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Abstract

Several old and recent classes of picture grammars, thiatugdy extend context-free
string grammars in two dimensions, are based on rules thaiteearrays of pixels.
Such grammars can be unified and extended using an apprdaetehy the right part
of a rule is formalized by means of a finite set of permitteettilWe focus on a simple
type of tiling, namedegional and define the corresponding regional tile grammars.
They include both Siromoney’s (or Matz’s) Kolam grammard #reir generalization
by Priisa, as well as Drewes’s grid grammars. Regionafipee pictures can be rec-
ognized with polynomial-time complexity by an algorithntexding the CKY one for
strings. Regional tile grammars and languages are stifotlpyded into our previous
tile grammars and languages, and are incomparable with iB&nesi-Restivo tiling
systems (or Wang systems).

Key words: picture language, tiling, picture grammar, 2D languageYG#gorithm,
syntactic pattern recognition

1. Introduction

Since the early days of formal language theory, considersdsiearch effort has
been spent towards the objective of extending grammar baspaches from one
to two dimensions (2D), i.e., from string languages to pietianguages. Several ap-
proaches have been proposed (and sometimes re-proposkéd)dourse of the years,
which in different ways take inspiration from regular exggi®ns and from Chomsky’s
string grammars, but, to the best of our knowledge, no géokassification or detailed
comparison of picture grammars has been attempted. Itrigofaay that the immense
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success of grammar-based approaches for strings, e.gmipiletion and natural lan-
guage processing, is far from being matched by picture gramnSeveral causes for
this may exist. First, the lack of broadly accepted refeeanodels has caused a disper-
sion of research efforts. Second, the algorithmic compfexd parsing algorithm for
2D languages has rarely been considered, and very few effaligorithms, and fewer
implementations, exist. Last, but not least, most gramyped have been invented by
theoreticians and their applicability in picture or imageqessing remains to be seen.

We try to remove, or at least to partially offset, the first teauses, thus hoping to
set in this way the ground for applied research on picturengrars. First, we outline
how several classical models of picture grammars basedrag sewriting rules can
be unified by a tiling based approach. A typical rewritingeregéplaces a pixel array,
occurring in some position in the picture, by a right partjchlis a pixel array of equal
size. Each grammar type considers different forms of révgitules, that we show
how to formalize using more or less general sets of tiles.nThe& focus on a simple
type of tile sets, those akgional tile grammars This new class generalizes some
classical models, yet it is proved to permit polynomialginrecognition of pictures by
an approach extending the classical Cocke-Kasami-Youi@€Y) algorithm [2] of
context-free (CF) string languages.

From the standpoint of more powerful grammar models, regitite grammars
correspond to a natural restriction of our previdiles (rewriting) grammars(TG) [3,
4]. For such grammars, a rule replaces a rectangular ared filith a nonterminal
symbol with a picture belonging to the language defined byeazifipd set of tiles over
terminal or nonterminal symbols. It is known that the TG figndiominates the family
of languages defined by thiéing systemgTS) of Giammarresi and Restivo [5] (which
are equivalent to Wang systems [6][7]), and that the latieN&#P-complete with respect
to picture recognition time complexity. The new model enésrthe constraint that the
local language used to specify the right part of a rule is madassembling a finite
number of homogeneous rectangular pictures. Such tilingléged to Simplot’s [8]
interesting closure operation on pictures.

Regional tile grammars are then shown to dominate othermamtypes. The first
is the classical Kolam grammar type of Siromoney [9] (whialits context-free form,
is equivalent to the grammars of Matz [10]); it is less gehbezause the right parts
of grammar rules must be tiled in ways decomposable as aédi@ horizontal con-
catenations. Three other grammar families are then showae tess generaPriisa’s
type[11], grid [12], andcontext-free matrix grammafd3]. The language inclusion
properties for all the above families are thus clarified.

The presentation continues in Section 2 with preliminarfynitéons, then in Sec-
tions 3 and 4 with the definition of tile grammars, their regibvariant, and relevant
examples. In Section 4.1 we present the parsing algorithanpaove its correctness
and complexity. In Section 5 we compare regional tile gramsnaad languages with
other picture language families. The paper concludes byrsanming the main results.

2. Basic definitions

The following notation and definitions are mostly from [14idH3].



Definition 2.1. LetX be a finite alphabet. A two-dimensional array of elements isf
a picture overz. The set of all pictures ovéris X**. A picture language is a subset of
pans

For h,k > 1, =™ denotes the set of pictures of s{bek) (we will use the notation
Ipl = (h,K), |plrow = h, Iplcol = K). #¢ X is used when needed adbaundary symbolp
refers to the bordered version of picture p. That is, for B"9, it is

# # # #

p(1,1) ... p(L,k) # p1l,1) ... p(Lk #

p= ¢ p=:
pth,1) ... p(hk) # p(h1) ... phk #

# # # #

Apixelis an element {, j) of p. If all pixels are identical to G X the picture is called
C-homogeneousr C-picture.

Row and column concatenatioae denoted and®, respectively. pqis defined
iff p and g have the same number of columns; the resultingugids the vertical
juxtaposition of p over q. i is the vertical juxtaposition of k copies of pis the
corresponding closureD,*? ,*® are the column analogous.

Definition 2.2. Let p be a picture ovex. Thedomainof a picture p is the setom(p) =
{1,2,...,1Plrow! X{1,2,...,|Plcot}- Asubdomairof dom(p) is a set d of the fornmix, x +
L., XIx{y,y+1,....y}wherel < X< X < |Plrows L <Y <Y <|plco. We will often
denote a subdomain by using its top-left and bottom-rigbtdimates, in the previous
case the quadruplée y; X, y).

The set of subdomains of p is denotggpPLetd= {x,..., X} x{y,...,y} € D(p),
the subpicturespic(p, d) associated to d is the picture of sipg — x+ 1, y —y+ 1)
suchthatvi € {1,...,X —=x+1}andVj e {1,...,y —y+1}, spic(p, d)(i, j) = p(x+i-
Ly+j-1).

A subdomain is called C-homogeneous (or homogeneous) vehassbciated sub-
picture is a C-picture. C is called tHabelof the subdomain.

Two subdomainsd= (ia, ja; Ka, la) @and d, = (ip, jp; kb, |p) are horizontally adjacent
(resp. vertically adjacentiff j, = I3 + 1, and lg > i, kq > ip (resp. j, = ky + 1, and
Ib > ja, la = jb). We will call two subdomains adjacent, if they are eithettically or
horizontally adjacent.

The translationof a subdomain d= (x,y; x',y’) by displacemenfa,b) € Z? is
the subdomaind= (x + a,y+ b; X + a,y + b). We will write d = d & (a,b). We
will also sometimes apply to a set W of subdomains, meaning the set containing the
translations of all the elements of W.

Definition 2.3. Ahomogeneous partitiasf a picture p is any partitionr = {d, do, ..., dn}
of dom(p) into homogeneous subdomainsad, . . ., dn.

The unit partition of p, writtenunit(p), is the homogeneous partition dbm(p)
defined by single pixels.

An homogeneous partition is calletiongif adjacent subdomains have different
labels.



We observe that if a picturp admits a strong homogeneous partition of dpjn(
into subdomains, then the partition is unique and will beaded byTI(p).
To illustrate, in Figure 2 are depicted pictures with owttinrborders of subdomains.
The marked partitions of the last two pictures are homogesbot not strong, because
some adjacent subdomains hold the same letter.

We now introduce the central conceptditd, andlocal language

Definition 2.4. We calltile a square picture of size (2,2). We denote]pj the set of

all tiles contained in a picture p.

LetX be afinite alphabet. A (two-dimensional) language E** is localif there exists

a finite set) of tiles over the alphabét U {#} such that L= {p € ** | [f] C 6}. We
will refer to such language as LQ@).

Locally testable languages the strict sense (LT) are analogous to local languages,
but are defined through square tiles with side possibly bigfgen 2. In the rest of the
paper we will call these variants of tildstiles, to avoid confusion with standa@ix 2
tiles. For instance, 3-tiles are square pictures of siz&8)3,

Last, we defindiling systemgTS). Tiling systems define the closure w.r.t. alpha-
betic projection of local languages, and are presentedtadiesl extensively in [14].

Definition 2.5. A tiling system(TS) is a 4-tuple/” = (X, T, 6,x), whereX andT are
two finite alphabets] is a finite set of tiles over the alphaldét {#}, andx : T — X is
an alphabetic projection.

The language defined by the tiling systéngin the rest of the paper denoted b{/L))
is the set of picturest(p) | p € LOC(6)}.

