a function w : Z — X. Hence, w(j) € X for every
Jj. Word w is also denoted as ... w(—1)w(0)w(1)... and each w(j) also as w;. The
set of all bi-infinite words over X is denoted by X%. An w-word over X is a function
from N — X, i.e., it has the form w(0)w(1).... The shift function o : X% — X7 is
defined for every w € X% and for every n € Z, by o(w)(n) = w(n — 1). Given a
language L C A%, o(L) = {o(w) | w € L}. L is said to be shift invariant if L = o(L).
Shift invariance basically means that the instant O (the “origin” for w-words) has no
special role. Finite automata and linear temporal logic may only define shift invariant
languages.

2.1 Automata on bi-infinite words

An automaton A is a five-tuple (Q, X, T, I, F'), where Q) is a finite set of states, T C
Q x X x @ is the set of transitions, I C () is the set of initial states and ' C () is the set
of final states. Two transitions (¢, a, q'), (p, b, p’) are consecutive if ¢’ = p. A bi-infinite
path of A is a bi-infinite sequence of consecutive transitions. A path is successful if
gn € I for infinitely many n < 0, and if ¢, € F' for infinitely many n > 0. For a
path ...(q-1,a-1,40)(q0, @0, q1)(q1, a1, q2) . . ., define its label as the bi-infinite word
...a_1apa1 . ... The language L(A) of A is the set of labels of successful bi-infinite
paths of A. It is easy to see that L(A) is shift-invariant.

A bi-infinite run is a bi-infinite word . . . ¢_1¢og1g2 . . . on Q7 such that there exists
a bi-infinite path ... (g—1,a_1,40)(q0, @0, 41)(q1,a1,q2) . .. of A. The run is success-
ful if it corresponds to a successful path. In this paper, we are rarely interested in the
language of A, but rather we remove the input alphabet and add both a finite set Ap
of boolean propositions and an evaluation function S : Q — 24P, T is then a subset
of @ x @. S indicates the set of propositions that are true in a state. For simplicity,
we still call this structure (Q, Ap, S, T, 1, F) a bi-infinite automaton (although it is
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a Kripke structure with bi-infinite fairness constraints). This form is especially conve-
nient for model checking. Givenarun...g_1¢pqi1g2 - - . , the corresponding sequence of
assignments ...S(q_1)5(q0)S(q1)S(gz) - .. is denoted with ...S_1505155 . ... For
simplicity, each \S; may also be called a state of the automaton. No confusion can arise
since one can always assume, by extending Ap, that S(q) = S(¢') if, and only if,
q=4q.

2.2 A temporal logic on bi-infinite time

We define here Linear Temporal Logic with past operators (PLTL), in the version first
introduced by Kamp [12]. However, rather than using more traditional w-words, seman-
tics will be defined on Z-words.

Syntax of PLTL The alphabet of PLTL includes: a finite set Ap of propositional
letters; two propositional connectives -,V (from which other traditional connectives
such as T, 1,—,V,A,—,... may be defined); four temporal operators (from which
other temporal operators can be derived): the “until” operator I/, the “next-time” oper-
ator o, the “since” operator S and the “past-time” (or Yesterday) operator, e . Formulae
are defined in the usual inductive way: a propositional letter p € Ap is a formula;
=g, p VY, pUY, 0¢, S, ep, where ¢, 1) are formulae, are formulae; nothing else is a
formula.

The traditional eventually and globally operators may be defined as: Q¢ is TU¢, O¢
is =(Q—¢. Their past counterparts are: ¢ is TS¢o, B¢ is - 4—¢. Another useful operator
for PLTL is the Always operator .Alw, which can be defined by Alw ¢ := O¢ A E¢.
The intended meaning of Alw ¢ is that ¢ must hold in every instant in the future and in
the past. Its dual is the Sometimes operator Som ¢ defined as —Alw—¢.

