
An Automatic Approach to Enable Replacement of

Conversational Services⋆

Luca Cavallaro1, Elisabetta Di Nitto1, and Matteo Pradella2

1 Politecnico di Milano, DEI, Piazza L. Da Vinci, 32, 20133 Milano, Italy

{cavallaro, dinitto}@elet.polimi.it
2 CNR IEIIT-MI, Via Golgi, 40, 20133 Milano, Italy

pradella@elet.polimi.it

Abstract. In Service Oriented Architectures (SOAs) services invoked in a com-

position can be replaced by other services, which are possibly discovered and

bound at runtime. Most of the research efforts supporting this replacement as-

sume that the interface of the interchangeable services are the same and known

at design time. Such assumption is not realistic since it implies that providers of

the same kinds of services agree on the interfaces the services offer. By interface

mapping we mean the class of approaches aiming at relaxing this assumption.

Most of those approaches available in the literature focus on stateless services and

simply address mapping operation names and data structures. Instead, this paper

focuses on conversational services for which the sequence of required operation

calls, i.e., the interaction protocol, matters. We use model checking to automati-

cally identify the interaction protocols mapping. We validate our technique both

by applying it to the invocation of two real services (Flickr and Picasa), and by

quantitatively comparing it to a related approach.

1 Introduction

Service oriented architectures (SOAs) offer the mechanisms to build software systems

integrating loosely coupled services, possibly made available by third party vendors.

As services may be controlled by third parties, they may be out of service consumers

control. This means that the traditional closed world assumption, which mandates that

developers know a priori all the components involved in the system and can model

and plan their interactions, is no more verified [1] because services involved in the

composition may change during the system life cycle to react to failures and service

unavailabilities. When this happens, a new service semantically equivalent to the one

not responding properly could be discovered and bound to the composition. When this

replacement occurs at runtime, the composition (or the framework where the compo-

sition is running) should be able to perform the replacement requiring as little human

intervention as possible.

In recent years, research about service oriented architectures producedmany frame-

works that can provide run time reconfigurations of service compositions (see for in-

stance [2], [3]), but most of them make the hypothesis that all semantically equivalent

⋆ This research has been funded by the European Community’s FP7/2007-2013 Programme,

grant agreement 215483 (S-Cube), and IDEAS-ERC Programme, Project 227977 (SMSCom).



2 Luca Cavallaro, Elisabetta Di Nitto, and Matteo Pradella

services have the same interface. This hypothesis, however, is not realistic as services

can be released by independent vendors. Therefore in common practice interfaces lack

standardization. Consequently there is no guarantee that services discovered and bound

at runtime can perfectly fit in a preexistent composition.

To address this problem, in a previous work [4], we have developed an approach to

allow invocation of services whose interfaces and behaviors differ from each other. The

approach was based on the definition of proper mapping scripts that, when interpreted

at runtime, could solve complex mismatches and perform the needed adaptations.

In this paper we extend the previous work by providing an approach and a tool to

support the automation of the mapping scripts definition. The approach is able to handle

conversational services, that is, services whose operations are expected to be called in

some specific sequences, which define the services interaction protocols. We assume

that, when developing a service composition, a service integrator uses the component

services that are available at the time he/she is developing the system. We call these

abstract services to highlight the fact that they are not necessarily the ones that will be

actually used at runtime, which we call concrete services. We also assume that services

are described not only in terms of their syntactic interface (i.e., their WSDL or any

equivalent description), but also in terms of a model that defines the order in which

service operations need to be invoked.

Given these assumptions and given a certain sequence of operations to be invoked

on an abstract service, our approach is able to propose a possible mapping of this se-

quence to a sequence of operations on a concrete service. The result of this analysis is

a mapping script fragment that, combined with other fragments that deal with data and

operation names mappings, allows us to actually adapt abstract service invocations to

their concrete implementations. Data and operation names mappings are disregarded in

this paper as they appear to be much simpler than the mapping of interaction protocols

and are covered in [5] and in other approaches in the literature (see Section 2).

The rest of the paper is organized as follows: Section 2 presents the current state of

the art and highlights some open issues. Section 3 presents a real world example that

motivates our work, Section 4 summarizes the background work that has been devel-

oped in [4], Section 5 discusses our approach to support semi-automatic generation of

mapping scripts for what concerns protocol-level mismatches and refines the execution

model associated to this specific case of mismatches. Section 6 evaluates our approach

quantitatively and qualitatively, and, finally, Section 7 draws some conclusions.

2 Related Work

The approaches that support interface mapping can be categorized in those that require

human intervention in the definition of mapping scripts or equivalent mechanisms (see

for instance [6], [7], [8] and [9]) and those that offer some automatic tool.