3. Tile grammars

We are going to introduce and study a very general grammar $ppcified by a
set of rewriting rules (or productions). A typical rule hake#t and a right part, both
pictures of unspecified but equal (isometric) size. Thepaft is anA-homogeneous
picture, wheréA is a nonterminal symbol. The right part is a picture of a |daafjuage
over nonterminal symbols. Thus a rule is a scheme definingsailply unbounded
number of isometric pairs: left picture, right picture. kidition there are simpler rules
whose right part is a single terminal.

The derivation process of a picture starts frorf§(@xiom)-homogeneous picture.
At each step, a\-homogeneous subpicture is replaced with an isometricigabf
the local language, defined by the right part of a ile> .. .. The process terminates
when all nonterminals have been eliminated from the cupettre.

For simplicity, this presentation focuses on nonterminés, thus excluding for
instance that both terminal and nonterminal symbols areénsame right part. This
normalization has a cost in terms of grammar dimension aadadgility, but does not
lose generality. Indeed, more general kinds of rules (eékg.those used in [3]), can
be easily normalized by introducing some auxiliary nonieats and rules. We will
present and use analogous transformations when compaitingther grammar de-
vices in Section 5, where we will talk abowdnterminal normal forms



Definition 3.1. Atile grammar (TG)s a tuple(Z, N, S, R), whereX is a set oterminal
symbols, N is a set afonterminakymbols, S N is thestarting symbqlR is a set of
rules

Let Ae N. There are two kinds of rules:

Fixed size: A—t, whereteZX; (1)
Variable size: A— w, wis asetof non-concave tiles overN#.  (2)

Concauve tilesare like:

B B
C B

or a rotation thereof, wherB # # (so we use tiles having this structure only for bor-
ders). It is easy to see that all picturesli®C(w), wherew is a set of non-concave
tiles, admit a strong homogeneous partition.

Picture derivation is next defined as a relation betweeritjgared pictures.

Definition 3.2. Consider a tile grammar G= (Z,N,S,R), let p p’ € (Z U N)®X pe
pictures of identical size. Let = {d;, ..., dy} be a homogeneous partition ddm(p).
We say tha(p’, 7’) derives in one steffom (p, z), written

(p,7) =6 (P, 7")

iff, for some Ae N, there exist int an A-homogeneous subdomajn=d(x,y; x,Y’),
called application areaand a rule A— « € R such that pis obtained substituting
spic(p, di) in p with:

e v e, if A— aisoftype (1)
e se LOC(a), if A — ais of type (2).

Moreovern’ = (7 \ {di}) U (II(s) & (x— 1,y — 1)).

We say thafp’, n") derives from p, ) in n steps, writter{p, 7) _£>G (p/, ), iffp=p
andr = n/, when n= 0, or there are a picture p and a homogeneous patrtition
n” such that(p, r) n=_l>G (p”, 7"y and(p”,n"”) =¢ (p’,7’). We use the abbreviation
(p,7) _i>G (p’, n’) for a derivation with a finite number of steps.

Roughly speaking, at each step of the derivatiorA@momogeneous subpicture is
replaced with an isometric picture of the local languagéingd by the right part of a
rule A — «, that admits a strong homogeneous partition. The procasgtates when
all nonterminals have been eliminated from the currenupéct

In the rest of the paper, and when considering also othermetioal devices, we

will drop theG symbol when it is clear from the context, writing e.@, £) = (p', 7).

Lin this casex = X andy = y'.



Definition 3.3. Thepicture languagédefined by a grammar G (written(G)) is the set
of pe £** such that

(S™. (dom(p)}) = (p. unit(p))

For short we also write S5g p.

We emphasize that, to generate a picture of a certain dimensne must start
from a picture of the same dimension.

We also will use the notatioff(X) to denote the class of languages generated by
some formal devic, e.g. L(T G) will denote the class of languages generated by tile
grammars.

The following examples will be used later for comparing laage families.

Example 1. One row and one column dfs.

The set of pictures having one row and one column (both ndteaborder) that hold
b’s, and the remainder of the picture filled with a’s is defibdhe tile grammar @in
Figure 1, where the nonterminals af8;, Az, Az, As, V1, Vo, Hy, Ha, X, A, B}. We recall

[ # # # # # # #]
# AL AL Vi A A #
# AL AL Vi A A #
Gi: S— # Hy Hy Vi H, H, #
# A As Vo Ay A #
# Aa As Vo Ay A #
| # # # # # # #
# # # #
# X X # # # # #
A-ll# A A #| 1|l # X X #|,forl<i<4a
# A A # # # # #
# # # #
# # # # # # # # # #
X - # A X X # |a; Hi — # B H H # b, forl<i<2
# # # # # # # # # #
# # #
# B #
A—-a B-b Vi-» || # V, # | |bforl<i<2
# OV, #
# # #
a a b a a
|b b b b b
PP=l2 a b a a
a a b a a

Figure 1: Tile gramma; (top) and a pictureg; (bottom) of Example 1.

that [ ] denotes the set of tiles contained in the argument pictulleis fotation is



preferable to the listing of all tiles, shown next:

S—>{## # # AL Vi ||V A Ar A4 A4#}

# A AL Al 77| HL Va|{Vi H ("7 # # | # #

An example of derivation is shown in Figure 2, where pantisi@are outlined for read-
ability.

SSSS9 [AANIAA
SSSSY [HHiMViH,H,
SSSSST A AV A As
SSSSS |AsAsVIA A

AL AL V4 A Ay AL AL VA A
Hi Hi Vi{Hy Hy Hi Hi Vi{Hy Hp
= = =

X X V4 A4 Ay A XV A A

Az Az|Vo Ag Ay Az Az Vo Ay Ay
AL ALV As Ay AL AL V4l Ay Ay ajlalblala
:>H1H1V1H2H2 :>H1H1V1H2H2 Ay b|{b|b|b|b
AlaVi A A a [alViAL A, alalblala
A3A3V2A4A4 A3A3V2A4A4 ala|blala

Figure 2: Derivation using gramm@ of Example 1, Figure 1, with outlined partitions.

Example 2. Pictures with palindromic rowsEach row is an even palindrome over
{a, b}. The grammar Gis shown in Figure 3.

# # # #
# R R # # # # #
Gy: Sp— || # Sp Sp # || ||| # R R #
# Sp Sp # # # # #
# # # #
# # # # # # # # # # # #
R—-||# A R R A #|||# B R R B #
# # # # # # # # H O# # #
# # # # # # # #
R->||# A A #||||# B B #
# # # # # # # #

A—a B—-b A —a B —h

P2 =

D T D
L O T
D T
D T D

Figure 3: Tile grammag; (top) and a picturgy, (bottom) of Example 2.



3.1. Properties of tile grammars

First, we state a language family inclusion between tilipgtsms (Definition 2.5)
and tile grammars, proved in [3]. We will illustrate it witim @xample, both to give the
reader an intuitive idea of the result, and to later re-usesttample.

Proposition 3.1. £(TS) c L(TG).

Considera TS = (X,T, 6, n), whereX is the terminal alphabed,is a tile-set[ is
the tile-set alphabet, and: ' — X is an alphabetic projection. Itis quite easy to define
a TG T’ such that(T’) = L(T). Informally, the idea is to take the tile-s¢tand add
two markers, e.g{b, w} in a “chessboard-like” fashion to build up a tile-set suligsfor
the right part of the variable size starting rule; otherigtitforward fixed size rules are
used to encode the projectian

We note how both/(T S) and £(T G) are closed under intersection with the class
of all height-1 pictures: the classes resulting in thatrsgetion are the well-known
classes of recognizable and context-free, respectivigiggdanguages. The inclusion
is hence proper: any context-free, non-recognizablegtanguage is also (when con-
sidered as a picture language)iT G), but not in£(TS).

The next example illustrates the reduction froma TS to a TG.

Example 3. Square pictures of a’s.

The TS % is based on a local language ové, 1} such that all pixels of the main
diagonal are 1 and the remaining ones are 0, and on the prigjeei(0) = #(1) = a.
T3 and the equivalent TG £are shown in Figure 4.

The “chessboard-like” construction is used to ensure tihat dnly strong homoge-
neous partition obtained in applying a rule is the one in vdhjartitions correspond
to single pixels. This allows the application of terminalasi encoding projection.
Note that in the first rule of grammar{3wve used tiles arising from the two possible
chessboard structures, i.e. the one with a “black” in tofifgosition, and the one with
a “white” in the same place. Indeed, to fill areas above andaethe diagonal with
0’s we need both tiles

Op O Ow Op
0w Op and 0 Oy

Note also that the construction is applied in a straightfardway, just by imposing the
two complementary chessboard patterns on it. We could ginipin this particular
case, because it is not necessary to distingdjgland1,, as they appear only on the
diagonal so they are never horizontally or vertically adjat.