Semantics of PLTL The semantics of PLTL may be defined on Z-words. For all
PLTL formulae ¢, for all w € (2‘4’))Z , for all integer numbers ¢, the satisfaction relation
w, i = ¢ is defined as follows.

w,i = p, <= pew(i)forpe Ap

w,i ¢ = w,i i

wiE VY <= w,iEgorw,ikE1

w,ifEop <= w,i+1lE¢

wiE MUY —= Tk>0|w,i+kE=E¢, andw,i+jEVO<j<k

w,i = ep <= w,i—1FE ¢

w,iEdSY <= Tk>0|w,i—kEY, andw,i—jEVO< <k

2.3 A bi-infinite encoding

In [23] we defined how PLTL formulae may be encoded into boolean formulae. The
encoding includes additional information on the finite structure over which a PLTL
formula is interpreted, so that the resulting boolean formula is satisfied in the finite
structure if and only if the original PLTL formula is satisfied in a finite or possibly bi-
infinite structure. Our encoding is essentially a bi-infinite generalization of a classical
mono-infinite BMC encoding (see e.g. [3]). The interested reader can find its complete
description in [23].
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Fig. 1. a) Mono-infinite and b) bi-infinite bounded paths.

The idea on which the encoding is based is graphically depicted in Figure 1(b). A
ultimately-periodic bi-infinite structure has a finite representation that includes a non-
periodic portion, and two periodic portions corresponding to two cycles that are encoded
by having two pairs of equal states in the sequence: when the interpreter of the formula
(in our case, a SAT solver), needs the truth value of a subformula at a state beyond the
last state S, it follows a “backward link” (resp., “forward link”) and considers the states
St, Si41, ... as the states following S. Analogously, when it is necessary to evaluate a
subformula before the first state Sy, then the interpreter follows a “forward link” and
considers the states S;, S;'_1, ... as the states preceding .Sp.

Coming to the automaton encoding, to perform bounded model checking, we rep-
resent symbolically the transition relation of the system M as a propositional formula,
where the states are represented as bit vectors. The k-times unrolling of the transition
relation represents all the finite paths of length k:

[M]x = /\ (S, Sit1)
0<i<k

where T is a total transition relation predicate. Notice that, being M a bi-infinite au-
tomaton, there is no initial state predicate.

2.4 Metric temporal operators

PLTL can also be extended by adding metric operators, on discrete time. Metric op-
erators are very convenient for modeling hard real time systems, whose requirements
include quantitative time constraints. We call the resulting logic Metric PLTL, although
it does not actually extend the expressive power of PLTL.

Metric PLTL extends the alphabet of PLTL with a bounded until operator U... and
a bounded since operator S.... , where ~ represents any relational operator (i.e., ~€
{<,=,>}), and ¢ is a natural number. Also, we allow n-ary predicate letters (with
n > 1) and the V, 3 quantifiers as long as their domains are finite. Hence, one can write,
e.g., formulae of the form: Jp gr(p), with p ranging over {1, 2,3} as a shorthand for

vpe{1,2,3} grp-
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The bounded globally and bounded eventually operators are defined as follows:
Qe is TU e, O is 70—, The past versions of the bounded eventually and
globally operators may be defined symmetrically to their future counterparts: ¢..¢ is
TSct, B P is <@ ..

In the following, as a useful shorthand, we will use also the versions of the bounded
operators with a strict bound. For instance, ¢l stands for o(¢l>o1)), and similarly
for the other ones.

The semantics of Metric PLTL may be defined by a straightforward translation 7 of
its operators into PLTL:

T(1l<op2) == @2

T(p1l<ia) == P2 V h1 A oT(p1ld<i_1¢2), with t > 0
T(p1l>002) == p1lUUP2

T(¢1U>192) == 1 A oT(¢p1l>1—142), with ¢ > 0
T(1l=0¢2) := @2

T(¢p1l=1¢2) == ¢1 N\ oT(¢p1l=¢—1¢2), with t > 0

and symmetrically for the operators in the past.
Hence, in what follows we will consider Metric PLTL as a syntactically-sugared,
but considerably more succinct, version of PLTL.