Among the approaches in the first category, we mention here the one in [7] as it

offers a model checking approach to verify the correctness of adaptation contracts that

are manually defined by humans, and the one in [9] as it assists humans in the interface

adapters development by offering a tool that provides hints about possible mismatches

between an abstract and a concrete service interface. Both approaches, however, assume



An Automatic Approach to Enable Replacement of Conversational Services 3

that, before execution, a developer can identify all potential pairs of abstract and con-

crete services and specify all needed adapters. This may not work properly in the cases

of systems supporting run-time substitutions of services as the substitutions could have

not be foreseen in advance.

Automated approaches try to solve this issue by generating adapters that are in-

ferred from specifications associated to services. Many of these approaches are based

on the use of ontologies. Among the others, our previous work [5] and [10] exploit a

domain ontology (specified in SAWSDL1) to annotate service interfaces. At run-time,

when a service bound to a composition needs to be substituted, a software agent gener-

ates a mapping by parsing the ontological annotations in the interfaces. SCIROCO [11]

offers similar features focusing on stateful services. It requires all services to be an-

notated with both a SAWSDL description and a WS-ResourceProperties2 document,

which represents the state of the service. When an invoked service becomes unavail-

able, SCIROCO exploits the SAWSDL annotations to find a set of candidates that ex-

pose a semantically matching interface. Then, the WS-ResourceProperties document

associated to each candidate service is analyzed to find out if it is possible to bring the

candidate in a state that is compatible with the state of the unavailable service. If this

is possible, then this service is selected for replacement of the one that is unavailable.

All of these three approaches offer full run-time automation for service substitution, but

can address only those mismatches that concern data and operation names while they

disregard those concerning the interaction protocol.

An approach that generates adapters covering the case of interaction protocols mis-

matches is presented in [12]. It assumes to start from a service composition and a service

behavioral description both written in the BPEL language [13]. These are then trans-

lated in the YAWL formal language [14] and matched in order to identify an invocation

trace in the service behavioral description that matches the one expected by the service

composition. The matching algorithm is based on graph exploration and considers both

control flow and data flow requirements.

The approach presented in [15] offers similar features and has been implemented in

an open source tool.3 While both these approaches appear to fulfill our need for sup-

porting interaction protocol mapping, they may present some shortcoming in terms of

performances due to the high cost of exhaustive graph exploration algorithms that could

prevent their usage in on-the-flymapping derivation.While no data about performances

are available for the approach in [12], we could exploit the tool offered by [15] to verify

our guess. As discussed in Section 6, the processing time required by the tool is remark-

ably high in complex cases. Our goal is, therefore, to exploit some alternative technique

to significantly improve these performances.

3 Motivating example

To motivate our work we refer to an example based on some significant conversational

services available on the Internet. Our example application is a photo management tool

1 http://www.w3.org/2002/ws/sawsdl/
2 http://docs.oasis-open.org/wsrf/wsrf-ws resource properties-1.2-spec-os.pdf
3 http://sourceforge.net/projects/dinapter



4 Luca Cavallaro, Elisabetta Di Nitto, and Matteo Pradella

designed for working on a mobile phone. A user can take some photos with his mobile,

upload them to the web, and share them with his friends using an external service.

The tool expects to interact with the Flickr service4. Flickr makes available to its

users a space where to upload photos and a REST[16] service to access it. Photos can

have assigned one of the following levels of visibility: public, private, and family, where

the latter lets only some members see the photos uploaded by a user. Once the user has

uploaded some photos the service lets him group (part of) them in sets. Of course it is

always possible to change the visibility of a photo or of a set.

Flickr is not the only service offering a photo repository. Another analogous service

is called Picasa5. Flickr and Picasa are equivalent in a broad sense, but analyzing their

interfaces in more detail some differences emerge. In particular,Picasa does not support

the upload of photos if they are not grouped in a set. For this reason a user should first

create a set and then upload pictures directly into the created set. In addition, while

Flickr identifies three levels of visibility for photos and sets, Picasa only supports two

(private and public) and, given the central role of sets, associates these levels only to

sets and not directly to photos. Of course, other differences concern the names and the

parameters of the equivalent operationsmade available by the two services. For instance

the operation addToSet of Flickr and the operation createPhoto of Picasa both add a

photo to a set, but they show different names and accept different input parameters

(Tables 1 and 2 summarize the Flickr and Picasa operations we focus on.

Even if our photo management tool is built to be used with Flickr, many users may

be subscribed to Picasa or to any other popular photo sharing service. In order to allow

them to use any of these alternative services, either we hardcode in our tool the in-

structions to interact with any possible service, or we build a mapping mechanism that

handles the mismatches on our behalf. Such mapping mechanism could state, for exam-

ple, that the sequence of Flickr operations uploadPriv, addToSet, makeSetPubmaps on

the following sequence of Picasa operations: createPublicSet and createPhoto, which

can therefore be invoked to obtain the required behaviour. The approach we discuss in

this paper is focusing specifically on how to automatically and efficiently infer such

kinds of mapping without or with limited human intervention.