The following complexity property will be used to separdte TG language family
from several subfamilies to be introduced.

In this paper as “parsing problem” we consider the problemeafiding if a given
input picture is inL(G), for a fixed grammag (i.e. the also calledon-uniform mem-
bership problern The complexity of parsing algorithms is thus expresseigim of
the size of the input picture.

Proposition 3.2. The parsing problem fof(T G) is NP-complete.



# O#H OH H# H# #
# 1 0 0 0 #
# 0 1 0 0 #
Tz: 6= #0010#,7r(0)=a,7r(1)=a.
# 0 0 0 1 #
# OH#H OH H#H H# H#
# # # # # # # # # # # #
# 1, Oy O, Oy # # 1, 0, Oy O0p #
Go: s || * O L Oy O #| | # 0 L, O Oy #
3 # 0 Oy 1, Oy # # 0y Op 1, O #
# 0y O Oy 1, # # 0 Oy 0, 1, #
# # # # # # # # # # # #
ly—a ly—a Ow—a Gph—a

Figure 4: For Example 3 the TS definigg™" | n > 1} (top), and the equivalent TG grammar (bottom).

PROOF Since the construction, illustrated in Example 3, usegforing Proposition
3.1 can be done in polynomial time, and thanks to the facttti@ajparsing problem
for L(TS) is NP-complete (see [15] where tiling systems are cdllechomorphisms
of local lattice languagesor [16]) it follows that parsingZ(T G) is NP-hard.

For NP-completeness, we show that parsfi{@ G) is in NP. First, we assume without
loss of generality that a TG does not contain anghain rule i.e. a rule of the form

# # # #
# B B #

A—- # B B #|° BeN
# # # #

that corresponds to a renaming rule of a string grammatr.

If this is not the case, it is possible to discard chain ruledibectly using the well-
known (e.g. [17]) approach for context-free string gramsnar
We assume to have a candidate derivation

(S(h’k),{dom(p)}) =6 (P1.m11) =6 (P2, 12) =6 - =6 (Pn-1, T-1) = (P, Unit(p))

and we are going to prove that checking its correctness faddgsomial time inh, k
(size of the picture), by considering the dominant pararseittime complexity.

First, the lengtm of this derivation, since there are no chain rules, is at hoest In
fact, we start from a partition with only one element coiregdwith dom(p), and at
each step at least one element is added, arriving atrstefiere the number of ele-
ments ish - k, each corresponding to a pixel.

For each step, we must find the application areapina{), and the corresponding
rewritten nonterminaR, by comparing g, 7i;) with (pi;1, 7i+1). The number of com-
parisons to be performed is at mbstk.



Then, we have to find a ruld — w in Rwhich is compatible with the rewritten sub-
picture ofp;1 corresponding to the application area. So, at most we mestkoévery
rule inR, and every tile of its right part, on a subpicture, given by dipplication area,
that has size at mohkt- k. Hence, we have to consider for this step a number of checks
that is at most

h-k-|R- max

IR (Aaw)elel

Each of these considered steps can be done in polynomialitireeery reasonable
machine model, hence the resulting time complexity remgadamgnomial. O

From [3] it is known that the family of TG languages is closedtw union, col-
umn/row concatenations, column/row closure operatiartation, and alphabetic pro-
jection.

As strings can always be seen as pictures having only onevewention that all
the families presented in this work, that exactly define thretext-free string languages
if restricted to one dimension (i.e. all but tiling systenmslgrid grammars, presented
in Section 5.3), are not closed w.r.t. intersection and dempnt.

4. Regional tile grammars

We now introduce the central conceptrefional languageand a corresponding
specialization of tile grammars. The adjective “regioriala metaphor of geograph-
ical political maps, where different regions are filled witffferent colors; of course,
regions are rectangles.

Regional tile grammars are central to this work, becausgdhe the most general
among the polynomial-time parsable grammar models coresidi@ this paper. We
will see that it is easy to define the other kinds of 2D gramrbgreestricting the tiles
used in regional tile grammars.

Definition 4.1. A homogeneous partition regional(HR) iff distinct (not necessarily
adjacent) subdomains have distinct labels. A picture pegionalif it admits a HR
partition. A language isegionalif all its pictures are so.

For example, consider Figure 5: the partitions in subdomafrihe picture on the
left is homogeneous and strong, but not regional, sinceditarent subdomains bear
the same symbd\. On right, a picture with regional partitions outlined igitted.

AABAA At AL BA A
AABAA AL AL B A Ay
DDBDD D1 D1 B Dy Dy
AACAA Az A3IC AL Aq
AACAA Az A3IC AL Aq

Figure 5: Pictures with outlined partitions in subdomaistsong homogeneous partition (left), and regional
(right).

10



Another (negative) example is in Figure 4: a “chessbodw@-Ipicture admits a
unique homogeneous patrtition, in which every subdomairesponds to a single pixel.
Note that in general these partitions are strong (adjaagmdamains have different
symbols, like in a chessboard), but are not regional (e.ghénvariable size rule of
grammaiGs there are multiple @symbols).

Definition 4.2. Aregional tile grammar (RTG} a tile grammar (see Definition 3.1),
in which every variable size rule A w is such that LOQw) is aregional language

We note that the tile grammars presented in Examples 1 ane 2gional, while
the one of Example 333) is not. Another RTG is presented in the following example.

Example 4. Misaligned palindromes

A picture is a “ribbon” of two rows, divided into four fields:tahe top-left and at
the bottom right of the picture are palindromes as in Exanipl@here rules for §
are defined). The other two fields are filled with c's and mustheoadjacent. The
corresponding regional tile grammar/3s shown in Figure 6.

# # # # # # # #
# P P P PP C C #

Gat S= Ny c, C, P, P, P, Py # | P17 Se P2 Se
# # # # # # #O#
# # # # #
Ci—-||# C CG C # | |cforl<i<?2;, C-c
# # # # #
|la a b b a a c c c ¢
Pi=lc ¢ b abaab ab

Figure 6: Regional tile gramm&, (top) and a picture, (bottom) of Example 4.

Next, we study the form of tiles occurring in a regional loleaiguage.

Definition 4.3. Consider a tile sef over the alphabeX U {#}.
We define thlorizontal and vertical adjacency relatiohg, V, C (X U {#)? as

AHB o AxBATten,die{l,2}:1(i,1)= AAt(,2) = B;
AViBe AxBATted,dje{l,2}:t(L,j)=AAt(2, ) =B.
Then, theadjacency relationare Ay = Hy U V,y and Ay = ?{0’1 U V.

Proposition 4.1. Let p € £** and§ = [f]; picture p is regional iff the incidence
graphs of bothAy N £2 and A}, N £? are acyclic.

PrROOF First of all, we note that tiles occurring imfor a regional picturg have the
following form (or a rotation thereof):

A A A A A Al |A
C

#
A Al |B B} |B C7 B

B # # # # #
Dy |A #] |A A} |A

11



with A, B,C,D € X all different. The incidence graphs of the adjacency retetiof
this tile-set are clearly all acyclic. Moreover, a pictuxelesively made of these kinds
of tiles admits a unique strong homogeneous partition. fSee istart from a regional
picture g, we obtain acyclic incidence graphs for the tile-set madalldfs tiles.

Vice versa, if we consider a tile sétsuch that its adjacency relations are both
acyclic, then tiles i must be like those considered in the previous paragraplo, fds
any picture inLOC(6), an acyclicAy means that any path going from the top-left corner
and arriving to the bottom-right corner and performing afidyvn and right movements
cannottraverse two distinct subdomains bearing the sameé lBor A’y it is analogous,
but starting from the top-right corner, arriving to the loottleft corner and performing
only left and down movements. But this means th@C(6) is a regional language.[]

Notice that this result uses the adjacency relations ferddts just described, i.e.
Ay, and Ay, in which the movements intuitively go from left to right afrdm top to
bottom, and from right to left and from top to bottom. The samults hold also for
different choices, e.g. we could conside = H, U V,1, i.e. moving from left to
right and from bottom to top, instead &f;.

Definition 4.4. Atile setd is calledsimple regionaiff there exists a regional picture p
such tha®v = [p].

Proposition 4.2. For every simple regional tile sét the language LO() is regional.