3 Bi-infinite time: a short motivation

Itis widely recognized that allowing past operators in temporal logic, as in PLTL, makes
it possible to write specifications that are easier, shorter, and, in some significant cases
even exponentially more succinct than LTL specifications [16]. However, the w-word
semantics of PLTL is asymmetric: past is treated differently from future. Asymmetry in
itself may seem a minor glitch, but it entails a problem: only a conventional value is re-
turned when the evaluation of past operators requires time instants before the origin. For
instance, consider the ® operator: in a mono-infinite time domain, when e¢ is evaluated
at instant ¢ > 0, it returns the value of ¢ at instant ¢ — 1; if © = 0, e¢ is conventionally
evaluated to false. This w-word semantics may easily lead to subtle specification errors,
since natural, “expected” properties of the temporal operators are violated. These prob-
lems are usually “fixed” by allowing two dual forms of the e operator, the second one
being defined to the default value true when its argument cannot be evaluated. This is-
sue is even worsened when considering metric time operators, to be used for specifying
real-time systems, since they may very easily refer to non-existent time instants in the
past. For example, one may describe a system having a fixed cycle of operation of m
time units by the formula O(shutdown < #—,,startup) (i.e., a shutdown occurs if
and only if a startup took place m time units before), which could be rewritten (e.g., as
a consequence of some automatic transformation performed by some tool that analyzes
it) in the following, supposedly equivalent form:

(mshutdown V @ —,startup)
(] A
(shutdown V #—,~startup)
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Unfortunately, this latter, simple specification is unsatisfiable on a mono-infinite time
domain, because in the first m—1 instants of the domain, both shutdown and —=shutdown
must be true, since both ¢_,,startup and ¢_,,—startup are (conventionally) false.
This effect is dependent on the syntax used: for instance, if the lower subformula
(shutdownV #_,~startup) is written in the apparently equivalent form: shutdown\V
—4_,,startup, then the behavior becomes the intended one, because in this case the
conventional false value for ¢_,, makes shutdown V —4_,,startup true in the first
m— 1 instants. Clearly, these subtle semantics issues may easily escape notice in a more
complex specification.

By adopting bi-infinite time, where event sequences may extend indefinitely in the
past, past operators have a simple semantics that is symmetrical to that of the corre-
sponding future-time operators: they are always defined and there is no need to use
conventional values. Notice that the usage of bi-infinite time does not rule out the ex-
plicit modeling of the initial state of a system, and hence it incurs in no loss of expressive
power (e.g., just use a propositional symbol Start, with the additional constraint that
Start must occur exactly once). Hence, one may use a convenient bi-infinite semantics
even when specifying a mono-infinite system.

Throughout our past research, we have heavily dealt with temporal logic specifi-
cations and their application to industrial, critical real-time systems [5, 20, 17,4]. Our
approach has focused on using TRIO (a first order, linear-time temporal logic with a
quantitative metric on time) for requirements specifications, without relying on ma-
chine models such as automata. One of the main features of TRIO is its ability to deal
with different time domains: dense or discrete, finite or infinite [18]. In particular, most
TRIO specifications adopt a bi-infinite time domain, using both future and past time op-
erators. The application of the BMC techniques to a decidable fragment of TRIO was
one of our original motivations for dealing with bi-infinity.

4 The Zot toolkit

Zot is an agile and easily extendible bounded model and satisfiability checker, which
can be downloaded at http://home.dei.polimi.it/pradella/, together with the case studies
and results described in Section 5.

The tool supports different logic languages through a multi-layered approach: its
core uses PLTL, and on top of it a decidable predicative fragment of TRIO [9] is defined
(essentially, equivalent to Metric PLTL). An interesting feature of Zot is its ability to
support different encodings of temporal logic as SAT problems by means of plugins.
This approach encourages experimentation, as plugins are expected to be quite simple,
compact (usually around 500 lines of code), easily modifiable, and extendible. At the
moment, a few variants of some of the encodings presented in [3] are supported, a
dense-time variant of MTL [8], and the bi-infinite encoding presented in [23].

Zot offers three basic usage modalities:

1. Bounded satisfiability checking (BSC): given as input a specification formula, the
tool returns a (possibly empty) history (i.e., an execution trace of the specified sys-
tem) which satisfies the specification. An empty history means that it is impossible
to satisfy the specification.
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2. Bounded model checking (BMC): given as input an operational model of the system,
the tool returns a (possibly empty) history (i.e., an execution trace of the specified
system) which satisfies it.

3. History checking and completion (HCC): The input file can also contain a partial
(or complete) history H. In this case, if H complies with the specification, then a
completed version of H is returned as output, otherwise the output is empty.