4 Adaptation approach: overview

In order to describe possible differences that can arise between an abstract and a con-

crete service we need to define our model of a service. A service can be described as a

Labeled Transition System (LTS) characterized by tuple P = (S, O, τ), where:

– S is the set of states the service can go through.
– O is the set of operations that can be invoked on the service together with the

corresponding parameters. In formal terms, this is the input alphabet of the LTS.
– τ is the transition function τ : S × O → 2S that describes how the service can

evolve from state to state when operations are invoked. 2s indicates that the transi-

tion function can non-deterministically lead the service to different states depend-

ing on the context (e.g., a state representing a correct functioning of the service

4 http://www.flickr.com/services/api/
5 http://code.google.com/apis/picasaweb/overview.html



An Automatic Approach to Enable Replacement of Conversational Services 5

Operation name Parameters Return value Description

uploadPub
photo

success Uploads a photo with public visibility
photoName

uploadPriv
photo

success Uploads a photo with private visibility
photoName

uploadFam
photo

success Uploads a photo with family visibility
photoName

makePhotoPub photoName Makes a photo visibility public
makePhotoPriv photoName Makes a photo visibility private
makePhotoFam photoName Makes a photo visibility family

addToSet
albumName success Adds a previously uploaded photo to a
photoName (new or existent) set

makeSetPub albumName Makes a set visibility public
makeSetPriv albumName Makes a set visibility private
makeSetFam albumName Makes a set visibility family

Table 1. A subset of Flickr operations and required data.

Operation name Parameters Return value Description

createPublicSet albumName success Creates a photo set with public visibility
createPrivateSet albumName success Creates a photo set with private visibility

createPhoto
albumName

success Uploads a new photo and adds it to an existent setphotoName
photo

makePub albumName Makes a set visibility public
makePriv albumName Makes a set visibility private

Table 2. A subset of Picasa operations and required data.

can be reached only after the user has been identified, otherwise an error state has

to be reached), or on possible service failures (e.g., when an a timeout expires the

corresponding transition leads to an error state).

Each operation o ∈ O is a triple 〈name, in, out〉, where name is the operation name,

in and out are possibly empty multisets of data the operation requires as input and

returns as output, respectively. A datum is a triple 〈name, type, value〉. name is the

name of the datum, type is the type of the datum and value is the value that the datum

assumes.

Given an abstract and a concrete service, we say that a mismatch occurs when an

operation request expressed in terms of the abstract interface cannot be understood by

the concrete service that should handle it. We distinguish between two mapping classes:

– Interface-level mismatches concern differences between names of operations ex-

posed by an abstract and a concrete service and parameters of these operations.

– Protocol-level mismatches concern differences in the order the operations offered

by an abstract service and by its concrete representation are expected to be invoked.

As discussed in Section 2, interface-level mismatches have been threated in the litera-

ture and addressed either through methodological approaches involving human design-

ers [9] or through automatic approaches able to reason in the presence of some reference

ontology [10, 11]. Thus, we do not go into further details on this aspect and handle it by

exploiting the approach we reported in [5].



6 Luca Cavallaro, Elisabetta Di Nitto, and Matteo Pradella

Protocol-levelmismatches are those wewant to focus on in this paper. As mentioned

before, they apply to stateful conversational services for which the sequence in which

operations are invoked matters. In this case, we can distinguish between the following

classes of mismatches:

– One to one binding: an operation in the abstract service has a direct counterpart

in the concrete service that can replace it. This case is addressed directly as an

interface-level mismatch and therefore is not further considered in this paper.
– One to many binding: an operation in the abstract service does not have a direct

counterpart in the concrete service but it can be mapped into two or more of its

operations.

– Many to one binding: two or more operations in the abstract service do not have

a direct counterpart in the concrete services, but, all together, can be mapped into

one operation of the concrete service.
– Many to many binding: a sequence of operations on the abstract service can be

mapped into a different sequence of operations on the concrete service.

Our aim is to focus on the general case of many to many binding and, based on it,

deal also with the simpler cases. In particular, we aim at defining mapping scripts that

contain histories which associate sequences of operations on the abstract services into

sequences of operations on the corresponding concrete services.