PROOF. First, let us suppose that = LOC(6) is non-regional. But this means that
there existg € L that is not regional. Thers, is not simple regional, becau$g] is
not (by Proposition 4.1). O

Proposition 4.3. A local language L is regional iff there exist some simpléargl tile
setsby, 02, ..., 6y, N> 1, such that L= | J1j<, LOC(6)).

PROOF If L is regional, then by Proposition 4.1 it suffices to set

{01,62,...,60) ={[P] | p€ L}.

The other direction is a consequence of Proposition 4.2 laefbict that a finite union
of regional languages is regional. O

Thanks to this result and without loss of generdlity the rest of the paper we will
always consider regional tile grammar where the right pErtgpe (2) rules are simple
regional. In practice, right parts will be written g, whereq is a bordered regional
picture.

4.1. Parsing for regional tile grammars

To present our version of the Cocke-Kasami-Younger (CKgpdathm [2], we
have to generalize from substrings to subpictures. LikeCt#¥ algorithm for strings,

2X — g generates the same language as the Xiles61 | 62 | ... | 6n.
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our algorithm works bottom-up, by considering all subpiegiof the input picture,
starting from single pixels (i.e. % 1 subpictures), and then increasing their size. As
a substring is identified by the positions of its first and Esdracters, a subpicture is
conveniently identified by its subdomain. For simplicitydamithout loss of generality,
we assume that the regional tile grammar considered doeontin chain rules.

The algorithm’s main data structure is trecognition matrix a four-dimensional
matrix, holding lists of nonterminals, that the algorithitsfduring its run. A non-
terminal A is put into the matrix entry corresponding to subdomairif the same
nonterminal can derive the subpicture spia).

To decide if a rule can be used to derive the subpicture quoreting to subdomain
d, the right part of the rule is examined, together with all $hbdomains contained in
d. Type (1) rules are easily managed, because they can ongragersingle terminal
pixels, therefore they are considered only at the beginwiitly unitary subdomains.
For example, let us consider gramn@yr of Example 1 (Figure 1), and its derivation
shown in Figure 2. The pixel at position,@ is ana, and the only possible generating
terminal rules are&X — aandA — a. So we enter botiX andA into the recognition
matrix at (32; 3, 2).

For a type (2) ruléA — « we need to check all the picturesli©C(w), isometric
to the considered subpicture. Thanks to the regional cainstevery nonterminal used
in the right part of the rule corresponds to a unique homogeaseectangular area,
if the rule is applicable. So we examine all the sets of nonieals stored in the
recognition matrix for all the subdomains containedlinif we are able to find a set
of subdomains which comply with the adjacency relationsefright part of the rule,
then the rule is applicable. For example, let us considestielomain (31; 3, 2) for
the derivation of Figure 2. Subdomains 133, 1) and (32; 3,2) have already been
considered, being “smaller”, and the $at X} has been entered at positions{33, 1)
and (32; 3 2). This means that, if we considgrat (3 1; 3, 1), andA at (3 2; 3, 2), then
all the adjacency relations of the type (2) rule ¥in Figure 1 are satisfied (namely,
HHA AHX, XH#, #V A, AV# #V X, XV#). So the algorithm places into
(3,1;3,2), since subpicture (3; 3,2) can be parsed t&.

Remark In the pseudo-code, loops on Cartesian products are to beuése in lexico-
graphic order. For example, in loop

foreach(i, j) € {1,...,10} x {3,5,...,11}: ...
the control variables (i.e. i and j in this case) will go thigluthe following sequence
of values:(1, 3),(1,5),...,(1,11),(2,3),(2,5), ..., (10, 11).

We now present the details of the algorithm. Ipdie a picture of sizeng, n), to be
parsed with a regional tile gramm@r= (£, N, S, R).

Definition 4.5. A recognition matriXt is a 4-dimensional mx n x mx n matrix over
the powerset of N.

Being a generalization of the CKY algorithm for strings, tmeaning ofA €
M(i, j; h,K) is that A can derive the subpicture spi(i, j; h,k)). In fact, only cells
@i, j; h,K), with h > i,k > ], are used: these cells are the four-dimensional counterpar
of the upper triangular matrix used in classical CKY aldarit
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We introduce another data structure, gfudbdomains vectoto be used for recog-
nizing the applicability of type (2) rules.

Definition 4.6. Consider a recognition matrift, and a subdomain &= (i, j; k. 1).
Let the nonterminal set N be arbitrarily ordered ag, Az, ..., An;. Thesubdomains
vector® (9, d) is a tuple(D1, Do, ..., Dinj), Where every BDis the set of subdomains
d’ such that Ae 91(d’) and d is a subdomain contained in d; if;is empty, then its
conventional value is set {@, 0; 0, 0).

For any nonterminal A, the notatid@ (911, d)|a denotes the component of the vector
corresponding to A.

To simplify the notation, we shall writ&®(d) instead of (91, d) at no risk of
confusion, because the algorithm refers to a unique retiogmatrixt. Moreover,
we use the notatio®(d) for referring to the set of all possible vectors of subdamsai
presentin®(d), i.e. D(d) := D; x Dy x ... x Dy;.

The main role of this ancillary data structure is to assidnhe subdomains con-
tained in a given subdomadh to nonterminals, if possible, by considering the already
filled portion of M. Using®, we are able to check if the adjacency relations of rules
are satisfied. For example, if a rule— o demandsA,H,Ag, then we only have to
check if one of the elements @f(d) has components 2 and 8 that are horizontally ad-
jacent, with the domain corresponding to nontermifsato the left. Figure 7 shows
the procedure used to compute vecor

It is important to remark thad is central for keeping the time of the parsing algo-
rithm polynomial w.r.t. the input size. Indeed, in a regitiila grammar the number of
homogeneous subdomains to be considered for a candiddiestipp area is at most
IN|, because the number of different homogeneous areas afisimgthe application
of a rule is at most the number of nonterminals of the gramrigemce® has size
less than f?n?)N. In principle, it would be possible to adapt this algorithtacato
an unrestricted tile grammar, but in this case the numbeleofients to be considered
could be exponential, as the number of different homogemsoibbdomains could be as
big as the number of pixels of the application area, i.e. umtam (see e.g. grammar
Gz in Figure 4).

The actual procedure for checking if a rule of the grammar loarapplied to a
givenrectanglei( j; k, 1) is presented in Figure 8. Based on ve&grcomputed for the
relevant subdomain,(j; k, 1), the procedure checks, for a right partf a variable-size
rule, if all adjacency constraints are satisfied.

TheMain procedure, presented in Figure 9, is structured as a stfarglard gen-
eralization to two dimensions of the CKY parsing algorithiffie input picturep is in
L(G) iff S € M(L, 1;IPlrow [Plcol)-

4.1.1. Correctness and complexity of parsing
We start with a technical lemma, used to prove the correstobthe CheckRule
procedure.

Lemma 4.1. Let w be a regional set of tiles and d a subdomain. CheckRylel]
returns true iff there exists a rule & w, such thaipo, 7o) =¢ (p1,71), where de ng,
andspic(po, d) is a C-picture.
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ProcedureComput® (9%, (i, j; k, 1)):
Every setin® is empty;
foreach(i’, j’) € {i,....k} x {j,...,1}:

foreach(K,l") e {i’,...,k} x {j’,..., 1}

for each A e M(i’, j’; K, I"):
put (’, j’; K, 1) into the setD|a;

foreachAe N:
if D|a = 0thenput (Q0;0 0)into the se®|a;
return ©.

Figure 7: Comput®

PROOF By construction, a true output of CheckRule() is equivalent to the fact
that there exisfj € LOC(w) and a partition ofd into the subdomainds, da, ..., d,
such that:

1. every spiag, d;) is anA-picture, for some nontermin&l e 9t(d;);
2. if spic(g, d;) is anA-picture, then for albl, # d; the subpicture spiq(d) is not
anA-picture.

This means thafl(g) @ (x — 1,y — 1), whered = (x,y;X,Y'), is the HR partition
{d1,do,...,d:}. Moreover, starting fromglp, 7o), where spicfo, d) is a C-picture, it
is possible to apply a rul€ — w in a derivation stepfy, 70) =¢ (p1,71), where
mo = {d,d,d, ..., do}, o= {d}, dj, ..., df}JU {d1,dp, ..., 0}, andq = spic(py,d) €
LOC(w). O

After this, the correctness is easy to prove, analogoudlydd D case [2].
Theorem 4.1. M(d) = {A e N | A =g spic(p, d)}, for every subdomain d.