The provided output histories have temporal length < k, the bound given by the
user, but may represent infinite behaviors thanks to the loop selector variables, marking
the start of the periodic sections of the history. The BSC/BMC modalities can be used
to check if a property prop of the given specification spec holds over every periodic
behavior with period < k. In this case, the input file contains spec A —prop, and, if
prop indeed holds, then the output history is empty. If this is not the case, the output
history is a counterexample, explaining why prop does not hold.

The tool and its plugins were validated on mono-infinite examples, such as the Mu-
tex examples included in the distribution of NuSMV. The results were exactly the same
as those obtained by using NuSMV [6] with the same encoding. On one hand, Zot is in
general slower than NuSMV, but being quite small and written in Common Lisp is quite
flexible, and promotes experimentation with different encodings and logic languages.
On the other hand, in practice its performances are usually acceptable, because for non-
trivial verifications the bottleneck typically resides in the SAT solver rather than in the
translator.

Zot supports the model checkers MiniSat [7], zChaff, [21], and the recent multi-
threaded MiraXT solver [15].

5 Case studies and experiments

To assess the actual feasibility of our approach, we applied it to some significant case
studies, illustrated in the following sections. For all examples we apply the tool with
reference to both mono- and bi-infinite structure, and then compare the results by com-
puting the ratio of the various (time and memory) figures obtained in the two cases.
We point out that some of the following case studies are framed as bounded satisfia-
bility checking problems (because the analyzed system is described by means of a set
of PLTL formulas without any constraint on their structure, and in particular on the
nesting of their temporal operators): this is the case of the In/out channel, the Kernel
Railway Crossing, and the Fischer’s protocol. Three case studies are instead expressed
as bounded model checking problems (the analyzed system is modeled through a set
of PLTL formulae that are at all similar to a finite state automaton, because they re-
late the system current state with its next state): the In/Out channel (the only one to
be considered in both ways), the simple mutual exclusion protocol, and the Real-time
allocator.

5.1 A simple In/Out channel

The simplest example on which we tested the tool is that of a transmission line where
any message entering at one end (represented by the predicate letter ¢n) at any time is
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emitted at the other end (predicate out) after k time units. No message is lost nor is
generated spuriously, so the transmission line is described by the formula:

Alw(in « $opout).

We considered two possible values for the delay k, namely, 5 and 15 time units.
Moreover, to allow for bounded model checking, besides the above “descriptive” for-
malization, we used also a different, “operational” characterization of the transmission
line system, composed of constraints that refer only to “current” and the “next” time
instants. This requires the introduction of a counter to, which starts at value k£ when in
holds, and is then decremented at each successive time instant, until out holds. In the
tables reporting the experimentation results four versions of this examples are consid-
ered, corresponding to the descriptive or state-based style (suffix “d” or *s”) and to the
time bounds (5 or 15). For this simplest example the tool was only used to generate a
possible trace of execution, as opposed to the other examples, for which we also carried
out the proof of a few selected properties.

5.2 Kernel Railway Crossing

The Railway Crossing problem is a standard benchmark in real time systems verifica-
tion [11]. It considers a railway crossing composed of a sensor, a gate and a controller.
When a train is sensed to approach the crossing, a signal is sent to the controller. The
controller then sends a command to the gate, closing the railway crossing to cars. The
system operates in real time, ensuring safety (when the train is inside the railway cross-
ing then the bar gate is closed) while maximizing utility (the bar should be open as long
as possible). To this goal, there are various assumptions on the minimum and maximum
speed of trains (e.g., the minimum time it takes for a train to enter the crossing after be-
ing sensed) and on the bar speed (the time it takes for the bar to be moved up or down).
The Kernel Railroad crossing problem is a simplified version, where there is only one
track and hence only one train at a time may enter the crossing. The goal of the KRC
specification is twofold: a formal definition of the KRC system, and the proof of the
safety and utility properties.

KRC is a toy example per se, but in this case we are completely defining it with
a temporal logic specification, thus obtaining a logic formula much bigger and more
complex than those used in traditional model checking, where the KRC is defined with
an automaton and short temporal logic formulae are used only to model safety or utility
properties.

In our example we studied the KRC problem with two different sets of constants,
calling the two cases KRC1 and KRC2. Satisfiability of the specification, a safety prop-
erty and a utility property were considered for the experiments. A complete specifica-
tion, composed of a dozen axioms, of KRC1 and KRC2 and their properties can be
found in [19].