At runtime, the mapping scripts are interpreted by adapters that are then able to in-

voke concrete services thus overcoming their mismatches with respect to the abstract

services. Figure 1 shows the main components of our runtime infrastructure. Also, it

shows how these components interact when a service composition tries to call a se-

quence of operations of an abstract service S1 and this sequence is then translated into

a sequence of operations on a concrete service S2 that shows a different interaction

protocol. The sequence of calls from the composition is intercepted by a proxy that

passes it to an adapter. This last one, by interpreting the mapping script, translates it

into a sequence of calls on S2 and returns the results back to the proxy. The runtime

infrastructure shown in the figure is part of the SCENE framework [17] that, thanks to

the intermediation of proxies, supports dynamic binding of services to a certain service

composition. SCENE has been originally designed under the hypothesis that all services

would exhibit identical interfaces or protocols. In our extension this limiting hypothesis

is overcome by the introduction of the adapter, a piece of software integrated in SCENE

proxy that supports mismatches solution by interpreting some mapping scripts. These

scripts can be manually provided by a system integrator, as described in [4], or can be

automatically generated by the proxy when the service to be bound to the composition

is selected. Next section provides details about automatic generation of mapping scripts.

5 Generation of adaptation scripts for protocol-level mismatches

In previous section we outlined how adaptation takes place once a mapping script is

provided. Building the script may be a hard task for humans and in [5] we proposed

an automated solution limited to interface level mismatches. In this section we focus on

protocol-levelmismatches and on how to build, possibly in an automatic way, a suitable

adaptation script.



An Automatic Approach to Enable Replacement of Conversational Services 7

Service Composition

1) Request for o1 on S1

Proxy

3) Requests for 

o1 and 02 on S1

4)Adapted Request for S2

Mapping

Script

S1 to S2: map

o1 and o2 on S1

to o1 on S2

Service 

S2

Service 

S1

5)Response from S2

6)Adapted Response 

from S2

7)Adapted 

Response 

from S2

Operations: o1, o22) Request for o2 on S1

Adapter Operation: o1

Input

Fig. 1. The adaptation process.

5.1 Problem statement

We assume to know for each service the following information:

– A table which associates to each service operation its input and output parameters.

For the example of Section 3 this information is represented by Tables 1 and 2.

– A description of the LTS model associated to the service. This is used to derive the

order in which service operations may be invoked. A human-readable version of

the LTS models of Flickr and Picasa is shown in Figures 2 and 3.

We make the hypothesis that both these pieces of information come as a service de-

scription that can be accessed and interpreted by both a human or a machine service

requestor as facets (see [18] for details). The protocol mapping between an abstract

and a concrete service assumes that two compatibility relationships have been previ-

ously defined. The first relationship states the compatibility between states of two LTS

models. The second relationship concerns the compatibility between name and data as-

sociated to some operation oabs ∈ Oabs in the abstract service and those associated

to some operation o′conc ∈ Oconc in the concrete service. For the sake of simplicity,

we assume in this paper that compatible states, operation names, and data have been

already identified someway (for instance, as described in [5]). For this reason, the triple

〈name, type, value〉 fully characterizing each datum is synthesized here only by the

name element.

Given these definitions and considering the LTS models Pabs and Pconc, referring,

respectively, to an abstract and concrete service, we say that, given a sequence of oper-

ations in Pabs (let us call it seqabs), leading from a state si
abs to some state s

f
abs, this can

be substitutable by another sequence of operations in Pconc, seqconc, provided that:

1. seqconc starts from a state si
conc compatible with si

abs and ends into a state sf
conc

compatible with s
f
abs. Note that LTSs may be non-deterministic: in this case the



8 Luca Cavallaro, Elisabetta Di Nitto, and Matteo Pradella

Fig. 2. A representation of the Flickr protocol.

constraint is that at least one of the ending states sf1

conc . . . sfa

conc of the concrete

service is compatible to one of the ending states s
f1

abs . . . s
fb

abs of the abstract service.

From now on we will assume, without loss of generality, that both the LTSs are

deterministic.

2. For all operations of seqconc, all data parameters are compatible with those appear-

ing in seqabs.

On this basis we can build a reasoning mechanism that, given some seqabs =
o1

abs . . . on
abs returns a sequence of operations seqconc = o1

conc . . . om
conc that can re-

place the first one according to the substitution relationship defined above. We use two

different reasoning strategies for identifying seqconc, depending on whether the compo-

sition execution environment supports a synchronous or an asynchronous request-reply

semantics for operation calls.

The synchronous semantics requires that in a sequence of operation calls not only

the operations are called in the required sequence, but also each operation call cannot

be performed before the previous one has returned its foreseen result. An example of

this semantics is offered by a BPEL sequence block. This mandates that the activities it

contains should be executed sequentially.

The asynchronous semantics does not prevent the execution of an operation call

even if the previous one has not returned the corresponding value yet, unless there

is an explicit dependency between the two in terms of input parameters required by

the operation to be started and output parameters produced by the previous operation.

Using again an example from BPEL, the asynchronous semantics can be mapped on a

flow block containing various invoke activities together with the corresponding receives.