PrROOF The proof is by induction on the size of subdomdin

Base d = (i, j;i, j). This means thdgspic(p,d)| = (1,1). Hence A =*>G spic(p, d)
iff A — spic(p,d) € R This case is handled by the first loop of procedure Main, the
one over each pixgh(i, j). If spic(p,d) = t, and there exists a ruld — t, then the
algorithm enterd\ into 21(d). Vice versaA € 2M(d) means that the algorithm has put
Ain the set, therefore there must exist a rlle> spic(p, d).

Induction let us consided = (i, j;i+v—-1,j+h-1),v> 1, orh > 1, or both. We

prove thatA QG spic(p, d) implies A € M(d). In this case, the size of the subpicture is

not (1, 1), therefore the first rule used in the derivatlbnge spic(p, d) is avariable size
rule A — w. Thanks to the two nested loops with control variablek)and {, j), when
the algorithm considerg, it has already considered all its subdomadng,, . . ., dk.
By the induction hypothesis, for every<lj < k, B =*>G spic(p, dj) implies B € 9M(d;).
Hence (Lemma 4.1), CheckRu&(d) must be true, and the algorithm putsn 931(d).
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Procedure CheckRulg®, w, (i, j; k. 1))
for each (dy, dy, ..., dn) € D;

f:=True
for each (Na, Np) € H,,:

if da = (ia, ja; Ka, la) @nddy = (ip, jb; kp, Ip) are not such that
jb =1+ 1, andky > ig, Ka > ip,
then f := False

for each (Na, Np) € V.

if dg = (ia, ja; Ka, la) @anddp = (ip, jb; Ko, Ib) are not such that
ib=ka+1,andlp > ja,la> jb,
then f := Falsg

for each (#, Ny) € H,:

if da = (ia, ja; Ka, la) @ndja # j then f := False
for each (Ng, #) € H,:

if da = (ia, ja; Ka, 1a) @andly # | then f ;= False
foreach(#, Ny) € V,,:

if da = (ia, ja; Ka, la) @andia # i then f ;= False
for each (Ng, #) € V,,:

if da = (ia, ja; Ka, la) @andk, # kthen f ;= False
if fthen return True

return False

Figure 8: CheckRule
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ProcedureMain:
Every setind)t is empty;
for each pixel p(i, j) = t:

if there exists a fixed size rule— t e R,
then put A into the se®)(i, j; i, j);

foreach(v,h) e {1,...,m} x{1,...,n}:
foreach(i, j) e {1,....m-Vv}x{1,...,n—h}:

D = Comput® (™, (i, j;i+v-1,j+h-1));
for eachvariable size ruleA - w) e R

if CheckRUlED, w, (i, j;i+v—-1,j+h-1)),
then putAinto the seti(, j;i+v-1,j+ h-1);

return O.

Figure 9: Main

Conversely, we prove tha € 21(d) implies A S6 spic(p,d). A € 90t(d) means
that procedure Main has pétin the set. Therefore, CheckRulg(d) must be true.
Thanks to Lemma 4.1, this is equivalent to the existence of@licable variable

size ruleA — w for the first step of the derivatioA =*>G spic(p, d). The rest of the
derivation holds by induction hypothesis. O

Theorem 4.2. The parsing problem faf’(RT G has temporal complexity that is poly-
nomial with respect to the input picture size.

PROOF First, it is straightforward to see th@bmput@® performs a number of opera-
tions that isO(|N| : n12n2).

Let us now consider th€heckRulgrocedure. This procedure performs a loop for
each element oD, which contains a number of elements that is less tham?)N!,
and nested loops o#(, andV,,. Therefore the number of checks performed by it is
dominated by a value that is

2yIN|
o((mzn M- max (I [Vl
Coming finally to theMain procedure, we note that its core part consists of two
nested loops, over two sets that are at nmest each. The body of these two loops
consists in a call to Compufe and then another loop over the grammar rules, com-
prising a call toCheckRulg¢hence the dominant part).
Therefore, the number of operations performed is at most

O(IR g (IH,), |V} - (mPn?)N P2 ).

max
A—-w)eR

17



X 1 x 1 x 0 X
0O ¥ 01 0 O O
x 1 xX 1 x 0 x
1 1 1 1 1 1 1
x 1 x 1 X 0 X
0 1 01 0 0O
x 1 x 1 x 0 ¥

Figure 10: A picture of the languade of Example 5

Each of these operations can be done in polynomial time irnyeeasonable machine
model, therefore the resulting time complexity is polynahai.r.t. the picture size. O

The property of having polynomial time complexity for pictrecognition, united
with the rather simple and intuitively pleasing form of RT@es, should make them a
worth addition to the series of array rewriting grammar nmiedenceived in past years.

5. Comparison with other language families

In this section we prove or recall some inclusion relatiogtsueen grammar models
and corresponding language families. To this end we relyherekamples of Section
4, and on the separation of complexity classes.

In presenting other grammatical models we have been facédandilemma: to
stick to the original formulation, or to reformulate the adéfon in terms more compa-
rable with our own. We have opted for the former, becauseraibe we would have
incurred the penalty of proving that the old and new forrialz are equivalent.

We start by comparing regional tile grammars and tilingesyst. To this end, we
adapt a proof and an example introduced by Prtsa in [11].

Example 5. Consider a language Lover the alphabeE = {0,0',1,1, x, X'} where
the “primed” symbols are used on the diagonal. A picture midjj if, and only if:

1. pis asquare picture of odd size;

. p(@, j) € {0,1, x}, when i+ |; p(i, j) € {0’, I/, X'}, otherwise.

. p(i, j) € {x, ¥} iffiand j are odd,;

if p(i, j) € {1, 1’} then the i-th row or the j-th column (or both) is made of syrsbol
taken from{1, 1'}.

INEAEN

An example picture is shown in Figure 10. It is quite easy ®that L is a locally
testable language, definable through a set of 3-tiles. PRdimgmbols by definition
appear only on the main diagonal, and are used to have onlgsquictures.

Proposition 5.1. L(RTGQ and £(LT) are incomparable.
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PROOF First, we know from [14] thatL(LT) c £(TS), and thatL(RTQG define
context-free string languages, if restricted to one dinmensso there are languages
in L(RTGQ) that are not inZ(LT).

To end the proof, we need a language that iL{h T) but not in L(RTG. We
suppose, by contradiction, that there exists a RIS (Z, N, S, R) such that (G) = L
of Example 5. Without loss of generality, we assume fRaloes not contain chain
rules, and that all right sides of rules Rare simple regional. We consider a natural
numbem = 2k + 1 big enough to comply with the requirements presented imgke
of the proof.

First, letL; be{p € Ly | |p| = (n,n)}. Clearly,|L;| = 2", and it contains at least
[2"-1/|R|] pictures that can be generated in the first step by the same rul

We now fix such arule, e.6 — «, and letL; be the subset df; generated by this
rule. In an x n picture, the number of possible partitions in homogeneabpistures
is less thanif*)Nl. This means that there exists a ketC L, having sizels| > Rf_”ﬁ
such that every picture in it was generated®sgtarting with the same rufe — «, and
such that the initiab-homogeneous picture was replaced by the samé&OC(«a).

Depending on the chosen rule’s right part, lgwe now identify a row or a column
of the picture in an odd position, and callit We have two cases: either (1) every
s e LOC(«) is made of homogeneous subpictures having all both widdthaight less
thann; or (2) in everys € LOC(«) there is at least one homogeneous subpicsure
having width or height equal to (but clearly not both, because we are not considering
chain rules). In case (1), latbe the first row. In case (2), ldtbe one of the rows or
columns in an odd position and completely containesd .in

Let L4 be a subset off , such that every picture in it has the sammeBecause of
its definition, if we fix an odd row of pictures iy, then columns of even indexes that
are completely filled by 1 and &re determined by it (if we fix an odd column, it is
analogous but with rows). Hendég,| < 2'7.

We can assume thatis sufficiently large so that ;| > |L4|, i.e. there is at least a
picture inL3 which is not present ithy. So we are able to find ihz two picturesp
andq that are generated by the same initial r8e:» «a, with the same initial strong
homogeneous partition (the one determinedspyand such thafl in p is different
from 2 in g. Now consider all the subpictures pfandq that are in the positions
corresponding to the initial strong homogeneous partiti®f these subpictures, we
consider only the se® = {p], p),..., pi}, andQ’ = {q;, ds, ..., g}, with i < |N|, that
contain subpictures that intersect within p and inqg, respectively. If we replace ip
all the elements oP’ with the elements iy, we obtain a picture which is derivable
from S — «, but it is not inLy;, because it contains columns (or rows in some cases
(2)) that are not compatible with the fixed O

The fact that(LT) c £(TS) implies the following statement.
Corollary 5.1. £(RTQ and L(T S) are incomparable.