5.3 Fischer’s protocol

As a third case study, we consider Fischer’s algorithm [13]. Fischer’s is a timed mu-
tual exclusion algorithm that allows a number of timed processes to access a shared
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resource. These processes are usually described as timed automata, and are often used
as a benchmark for timed automata verification tools.

We considered a pure-logic description of the system in two variants. The first one,
called Fischerl, considers 2 processes with a delay after the request of 3 time units. The
second one, called Fischer2, considers 5 processes with a delay after the request of 6
time units.

We used the tool to check the safety property of the system (safety-m and safety-b in
the tables of the following section), i.e. it is never possible that two different processes
enter their critical sections at the same time instant.

As a last test for this system, we added a constraint to generate a behavior where
there is always at least an alive process (alive-m and alive-b in the tables).

5.4 Simple mutual exclusion protocol

The fourth case study is a simple Mutual exclusion protocol for two processes, origi-
nally found in the distribution of NuSMV, which is called Mutex1. This was also ex-
tended to consider mutual exclusion with three processes, a model called Mutex2. Both
examples have been defined with an automaton model.

For Mutex1 we considered the following property (where, quite naturally, turn = ¢
means that it is the turn of process 7):

(turn = 1 — $(turn = 2))A
Alw < (turn = 2 — $(turn = 1)) ) ’

This is the variant of the previous property that we considered for Mutex2:
(turn = 1 — O(turn = 2V turn = 3)) A
Alw | (turn =2 — $(turn =1V turn = 3)) A

(turn = 3 — $(turn = 2 V turn = 3))

5.5 Real-time allocator

The last case study consists of a real-time allocator which serves a set of client pro-
cesses, competing for a shared resource. The system is a purely operational version of
the one presented in [23].

Each process p requires the resource by issuing the message rq(p), by which it
identifies itself to the allocator. Requests have a time out: they must be served within
T}eq time units, or else be ignored by the allocator. If the allocator is able to satisfy
p’s request within the time-out, then it grants the resource to p by a gr(p) signal. Once
a process is assigned the resource by the allocator, it releases the resource, by issuing
a rel signal, within a maximum of 7T..; time units. The allocator grants the request to
processes according to a FIFO policy, considering only requests that are not timed out
yet and in a timely manner, i.e., no process will have to wait for the resource while it is
not assigned to any other process.

Two cases were considered in the following experiments: Allocl is the allocator
model with two processes and T}..; = 2 and T}, = 3. Alloc2 is the allocator model
with two processes and T}.; = 4 and T}.4 = 5.
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Two hard real time properties pl and p2 of Allocl and Alloc2 are considered in the
experiments.

The first is a simple fairness property pl. If a process that does not obtain the re-
source always requests it again immediately after the request is expired, then if it re-
quests the resource it will eventually obtain it:

Alw (ra(p) AO<r,.,~gr(p) — ¢=r..,1d(p))

(p1) : -

Alw (rq(p) — Ogr(p))

A second, more complex property may be intuitively described as a sort of “condi-
tional fairness”. Let us first define the notion of “unconstrained rotation” among pro-
cesses: a process will require the resource only after all other ones have requested and
obtained it. Notice that this requirement does not impose any precise ordering among
the requests made by the processes (though, once requests take place in a given order,
the order remains unchanged from one round among processes to the next one). This
property is described by the following formula:

) rq(p) — .

lw rq(g)/
' (q #p— ~rq(p)S (Q<ngr(q)>)

Under this assumption of “unconstrained rotation” the allocator system is fair for
all processes: if a process, when it requests the resource and does not obtain it, always
requests it again after the request is expired, then, when it requests the resource, it will
eventually obtain it. If for brevity we symbolically indicate the property of “uncon-
strained rotation” as UNROT, this conditional fairness property p2 may be stated as:

Alw(rq(p) A DO<r,.,,~gr(p) — O>ora(p))

(p2) : UNROT — —

Alw(rq(p) — O>ogr(p))

By careful inspection, however, it can be found that in the mono-infinite case p2
is only vacuously true, i.e., it corresponds to a run where no event occurs. In fact, the
property of unconstrained rotation, in the simple form of the above UNROT formula,
implies that any nonempty sequence of request events (and corresponding grant and
release) goes back indefinitely towards the past. Therefore it can be satisfied non vacu-
ously (i.e., with reference to behaviors that effectively include some events) only over
a structure which is infinite in the past.