In this case the BPEL executor interprets the flow block by spanning an independent

thread for each activity, still ensuring that each receive statement will be performed after



An Automatic Approach to Enable Replacement of Conversational Services 9

publicSet privateSet

publicNonEmptySet privateNonEmptySet

createPrivateSetcreatePublicSet

makePub

makePriv

createPhoto
makePub

makePriv

createPublicSet createPrivateSet

in i t

createPhoto

createPhoto
createPhoto

Fig. 3. A representation of the Picasa protocol.

the corresponding invoke, and, if dependent invokes are present, that their execution is

properly ordered as well.

The strategies adopted by the reasoning mechanism are then the following:

– Strategy 1 - Synchronous request-reply semantics. Given the initial state si
abs of the

abstract sequence seqabs and the corresponding compatible state in the concrete

LTS model si
conc, each transition departing from si

conc is considered as a candidate

to be the o1
conc operation in seqconc provided that all the data it requires as input can

be available at the time it will be executed, and the data o1
conc produces as output

include those expected by the consumer of o1
abs, if any. The same line of reasoning

is applied starting from any sx
conc until the state sf

conc is reached.
From the runtime perspective, this results in the fact that an operation oabs ∈ seqabs

can be invoked only if the previous one in the sequence has been completed, that is,

the corresponding counterpart in the concrete service has returned the proper value.
– Strategy 2 - Asynchronous request-reply semantics. Given the initial state si

abs of the

abstract sequence seqabs, the corresponding compatible state in the concrete LTS

model si
conc, and the final state s

f
abs, the transitions o1

conc...o
m
conc are considered as

possible candidate operations for seqconc provided that:
1. all the data each operation in seqconc requires as input are available at the time

the operation is executed;
2. all the data expected as output by operations in seqabs will be produced by the

operations in seqconc by the time sf
conc is reached.

At runtime, this implies that, given an invoked operation oabs ∈ seqabs which re-

turns some data, the next operation in sequence can be invoked without necessarily

waiting that the result of oabs has been provided. Consequently, any kind of binding

can be established from some operations o1
abs...o

n
abs ∈ seqabs into one or more op-

erations in seqconc, since, for every x ∈ [1, n] the service consumer may invoke an

operation ox+1

abs even if ox
abs has not returned yet. Of course this statement is valid

if ox+1

abs does not require any of the return parameter of ox
abs as input.

Intuitively, the synchronous semantics limits the kind of mismatches for which a solu-

tion can be found. In this situation, many to one and many to many bindings can be



10 Luca Cavallaro, Elisabetta Di Nitto, and Matteo Pradella

treated in the general case only if operations involved in the mismatch require no return

values. Consider for instance the example in Section 3. Given the trace: uploadPriv,

addToSet, makeSetPub departing from the init state on Flickr, there is no possibility to

build a mapping script allowing for the usage of Picasa in the synchronous case. In fact,

applying the synchronous request-reply semantics reasoning schema, the first operation

to be invoked on Picasa should accept as input a set of parameters included in those

provided to uploadPriv on Flickr, and should return at least all the parameters expected

in return by the same Flickr operation. Since all the operations outgoing from init on

Picasa require as input a albumName and this datum is not provided by uploadPriv, no

operation on Picasa is a valid candidate and, consequently, it is impossible to build a

mapping script.

In the case the asynchronous request-reply semantics schema is applied, a map-

ping can be identified. In fact, addToSet in seqabs can be invoked even if the opera-

tion call uploadPriv has not produced its return value yet as it does not have a direct

counterpart in seqconc. After addToSet is invoked, createPublicSet or createPrivateSet

in Picasa can be invoked as their input parameter (albumName) is available. Indeed,

both produce a success output, which is expected by the service requestor as output

of one of the invoked abstract operations. Assuming that createPublicSet is chosen for

invocation, there are two possible operations candidate for being part of the concrete

sequence: makePriv and createPhoto. Between those createPhoto is chosen because it

is the only operation that returns the second success output, which is expected by the

service requestor. This last operation leads Picasa into the publicNonEmpty state that is

compatible with final state of the abstract sequence, that is, publicSet.

From the above examples the reader should notice that both strategies are based

on the assumption that the substitution is totally transparent to the service consumer,

who invokes the abstract service operations, provides input data for those operations

and expects some return data from them. The invocations performed to the abstract ser-

vice operations are translated into invocations to concrete service operations: input data

provided by the consumer are used as input for the invoked concrete service operations

and return data provided by the invoked concrete operations are returned to the con-

sumer as needed. Any input parameter provided by the consumer is stored and can be

used as input for a concrete operation requiring it. When this happens the parameter is

removed from the storage. The same line of reasoning is valid for output parameters,

if we consider that they are provided by the concrete service and are returned to the

service consumer.

5.2 Implementation and practical issues

The reasoning mechanism has been formulated using the linear temporal logic lan-

guage TRIO [19]. Our model features some application-independent TRIO formulas

that represent the reasoning strategies as expressed in the previous section, and some

application-dependent formulas, which represent the interfaces and protocols of the ab-

stract and concrete services.