This last result, together with the facts that RTG rules ames#ricted form of TG
rules, and that(T S) c L(TG), gives us the following:

Corollary 5.2. L(RTGQ c L(TG).
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5.1. Context-free Kolam grammars

This class of grammars has been introduced by Siromoney[@] ainder the name
“Array grammars”, later renamed “Kolam Array grammars” nder to avoid confusion
with Rosenfeld’s homonymous model. Much later Matz reirtedrthe same model
[10] (considering only CF rules). We prefer to keep the histd name, CF Kolam
grammars (CFKG), and to use the more succint definition ozMat

Definition 5.1. A sentential formover an alphabet V is a non-empty well-parenthe-
sized expression using the two concatenation operagesd O, and symbols taken
from V. S¥ (V) denotes the set of all sentential forms over V. A senterdiah &
defines either one picture over V denotedly, or none.

La b

b af
On the other hand, = ((a @ b) & a) denotes no picture, since the two arguments of
theo operator have different column numbers.

CF Kolam grammars are defined analogously to CF string grasinizerivation

is similar: a sentential form over terminal and nontermmahbols results from the
preceding one by replacing a nonterminal with some cormedipg right hand side of
arule. The end of a derivation is reached when the sentdatial does not contain
any nonterminal symbols. If this resulting form denotesapi, then that picture is
generated by the grammar.

Definition 5.2. A context-free Kolam grammar (CFKG3 a tuple G= (Z,N,S,R),

whereX is the finite set oferminalsymbols, disjoint from the set N obnterminal
symbols; Se N is thestartsymbol; and RE N x SF (N U ) is the set ofules A rule
(A, ¢) € R will be written as A— ¢.

For exampleg; = (@@ b)e (b ® @) € SF ({a, b}) and(¢4) is the picture

For a grammafG, we define thederivationrelation =g on the sentential forms
SF (N UEZ) by y1 =¢ 3 iff there is some ruléd — ¢, such thaty; results fromy, by
replacing an occurrence éfby ¢. As usual,=*>G denotes the reflexive and transitive
closure of=¢. Notice that the derivation thus defined rewrites strings pictures.

From the derived sentential form, one then obtains the @euitture. The picture
language generated &yis the set

L(G) = () | ¥ € SF(2),S =¢ ¥}.

With a slight abuse of notation, we will often wri#e =*>G p, with A e N,p € £,
instead ofdg : A =6 é, (o) = p.

Itis convenientto consider a normal form with exactly twa@ero nonterminals in
the right part of a rule [10].

Definition 5.3. A CF Kolam grammar G= (%, N, S, R), is in Chomsky Normal Form
(CNF) iff every rule in R has the form eitherA t,orA— BeC,orA— B0OC,
where AB,C € N, and te X.

We know from [10] that for every CFK®, if L(G) does not contain the empty
picture, there exists a CNF CFKG’, such thatL(G) = L(G’). Also, the classical
algorithm to translate a string grammar into CNF can be pasiiipted to CFKGs.
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Example 6. The following Chomsky Normal Form grammag @efines the set of pic-
tures such that each column is an odd length palindrome.

S - VOS|AAeA|BioB|alb
V —- AeA|BieBlalb

A — VeAla

B, -» VeB;|b

AL - a

B]_ - b

5.1.1. Comparison with other models

First, we sketchily and intuitively show that the originaF ®olam definition is
equivalent to the one introduced by Matz. The following diggon is directly taken
from [9].

Let G = (£,N, S, R), be aKolam context-free grammawhere N= N; U Ny, N;
a finite set ohonterminalsN, a finite set ointermediates: a finite set oterminals
R = Ri UR, U Rz, R; a finite set ohonterminal rulesR, a finite set ofintermediate
rules Rs a finite set oterminal rules S € N is the start symbol.
Ry is a set of pairgA, B) (written A— B), A€ Ng, Be (N;UN2)™® or B € (N;UNo)*®.
R, is a set of pairgB, C), Be N, C € (N2 U {Xg, X, - , % })* P,
with Xg, -+, X% € Z*7, [Xilrow = [Xi+1lrow, 1 < 1 <K;
or C e (N2 U {xg, Xz, -+, X})*®, with xq, - -+, X € Z*, [Xilcol = [Xialcots 1 <1 <K,
Rs is a set of pairdA,t), Ae (N; UNy) and te X+,

(Derivation) If A is an intermediate, then the intermeditdaguage generated by A
IS Ma = (X | A= xX€ X%, % € %, [Xikow = [Xisthow, 1 < i < K} OF
Ma = {X]| A = XX € {Xg, -, X, Xj € ™, [Xilcol = [Xistlea, 1 < 1 < Kk}. Deriva-
tion proceeds as follows. Starting from S, nonterminal sidee applied without any
restriction as in a string grammar, till all the nontermirsaére replaced, introducing
parentheses whenever necessary. Now replace for eacimiatisite A in N elements
from Ma, subject to the conditions imposed dbye. The replacements start from the
innermost parentheses and proceeds outwards. The denivaetimes to an end if the
condition fore or @ is not satisfied.

GrammarGs of Example 6 complies with this definition. In &y and B; are
intermediates.

It is very easy to see that the original definition of CF Kolarargmars is equiva-
lent to the new one given by Matz. Right part of rules are mddextical or horizontal
concatenations of nonterminals or fixed terminal pictugswe can define an equiv-
alent grammar that is as stated in Definition 5.2, by traimglahe right part of rules
that contain terminal pictures, X, . . ., X,, decomposing each picturgin a senten-
tial form ¢ such thatg = (¢). Vertical or horizontal concatenations are then treated
analogously (e.g. we transladB into (A ® B)). Clearly, we do not need to distinguish
nonterminals from intermediate symbols.

Proposition 5.2. £L(CFKG) c L(RTG).
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PROOF In [3] a construction is given to prove that a CF Kolam gram(firathe form
defined by Matz [10]) can be transformed into a TG. It turns that the TG thus

constructed is a RTG.
Sketchily, consider a CF Kolam gramnfarin CNF. RulesA — t,t € X are iden-

tical in the two models and generate the same kind of langu@ge single terminal
symbols). RulesA — B @ C of G are equivalent to RTG rules having the following

form:
# B H O# # #

A # B B C C #
“|l# B B C C#
#OH# O# O# O# #

RulesA — Be C of G are equivalent to RTG rules having the following form:

A—

HOoHHHHH
#FOOWWH
# OO WwWH
# HOH O H

The inclusion is strict, because the language of Exampleslsivawn by Matz [10]
to trespass the generative capacity of his grammars. O

The fact that the picture recognition problem for CF Kolarargmars has been re-
cently proved [18] to be polynomial in time of course follofism the above inclusion
property and from Theorem 4.2.

For the special case of CF Kolam grammars in CNF, we note llegbarsing time
complexity isO(mPn?(m + n)) [18]. Some of the reasons of this significant difference
are the following. Kolam grammars in CNF are much simplecgose in the right part
of arule there are at most two distinct nonterminals. Sogking if a rule is applicable
has complexity which is linear with respect to the picturdtiior height.

5.2. Pilisa’s context-free grammars

In the quest for generality, D. PriiSa [11] has recentlyndefia grammar model that
extends CF Kolam rules, gaining some generative capaditg.riiodel is for instance
able to generate the language of Example 1.

5.2.1. Definitions
The following definitions are taken and adapted from [19, 11]

Definition 5.4. A 2D CF PiiSa grammar (PG) is a tupl&, N, S, R), whereX is the
finite set oterminalsymbols, disjoint from the set N wbnterminabymbols; Se N is
thestartsymbol; and RZ N x (N U X)*™* is the set ofules

Definition 5.5. Let G = (£, N, S,R) be a PG. We define a picture languagéslA)
overX for every Ac N. The definition is given by the following recursive dedavips:
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(i) fA - wisinR, and we **, then we L(G, A).

(i) Let A — w be a production in R, v& (N U Z)™" for some mn > 1. Let pj,
with1 <i<m,1<j<n,be pictures such that:
1. ifw(, j) € X, then p; = w(, j);
2. ifw(i, j) € N, then p; € L(G, w(i, j));
3. letPe=p1 O 2@ O prn. Foranyl <i<m,1<j<n,|pijlea =
[Pi+1,jlcol; andP=P,6P,6---6Pp.

Then Pe L(G, A).

The set (G, A) contains all and only the pictures that can be obtained bylypp
a finite sequence of rules (i) and (ii). The languag&).generated by grammar G is
defined as the languag€@, S).