5.6 Summary of experimental results

We report here and comment on the results of applying the tool to the selected bench-
marks and case studies. The experiments were run on a PC equipped with AMD Athlon
64 X2 4600+, 2 GB RAM, Linux OS. The SAT solver was MiniSat [7], version 2, along
with SAT2CNEF, part of the Alloy Analyzer (http://alloy.mit.edu).

For most examples we considered both a mono-infinite and a bi-infinite time struc-
ture, trying various bounds 7" on the size of the structure: 30, 60, 120, and 240 time
units. For every example, the first basic experiment is checking satisfiability (non-
emptiness) of the specification, without considering any property. This operation is use-
ful as a sort of “sanity check” for a temporal logic specification, since it ensures that at
least the formula is not contradictory. For all examples, except for the simplest In/Out
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Case Prop _ Translation time (s) SAT time (s) _ Ratio b/m SAT memory (MB) _ Ratio b/m Kilo-Clauses (#)

[ __T=30 T=60| T=120 T=30 _T=60| T=120| T=240| AVER| STDEV 7=30] T=60] T=120] T=240] AVER[sTDEV] T=30] T=60] T=120

io5d sat-m 0.84 0.95 232 0.06 018 052 5.71 9.22 16.89 3178 4,5 225 44.7 89.0
sat-b 0.83 184 6.28 015 041 130 915 1635 28.99 ) ) 422 839| 1673

io5s sat-m 093 177 6.71 015 038 120 839 1395 26.49 164 0 31.7 74.7| 14838
sat-b 124 3.82 1435 027 0.80 254 1284 2358 43.11 : 62.9 1250 2492

sat-m 078 1.80| 7.40 014 0.40 178 826] 13.81 26.34 50800 50 017 372 738] 1469

sat-b 181 6.29 21.83 038 117 3.95 1498 2836 56.43| 11155] ) 81.6 1623 3237

sat-m 263 9.93 38.72 052 1.66 6.07 1725 3059 169 007 90.4 179.0] 3563

sat-b 5.40 19.72 7173 112 372 14,88 2744 5378 . : 1541 3062| 6104

KRC1  [sat-m 1117 4145 154.87 211 8.48 30.95 4029  78.69] 15180 161 0.0 2119 4203 8372
sat-b 25.14 90.70 356.96 479 1877 82.36 63.91| 12557| 24341 ) ) 3414 6782 13519

safety-m 11.98 41.39 153.15 017 036 0.70 up. up. up. na . 2150 4265 8495

safety-b 25.00 91.74 363.32 027 055 1.04 up. up. u.p. 346.8 689.0] 13734

12.99 46.60 174.97 285 1923 137.56 42.95]  85.96] 170.70 151 o17b—2321 4605 9173

28.43 105, ﬂ 411.40 554] 2170 91,67 69.07] 13578 27164 . . 367.1 729.4] 14540

KRC2 42.11 161.26 622.03 774| 3247 133.44 78.11| 15151  304.27 149 o040l 4159 824.9] 1643.0
1555.55 2235 8345 365.99 13329| 25052| 51616 ) ) 7062| 14034 27978

258 0.0 038 0.70 143 up. up. u.p. up) na . 419.0 831.1| 16553

) 056 114 234 up. up. up. up) 7117| 14143 28194

255 0.0 1052|4493 201.68 8620] 17232] 337.07] 68650l ,,, o, 0 4656 9238| 18404

: : 26.73]_100.00 43040 14222] 28335)  551.00]  ses.6lll . 7707| 153161 30533

Fischerl 206 0.11 212 6.72 21.77 35.30] 6698 13255 0.0l 1949 3862  768.9
) ) 418 1678 68.79 53.93] 10333] 20523 ) 302.6 600.7| 1196.9

safety-m 1139 41.26] 15491 612970 515 gl 017 034 0.66 up. up. up. nal__2084 4130 8222

safety-b 24.02 88.45 34848 13619 ) ) 476| 1829 78.31 58.74| 116.37| 22558 3231 641.4| 1277.9