Given this model and an operations sequence seqabs, the approach formulates the

problem of finding a substitutable operation sequence seqconc. If this sequence exists,

a mapping script is generated. The script is executed by the adapter that, as shown in



An Automatic Approach to Enable Replacement of Conversational Services 11

Figure 1, receives the sequence of invocations that the service consumer expects to

perform and transforms them into invocations suitable for the concrete service.

We have chosen to implement the model of the reasoning mechanism using Zot6, an

agile and easily extensible bounded model- and satisfiability-checker. In general, Zot

returns a history (i.e., an execution trace of the specified system) which satisfies the

given model. The history contains a finite number of steps, each one consisting of a

possible configuration of the system.

In our approach the history returned by Zot is a mapping script that is then passed

as input to the adapter (see Section 4 for details). Each history step contains the state

in which each one of the analyzed LTS (the ones of the abstract and concrete services)

is, the operations in seqabs and in seqconc that should be invoked in that step, and the

exchanged data, if any. In the current implementation, we make the hypothesis that at

most one operation in seqabs and at most one in seqconc can be executed at each history

step.

Consider again the operations uploadPriv, addToSet, makeSetPub as seqabs depart-

ing from the init state on Flickr. Let us assume an asynchronous semantics and specify

as compatible the init states of the two services and the states publicSet of Flickr and

publicNonEmptySet of Picasa. In this case, a possible history returned by Zot is re-

ported in Table 3. In the first two steps the history only reports invocations on Flickr.

This means that the adapter only expects to receive invocations from the service con-

sumer and to keep trace of provided inputs and required outputs. On step 3 there are

enough data to invoke the operation createPublicSet on Picasa. The adapter performs

the invocation on the concrete service, uses as input for that invocation the albumName

stored in memory, and removes the parameter from storage. The success value returned

by this operation is forwarded to the service consumer. On step 4 the history reports

again an invocation on Flickr. In this case the adapter behaves exactly as in steps 1 and

2. Finally on step 5 the history mandates the invocation on Picasa of the operation cre-

atePhoto and on step 6 Flickr is in a state publicSet, considered final for the considered

sequence and Picasa is in a state compatible to publicSet.

6 Evaluation

The experiments were conducted to prove the effectiveness in solving protocol level

mismatches and the performance of the approach both as an interactive and on-line

solution to determine feasible mappings7. In particular, we conducted two classes of

experiments.

– We ran experiments with Flickr and Picasa trying to map various abstract se-

quences into some concrete ones in order to see if the approach was behaving as

expected in terms of the identification of correct mappings.

– We compared the performance of our approach with the one shown by a similar

approach found in the literature [15].

6 Zot can be downloaded from http://home.dei.polimi.it/pradella
7 The input set of experiments is available at http://home.dei.polimi.it/cavallaro/evaluation-

experimentsInputs.zip



12 Luca Cavallaro, Elisabetta Di Nitto, and Matteo Pradella

Step History Content

1

FlickrState = init; FlickrInvoke = uploadPriv

FlickrInput = photo, photoName; FlickrOutput = success

PicasaState = init

2

FlickrState = privatePhoto; FlickrInvoke = addToSet

FlickrInput = albumName, photoName; FlickrOutput = success

PicasaState = init

3

FlickrState = privateSet

PicasaState = init; PicasaInvoke = createPublicSet

PicasaInput = albumName; PicasaOutput = success

4

FlickrState = privateSet; FlickrInvoke = makeSetPub

FlickrInput = albumName

PicasaState = publicSet

5

FlickrState = publicSet

PicasaState = publicSet; PicasaInvoke = createPhoto

PicasaInput = photo, photoName, albumName; PicasaOutput = success

6
FlickrState = publicSet

PicasaState = publicNonEmptySet

Table 3. An history generated for the seqabs = uploadPriv, addToSet, makeSetPub.

All the experiments had the goal of exploring the possibility for our tool to derive

(whenever possible) correct mappings between an abstract and a concrete service. The

experiments were conducted on a 2.5 Ghz Intel Core2 duo machine, equipped with 4

GBytes of memory, running Linux. The Common Lisp compiler used for running Zot

was SBCL, version 1.0.18.

The main inputs used in each experiment have been: a) the LTSs of the abstract ser-

vice and the candidate concrete service b) the associations between service operations

and their inputs and outputs; c) the compatibility relationship between the operation

names and parameters of the abstract and concrete services; and d) a possible seqabs.

The results obtained by the experiments have been a possible seqconc in the cases this

could have been identified by the tool as well as information about the time needed by

the tool to produce a result or to signal the impossibility of producing it.