Informally, rules can either be terminal rules, in this casmaged exactly as tile
grammars or Kolam grammars, or have a picture as right parhis latter case, the
right partis seen as a “grid”, where nonterminals can bearga by other pictures, but
maintaining its grid-like structure. Note that the grid fnes may differ in size.

Example 7. The grammar G of Figure 11 generates the language of pictures with one
row and one column of b’s in a background of a’s (see Example 1)

AV A a
S H b H, A-AM|M, M- M | a,
AV A
V - b |b, H—DbH|b
V ’ ’

Figure 11: PG54 of Example 7.

It would be simple to prove that every Prli$a grammar adtiné$ollowing normal
form:

Definition 5.6. A Prlisa grammar G= (Z, N, S,R), is in Nonterminal Normal Form
(NNF) iff every rule in R has the form either-A t, or A —» w, where Ae N, we N**,
andte x.

5.2.2. Comparison with other models

To compare Prli$a grammars with tile grammars, we notettieativo models are
different in their derivations. Tile grammars start fromietpre made of5’s having a
fixed size, and being every derivation step isometric, tselting picture, if any, has
the same size. On the other hand, PrliSa grammars starefsingleS symbol, and
then “grow” the picture derivation step by derivation steptaining, if any, a usually
larger picture.

First, we prove that the language of Example 4 cannot be akfigePriisa gram-
mars, so the language families are different. To this aimyseea technique analogous
to the one introduced for proving Proposition 5.1.
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Proposition 5.3. L(PG) # L(RTG.

PROOF LetG = (X, N,S,R) be a PG such thdt(G) = L(G,4), whereG, is the RTG
presented in Example 4. Without loss of generality we asshaidk does not contain
chain rules, and that for every rube— w, it is |w|row < 2.

In the rest of the proof we classify the derivations, depegdin the rule that is
applied first, call itS — w, wherelw| = (X,y), 1 < X < 2,y > 1. Moreover, we will
consider the subsét C L(Gy), such that every picture has two rows &lumns for
anyn > 1, and is such that the tnmwhomogeneous subpictures in it have sizenf1

L,:{W wR "

" w wR

eL(G4)|n>O,|W|=|V\/|=n}.

We will call L, the set of pictures i’ generated by applyin§ — w first.

First, we consider the case in whighhas the form§. In this case boti# and
B must generate CF string languages. Since the langaafe™ is not context free,
A cannot generate exactly, and for amysuch strings, and the same holdsitatis
mutandigfor B.

Indeed, if we consider the string languages\fc"} and{c‘w'w?R}, we can apply
the pumping lemma for CF string languages by consideringgfomping” either the
wwR part, or theww?R, or the parts made af symbols, or a combination thereof.
If we keeph or k bounded, we can nonetheless generare an unbounded number of
pictures ofL(Gy), but there will also be an unbounded number of picturek’afot
generable in such a way (i.e. those having a numbersofreater than the chosen
bound). Analogously, if we keep one of both the pavg® andwwR bounded, there
will be an unbounded number of picturesldfnot generable as well.

So, eitherl), is finite (or empty), otA and B generate CF languages that properly
containfwwRc"™} and {dMw'w'R}, respectively.A and B must generate strings having
respectively the fornwwRc", and ckw'wR, whereh andk are not bounded by any
constants. Beindp andk unbounded, we can take a string generateddgnd one
generated byB such thath > 2)w/|, andh + 2w| = k + 2)w/|. But in this case the
corresponding picture is not ING4). Hence, we can safely assume that 1.

Now we have to consider starting rules having X < 2,y > 1. We fixn, so that
there are not any pictures bf generable starting with a rule with= 2 andy = 1, and
the value ofn is big enough to comply with the requirements of the rest effitoof.

Clearly, the number of elements in the ¥&h) defined as the one of pictureslin
for the fixedn is 22", andX(n) contains at leag2?"/|R|] pictures that are generated in
the first step by the same ruie— w. We call this subsdt/ (n), because it corresponds
to the finite subset df;/, for the chosen value of.

Without loss of generality, we assume timat y, so each nonterminal w gener-
ates a subpicture (that in the rest of the proof we will indgph, 1<i < x, 1< j<y)
having at most two rows and at least one column. Being the eumidifferent se-
quence$pl,l|coh |pl,2|coh v -|pl,y|coli |pl,l|rOWn |p2,1|row limited by 2(31)y (eaCh| pl,i|co| is
less than 8 and at most there are two rows), there exists a sof{sgof L, (n), having
cardinality|Y(n)| > 22"/ (2|R|(3n)Y), in which for any two picturep and p’, and for
everyi, j, the sizdp; j| is equal to pi il

24



R
LetW(n)beasubsetdi;)(n)suchthateverypictureinitiinI<e2n g ;;,(i.e.

the central third of the picture is made of two equal rowsgatly, W(n)| < 2".

We can assume thatis large enough so thgt(n)| > |W(n)|. But this means that in

: : ¢ q C A A -

Y(n) there are two different picturgs= o s K| andp’ = o ¢ SR with
g#sq +#S,and (1)g# g or (2)s+ s. We know thaly > 1, so if we replace 1
andpy (if x = 2) in pwith p;; andp; ,, in case (1), we obtain a picture generated by
G that is not inL(G4). Case (2) is analogous, but considers the right papt 0&. p1y
andpyy. O

Indeed, PrliSa grammars can be seen as a restricted foemiofal tile grammars,
as stated by the following proposition.

Proposition 5.4. £(PG) c L(RTG.

PrROOF Consider a PG in NNB. First of all, we assume without loss of generality
that for any rule, nonterminals used in its right part aredédferent. If this is not the
case, e.g. assume that we have a rule

XY
A— 7 x>
then we can rename one of thesymbols to a freshly introduced nontermitd| and
then add the chain rul&’ — X.
Let us define a RT&’ equivalent taG. Since the conversion of terminal rules is
obvious we only discuss nonterminal rules. For a nonterhnina of G, e.g.

B]_,]_ Bl,k
A— ) :
Bh,l Bh,k
we introduce the following rule i®’:
[# # # ... # #  #]
# Bi1 Bii ... Bk Bix #
# By Bi1 ... Bix Bk #
Aol o : oo :
# Bpi Bni ... Bnx Bnx #
# Bni Bni ... Bnx Bnx #
L # # # ... # # #
Note that each nontermin8 ; is repeated four times in the right part of the rule, so
to have the tile g" S" , that can be used to “cover” a rectangular area of any size.
i Bij

Notice that the original grid alignments are preserved bgRiErivations.
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Essentially, Priisa grammars can be seen as RTG'’s withdtiicnal constraint
that tiles used in the right parts of rules must not have onbesfe forms:

A B||A C||C C||IC A
C Cf{|B C[|A BJ|C B
with A, B, C all different. O
Proposition 5.5. L(CFKG) c L(PG).

PrROOF For containment, it suffices to note that the constraintsiles of the corre-
sponding tile grammar, introduced in the proof of Proposits.4, are a weaker form
of the constraints used for proving Proposition 5.2.

The containment is strict, since Prlisa grammar can gentra language of one
column and one row df's in a field ofa’s (see Example 7), while CF Kolam grammar
cannot [10]. O

5.3. Grid grammars

Grid grammars are an interesting formalism defined by Drejg@k[12]. Grid
grammars are based on an extension of quadtrees [21], ifhHigéonumber of “quad-
rants” is not limited to four, but can de, with k > 2 (thus forming a square “grid”).

Following the tradition of quadtrees, and differently frahe other formalisms
presented here, grid grammars generate pictures whicheareas sets of points on
the “unit square” delimited by the points (0,0), (0,1), (1(Q,1) of the Cartesian plane.
The following definitions are taken (and partially adaptiedin [12].

Let the unit square be divided by a evenly spaced grid iRteguares, for some
k > 2. Aproductionof a grid picture grammar consists of a nonterminal symboiten
left-hand side and the square grid on the right-hand sidehea the K squares in the
grid being either black or white or labelled with a nontermain

A derivationstarts with theinitial nonterminalplaced in the unit square. Then
productions are applied repeatedly until there is no nomtieral left, finally yielding a
generated picture. As usual, a production is applied by simga square containing
a nonterminal A and a production with left-hand symbol A. Tbaterminal is then
removed from the square and the square is subdivided intdesnidack, white, and
labelled squares according to the right-hand side of theselmgproduction. The set of
all pictures generated in this manner constitutespicture languaggenerated by the
grammatr.