1139 42.80 156.82 0.0 2.04 7.29 30.25 38.02] 7449 14347 .01l 2055 4072] 8107

24,04 87,52 34421 454] 1726 74.43 57.78] _113.88| 22054 : 320.0 635.4] 1266.0

Fischer2 98.47 373.82|  1447.75 0.0 1911]  77.60 339.66 1347 22043]  asvos| aesaoll 40 o5el_s3es| 12673] 25220
228.20 867.98] 334228 48.68] 192.61 212,68 17714 34637] 37832 ) ) 1017.8]  2020.8]  4026.7

100.65 387.13] 1513 l 5944.03 0.02 055 1.09 220 up. up. u.p. nal__6636] 13150 2617.9

238.81 908.40|  3518.50] 13884.41] 52.54]  212.86 516.70 52.54]  363.19] 38617 10535 2001.7] 4168.1

98.39 39315  1578.25 6030.94 0.0 2369  84.98 348.01 11771 229.44| 46121 03065531 12086 25853

| 231,08 905.03| _ 3483.07|  13779.06 . 5177 199.56 234.09 18188 356.96] 38431 . 104501 2075.0] 41348
Mutex1 061 1.09 271 8.91 0.08 0.07 017 045 6.07 9.83 17.09 0.05 290 576 1149
0.65 130 323 11.16 ) 0.08 022 061 666 1142 20.72 ) 35.3 702| 1402

0.84 178 6.14 2960 1,4 g1 011 031 0.98 945 16.96 30.54 o 455 90.4| 1803

114 263 9.84 3a85) 018 051 162 1200 2107 8,@_ 82.95 61.4 1222| 2438

149 457 16.58 59.62 na nal 041 113 336 1770] 34.02 64.37) 12390 na nal 792 1574|3139

Mutex2 0.90 1.94 5.52 12063 116 go04 0.20 0.64 8.16 11.77]  22.00 4135 82.94 116 0.04 47.8 95.1| 1897
1.08 227 635 2162) ) 025 0.87 4.66 1323 2563 49.86 ) ) 56.4 1125 2246

137 343 1267 46750 145 o121 0.90 354 15.85 1628| 3143 61.98 0.0 717 1425| 2841

1.86 5.51 19.19 67.86] ) 1.02 555 3033 2062|  38.66 80.62 ) 939 186.8] 3727

272 9.09 3175 118,62 na nal 338 650 27.41 2601 _51.04] 10016 nal 1100 2385|4756

Alloc1 9.04 20.25 55.21 12300 100 go 315 535 14.63 74.32| 14214  289.20 0.0l 2023 583.8| 1166.8
9.06 2114 55.11 15994 226 5.17 12.78 77.89 15151  208.32 ) 3063 611.9| 12232

1045 29.10 83.05 268.08] 147 01 17.25] 11830 130.66 8061 164.05| 318.28 .03l 3200 656.4] 13111

1337 41.75 126.56) 44551) : 1645  55.68 164.06 9118 179.84]  365.02 : 386.2 770.7| 1539.7

1352 38.95 12312 2831 o, gy 3.06 7.82 23.69 88.73| 173.63] 35250 0.0 3732 7443| 14865

1852 59.22 195,62 21610 ) 470| 1449 69.10 10005] 203.07)  405.83] _ 800.21] : 4439 8853| 17682

Alloc2  [sat-m 20.35 42.66 102.33 Nmt_m_ 102 005 776]  16.83 35.70 17634] 34855]  eo04s| ssoorl oo ool _7044] 14077] 28144
_m‘u 19.60 44.18 103.55 28531 ) 77| 1658 38.69 179.62| 356.57|  706.50|  557.92| ) 721.9] 1443.0] 2885.1

pl-m 22.71 55.09 143.09 429.54] 139 o1sl—20433] 32013] 260876 183.03| 36261] 753.30] 59947 o ool 7502] 14985] 20049
pl-b 27.79 72.55 208.52 668.03] 117.82| 402.99 803.27 196.53| 398.84|  800.46|  660.96] ) 8225 1642.8) 32834

p2-m 25.13 64.36 185.29 T PN 823 1881 4173 190.95| 382.60 100 0 791.6] 15808 3159.2

p2:b 34.23 92,07 289.16 949600 1058] 3125 114.95 20280] 41122]  824.30] so7ssl| 8724| 1742.0] 34812

Table 1. Summary of collected experimental data.
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channel, we also proved a few selected properties: the property holds if and only if the
tool answers UNSAT when applied to the specification conjoined with the negation of
the property.