As additional input, since Zot is based on a SAT-solver, it is necessary to set the

size k of the periodic temporal structure on which the verification is performed. In

this case, all the periodic behaviors of the system, with period up to k are considered

by the tool. The identification of a proper value for k is always a critical issue when

exploiting a SAT-solver. High values for k usually imply long execution times for the

tool while small values may result in the fact that the tool is not able to find a solution

that would have been identified if the considered temporal structure was longer. Our

approach is essentially based on constructing the product of the abstract and concrete

LTSs, hence the upper bound for non-cyclic behaviors is nsabs · nsconc − 1, where
nsabs and nconc are the number of states of the LTS models of the abstract and concrete

services, respectively. In practice, we empirically found that in most of the cases a good

estimate for k is ns = nsabs +nsconc. With k = 2ns we were able to find solutions for

every considered case. Therefore the algorithm first tries with k = ns, then considers



An Automatic Approach to Enable Replacement of Conversational Services 13

Time (s)

Uploaded photos Sequence length ns ns 2ns 3ns 4ns

1 3 12 0.59 1.87 3.72 5.80

2 6 12 0.59 1.94 4.06 7.32

3 9 12 0.55 1.81 4.14 7.35

4 13 12 0.55 1.86 4.82 7.72

Table 4. Results for the experiments on examples in Section 3.

k = 2ns, and so on, keeping nsabs · nsconc as an upper bound. In the experiments we

considered four possible values for k: 2ns, 3ns, and 4ns, to see how the tool speed is

affected by increasing bounds.

Experiments with Flickr and Picasa We ran the tool starting from the Flickr abstract

sequence we have used through this paper. Moreover, we have complicated it consider-

ing the case in which up to 4 pictures are uploaded (this results in the fact that the oper-

ations uploadPriv and addToSet are called more than one time. The results are reported

in Table 4. We started with a bound k = ns = 12. In the first two cases reported in the

table (upload of one and two pictures) we succeeded in determining a sequence with

ns, while in the last two cases we needed to use k = 2ns. The overheads introduced to

produce a working mapping script are between 0.59 and 1.86 seconds. This makes the

approach suitable for both on-line and off-line use at least in this specific case. The his-

tories produced by Zot were analyzed by a human to prove their correctness and were

executed by the adapter as mapping scripts. The performed tests succeeded in using

Picasa in place of Flickr.

Comparison with [15] We compared our technique with the one presented in [15] and

summarized in Section 2. The tool is called Dinapter, and its package contains several

examples of abstract and concrete services. We took some of the most significant ones

and used them both with Dinapter and Zot.

In the original example, the tested services were all described using abstract BPEL.

They contain branches, loops and non-determinism. In order to use them with our tool

we translated the abstract BPEL description into LTS using the following criteria:

– For what concern the BPEL descriptions representing sequences of calls, we con-

sidered invoke activities as operation invocations, and receive activities associated

with invocations and featuring parameters as responses to the invoked operations.

– For BPEL description representing service interfaces, we considered receive activ-

ities as invocation expected by the service, and invoke operations featuring param-

eters and associated with the receives as issued responses.

– We considered those activities included in a BPEL sequence block as having a

synchronous semantics.

The results of the comparison are reported in Table 5. In each row, the name of the

example taken from the test set bundled with Dinapter is reported. The time needed



14 Luca Cavallaro, Elisabetta Di Nitto, and Matteo Pradella

to run Dinapter (third column) is the one we calculated by executing the tool on our

reference machine. The other times in the last four columns are those referred to our

tool with the temporal structure bound k set to the first four multiples of ns, i.e., the

sum of the abstract and concrete LTSs states.

[15] Our approach (Time (s))

Example name ns Time (s) ns 2ns 3ns 4ns

e001-ftp-tiny 6 1.4 0.06 0.34 0.54 0.9

e002-ftp-small 8 30.65 0.11 0.53 0.95 1.54

e002c-ftp-small 7 37.15 0.12 0.39 0.81 1.30

e003-ftp-full 8 Out of memory 0.17 0.26 0.48 0.75

e004-wich-Pick 10 45.10 0.75 2.37 4.81 8.60

e005-start-Switch 8 51.05 0.53 1.62 2.87 4.45

e010-Pick-Pick 12 6.01 0.64 2.09 3.51 7.03

e013-deceptive-Pick 12 54.90 0.68 2.01 3.47 6.95

e017-2Switch-2Pick-carry 10 Out of memory 0.34 0.91 1.92 3.49

vod-1 8 14.41 0.09 0.23 0.71 1.10

Table 5. Results of the comparison with [15].

Our approach was able to find a solution in every case with the bound estimated

as ns and with an execution time shorter than 1 second (clearly the time increases

for higher values of the bound). This, again, is promising for on-line use of the tool.