The entire collection of results is displayed in Table 1, which includes: translation
time (dominated by the conjunctive normal form translation performed by SAT2CNF),
SAT time and SAT memory (time and space taken by the SAT solver only), and the
number of clauses in the formula generated by SAT2CNF. Translation time, closely
related to the size of the original specification, changes in a quite regular way, and in
our experiments it appears to be quadratically related to the bound 7". SAT time is much
less regular and predictable, as it may depend, in a very involved way, on the semantics
of the specification and of the property being checked and on the details of the solver
algorithms.

Certain data in Table 1 are denoted by u.p.. In these cases, MiniSat is able to deter-
mine unsatisfiability already during the parsing phase, using so-called unit propagation
technique. SAT memory in this case cannot be computed, since the SAT solver has not
really started a computation, and also SAT time is not very meaningful (it corresponds
only to parsing time, which is negligible and only related to the size of the boolean
formula fed to the solver). In two experiments, unit propagation occurred for both the
bi-infinite and the mono-infinite case; in one experiment it occurred only in the mono-
infinite case.

Table 1 also contains four columns labeled “ratio b/m”, which are more closely
focused on the comparison between the figures for the mono and the bi-infinite case:
for each pair of such data (for the same example and the same property) it reports the
average, over the four values of 7', of the ratio between the bi-infinite figure and the
corresponding mono-infinite one, together with its standard deviation.

A few values were left out of these columns, since they correspond to cases where
the comparison is not possible or would give misleading results:

— The property safety-b-b for both Mutex1 and Mutex?2 is bi-infinite only, since it
does not hold on a mono-infinite domain (and hence it is difficult to be compared).

— All occurrences of unit propagation were ignored for SAT time and SAT memory,
since no meaningful measure can be used to make a comparison.

Also, Property p2 for the Allocator, as already pointed out, is only vacuously true
on a mono-infinite structure, so the SAT-solver can very easily prove unsatisfiability.
This explains the relatively large b/m ratio for SAT time.

As one can notice, standard deviations are typically small for all measures except
SAT time, which, as expected, shows more volatility. Hence, for all measures, except for
SAT time, the ratio is close to be a constant for the same case study, when considering
different bounds.

Overall, results are satisfactory. All measures, including SAT time, show a ratio
between 1 and 3, except in the above reported special cases. SAT time shows more
volatility than other measures, but it is still bounded and occasionally the ratio can
even go below 1, with 2 being the most typical value. Also, there does not appear
to be any significant difference in the ratios between cases where the specification is
purely operational (Allocator, Mutex, i05d, i0o15d) or purely logical (Fischer, KRC,
i05s, i015d).
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6 Conclusions

In this paper we have argued that bi-infinite time in specifications is a useful abstraction,
allowing one to ignore the complexity of system initialization, and to express fairness
properties also in the past.

Bi-infinite time has certainly been used before in specification. For instance, our
own requirement specifications of industrial systems using TRIO temporal logic lan-
guage [9] most often adopted bi-infinite time. However, we are not aware of any other
work extending model checking to deal with bi-infinity, apart from our encoding of
automata and PLTL formulae [23] that includes additional information to represent bi-
infinite structures by means of finite ones having two cycles of states, one that unfolds
in the future and one for the past.

Our Zot tool incorporates the bi-infinite encoding and, by relying on standard satis-
fiability checkers, supports a variety of analysis and verification activities.

This paper investigated the tool and its application to many case studies, ranging
from simple to complex, in order to assess the feasibility of the approach, by com-
paring the performance of the same case when using a mono-infinite and a then a bi-
infinite structure. The experimental results show that, on these examples, tool perfor-
mance on bi-infinite structures is comparable to that on mono-infinite ones, suggesting
that adopting a bi-infinite notion of time does not impose very significant penalties to
the efficiency of bounded model checking and bounded satisfiability checking. On the
other hand, bi-infinite time is more natural than mono-infinite time in many cases and
it avoids subtle semantics problem with PLTL formulae.

Further work might consider various optimizations, such as incremental encodings,
and also deal with completeness issues [24, 3]. These were ignored in this paper, where
we applied a standard, relatively simple encoding technique, since we were mainly
interested in comparing the performance of mono- and bi-infinite model checking.
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