Moreover, our approach outperformed Dinapter that in some cases has not been able

to terminate with success because of out of memory problems. The output sequences

produced by Zot were inspected by a human to verify correctness and, in those cases

in which Dinapter was able to produce a result, were compared with those produced by

Dinapter and found out to be equivalent.

7 Conclusion

In this work we presented an approach to identify an interaction protocol mapping be-

tween compatible conversational services. The mapping is deduced by using Zot, a

recent, efficient model checker based on a SAT-solver.

We validated our technique by considering two real-life services, Flickr and Pi-

casa, obtaining both correct protocol mappings between the two and good performance.

Moreover, we compared our approach with Dinapter [15] on some significant cases that

have been made available together with this last tool. Zot outperformed Dinapter in all

cases, with times suitable for on-line application of the technique. The research work is

currently ongoing and disregards some important aspects that need to be considered for

successful service replacement. Currently we analyzed only services featuring conver-

sations that can be represented by LTSs, while some real world cases need more power-

ful formalisms (e.g. services featuring branches executed in parallel, services featuring



An Automatic Approach to Enable Replacement of Conversational Services 15

not only a conversational state but also an internal state). Finally services are usually

invoked in complex processes that may feature a state or transactional support. Conse-

quently service substitution may require house keeping work of the running processes.

Thus, as future work we plan to extend our approach to allow consistent substitution of

stateful and transactional services.

References

1. L. Baresi, E. D. Nitto, and C. Ghezzi, “Toward open-world software: Issue and challenges,”

IEEE Computer, vol. 39, no. 10, pp. 36–43, 2006.

2. K. Verma, K. Gomadam, A. P. Sheth, J. A. Miller, and Z. Wu, “The METEOR-S approach

for configuring and executing dynamic web processes,” University of Georgia, Athens, Tech.

Rep., June 2005.

3. V. D. Antonellis, M. Melchiori, L. D. Santis, M. Mecella, E. Mussi, B. Pernici, and P. Ple-

bani, “A layered architecture for flexible web service invocation,” Software Practice and

Experience, vol. 36, no. 2, pp. 191–223, 2006.

4. L. Cavallaro and E. Di Nitto, “An approach to adapt service requests to actual service inter-

faces,” in In Proceedings of SEAMS, 2008.

5. L. Cavallaro, G. Ripa, and M. Zuccalà, “Adapting service requests to actual service interfaces

through semantic annotations,” in In Proceedings of PESOS, 2009.

6. O. Moser, F. Rosenberg, and S. Dustdar, “Non-intrusive monitoring and service adaptation

for WS-BPEL,” in In Proceedings of WWW, 2008.

7. R. Mateescu, P. Poizat, and G. Salaün, “Adaptation of service protocols using process algebra

and on-the-fly reduction techniques,” in In Proceedings of ICSOC, 2008.

8. M. Dumas, M. Spork, and K.Wang, “Adapt or perish: Algebra and visual notation for service

interface adaptation,” in In Proceedings of BPM, 2006.

9. Hamid R. Motahari Nezhad, B. Benatallah, A. Martens, F. Curbera, and F. Casati, “Semi-

automated adaptation of service interactions,” in In Proceedings of WWW ’07, 2007.

10. C. Drumm, “Improving schema mapping by exploiting domain knowledge,” Ph.D. disserta-

tion, Universitat Karlsruhe, Fakultat fur Informatik, 2008.

11. M. Fredj, N. Georgantas, V. Issarny, and A. Zarras, “Dynamic service substitution in service-

oriented architectures,” in In Proceedings of SERVICES, 2008.

12. A. Brogi and R. Popescu, “Automated generation of BPEL adapters,” in In Proceedings of

ICSOC, 2006.

13. “WS-BPEL specification,” http://www.oasis-open.org/committees/tc home.php?wg abbrev=wsbpel.

14. W. M. P. van der Aalst and A. H. M. ter Hofstede, “Yawl: yet another workflow language,”

Information Systems, vol. 30, no. 4, pp. 245–275, 2005.

15. J. A. Martı̀n and E. Pimentel, “Automatic generation of adaptation contracts,” in Proceedings

of FOCLASA, 2008.

16. R. T. Fielding, “Architectural styles and the design of network-based software architectures,”

Ph.D. dissertation, 2000, chair-Taylor, Richard N.

17. M. Colombo, E. Di Nitto, and M. Mauri, “Scene: A service composition execution environ-

ment supporting dynamic changes disciplined through rules.” in In Proceedings of ICSOC,

2006.

18. M. Colombo, E. Di Nitto, M. D. Penta, D. Distante, and M. Zuccalà, “Speaking a common

language: A conceptual model for describing service-oriented systems,” in In Proceedings

of ICSOC, 2005.

19. C. Ghezzi, D. Mandrioli, and A. Morzenti, “Trio: A logic language for executable specifica-

tions of real-time systems,” Journal of Systems and Software, vol. 12, no. 2, 1990.