A picture generated by a grid picture grammar can be writtsraastring expres-
sion. Let the unit black square be represented by the symbah& the white unit
square by W. By definition, each of the remaining pictureténgenerated language
consists of ksubpicturesry 1, ..., 71k, . . ., Tk 1, . . . » Tkk, €ach scaled by the factayk,
going from bottom-lefty 1 to top rightmc. If t; ; is the expression representing; (for
1<i,j<Kk), thentis,....t1k,...,tk1,...,tkk] represents the picture itself (fork 2
it is a quadtree).

In order to compare such model, in which a picture is in the sopiiare and back-
and-white, with the ones presented in this work, we intredudifferent but essentially

compatible formalization, in which the generated pictiaessquare arrays of symbols,
and the terminal alphabet is not limited to black and white.
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5.3.1. Definitions
To define grid grammars and their languages, we introducgvaleénition that is
similar to the one used for Kolam grammars in Section 5.1.

Definition 5.7. For a fixed k> 2, a sentential formover an alphabet V is either a
symbol ac V, or[ty1,...,tk ..., 1, ..., tk], @and every;t; being a sentential form.
SF (V) denotes the set of all sentential forms over V.

A sentential fornp defines a set of pictureg):

e (a), with a € V, represents the s¢a)™, n > 1 of all a-homogeneous square
pictures;

o ([tr1,---stis.--»tk1,---,tk]), represents the set of all square grid pictures
where evenyt; ;) has the same sizexm, for n> 1, and(ty 1) is at the bottom-left
corner, ..., (tik) is at the bottom right corner, ..., anfiky)) is at the top right
corner.

Note that we maintained in the sentential forms the origimalvention of starting
from the bottom-left position. For example, consider thetsetial form

¢ =[[ab,[a b,b a],c].a B,[baahb].
The smallest picture ify) is depicted in Figure 12.

QY Y T WWWW
QYT O WWWm
T TOO W
ST TOO W
DY Y Y TTOL W
DY Y YT T O
DYDY O®»YTT
DY YOO T T

Figure 12: Example picture generated by the foraalj[ [a, b, b, a], c], a, B, [b, & a, b]].

Definition 5.8. A grid grammar (GG)s a tuple G= (£, N, S, R), whereX is the finite
set ofterminalsymbols, disjoint from the set N nbnterminalsymbols; Se N is the
startsymbol; and RC N x SF(N U X) is the set ofules A rule (A, ¢) € R will be
written as A— ¢.

For a grammafG, we define thederivationrelation =g on the sentential forms
SF (N UZ) by y1 =¢ 3 iff there is some ruléd — ¢, such thaty;, results fromy; by
replacing an occurrence éfby ¢. As usual =g denotes the reflexive and transitive
closure of=g. As with Kolam grammars, the derivation thus defined resritieings,
not pictures.

The derived sentential form denotes a set of pictures. Hoyttee picture language
generated by is the set

L©) = {pe W) 1v e SF().S S u).
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In the literature, parametéris fixed for a grid gramma@, i.e. all the right parts
of rules are either terminal de by k grids. This constraint could be relaxed, by al-
lowing differentk for different rules: the results that are shown next stilidifor this
generalization.

It is trivial to see that grid grammars admit the following mal form:

Definition 5.9. A grid grammar G= (X, N, S,R), is in Nonterminal Normal Form
(NNF) iff every rule in R has the form either A t, or A — [B11,...,Bik, ..., Bk,
..., Bxi], where AB;j € N, and te X.

Example 8. A simple example of a grid grammar in NNF is:

S_)[SvByszvaBysz7S]7 S_)a9 B_)b

The generated language is that of “recursive” crosses of&field of a’s. Figure
13 shows an example picture of the language.

ab ab b b aa a
b b bbb baaa
ab ab b b aa a
b bbb bbbobob
b bbb bbbobob
b bbb b bbbob
ab ab b b aa a
b b bbb b aaa
a b ab b b a a a

Figure 13: A picture of Example & symbols are written in boldface for better readability.

5.3.2. Comparison with other models

First, we note that this is the only 2D grammatical model enésd in this paper
which cannot generate string (i.e. 1D) languages, sincthalbenerated pictures, if
any, have the same number of rows and columns by definition.

Itis easy to see that the class of languages generated bgrgritmars are a proper
subset of the one of Prli3a grammars. In fact, a grid grarnarebe seen as a particular
kind of Priisa grammar, in which symbols in right part oBsienerate square pictures
having the same size.

Surprisingly, the same reasoning can be applied also teegrmusion w.r.t. CF
Kolam grammars.

Proposition 5.6. £(GG) c L(CFKG).

PrROOF Given a grid grammag = (Z, N, S, R) for simplicity in NNF, we construct an
equivalent CFKG.
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(i) Forterminal ruleA — t,t € X, we introduce the following rules in the equivalent
CF Kolam gramma6’:

A->(ADA)S (AWt Av> AWDt|L, A o toAl|t

whereA,, A, are freshly introduced nonterminals, not used in otherstuleis
easy to see that these rules can only generate all the sjataneep made of's.

(ii) For nonterminal rule®\ — [By1,...,Bik ..., Bk1,. .., Bkk], we add the follow-
ing “structurally equivalent” kind of rules:

(Bk1 @ -+ @ Byy)
S)

S
(BL1®---®© By

To show the equivalendg(G) = L(G’), we use induction on derivation steps. As
base case, we note that terminal rule§adre equivalent to the rules & introduced
at (i).

Induction step: consider a nonterminal rule like in (ii). Bguction hypothesis, all
B;; of G’ generate languages equivalent to their homony@ iand all made of square
pictures. We will use the notatids); for referring to pictures generated By;.

By definition ofe, [(0j1 O - - D bjK)lcol = [(Dj+1.1 D - - D Djs1K)lcar, fOrall L < j < k.
Moreover, by definition ofD, [bjilrow = IDji-1lrow, for all 1 <'i < k. Being all squares,
this means that the sentential forik{ © --- © bxx) ©---6 (b1 © --- © byy) of G
generates a picture iff dfi;; have the same size. But this also means that it is equivalent
to the sentential formB1 1, ..., Bik, ..., Bk1, ..., Bkk] of G.

The inclusion is proper, because by definition grid grammarsiot generate non-
square pictures (e.g. string languages). O

5.4. Context-free matrix grammars
The early model of CF matrix grammars [13] is a very limitedkibf CF Kolam
grammars. The following definition is taken and adapted f{2&j.

Definition 5.10. Let G = (H, V) where H= (X', N, S, R) is a string grammar, where
N is the set of nonterminals, R is a set of productions, S istidwing symbolY’ =
{A1, Ao, -+, A}, V is a set of string grammars, ¥ {V1, Vo, - -+, Vk} where each Ais
the start symbol of string grammag.VThe grammars in V are defined over a terminal
alphabet, which is the alphabet of G. A grammar G is said to matext-free matrix
grammarCFMG) iff H and all \f are CF grammars.

Letpe X, p=c1OCD---DCy. P € L(G)iff there exists a string Ay, - - - A, €
L(H) such that every columnjcseen as a string, is in(Vy,),1 < j < n. The string
A Ay, - - - Ay, is said to be arintermediatestring deriving p.

Informally, the grammaH is used to generate a horizontal string of starting sym-
bols for the “vertical grammarsV;, 1 < j < k. Then, the vertical grammars are used
to generate the columns of the picture. If every column has#tme height, then the
generated picture is defined, and id.i{®).

29



Example 9. The language of odd-width rectangular pictures ofgeb}, where the first
row, the last row, and the central column are made of b’s, &t is filled with a’s is
defined by the CFMG &of Figure 14.

Gy = (H,{Vi,V2}) where

H : S ASAIA

Vi : A —>bA A-—aAlb;
Vo © Ay—DbA b

p7 =

T 0T
T 0 QT
T 099 T
O OCTTOTUT
T 00T
T 9 T
T 0T

Figure 14: CF matrix gramma&3; of Example 9 (top), and an example picture (bottom).

5.4.1. Comparison with other grammar families
First, we note that it is trivial to show that the class of CFN&Bguages is a proper
subset of CF Kolam languages.

Proposition 5.7. L(CFMG) c L(CFKG).

Intuitively, it is possible to consider the string sub-graarsG, andG;, of a CF
matrix grammaiM, all in Chomsky Normal Form. This means that we can define an
equivalent CF Kolam grammai’, in which rules corresponding to those®@tise only
the @ operator, while rules corresponding to thos&giuse only thes operator.

Also, it is easy to adapt classical string parsing methoasdtrix grammars [22].

Proposition 5.8. £(CFMG) and £(GG) are incomparable.

PROOF. First, we know that by definition Grid grammars can geneocatly square
pictures. On the other hand, it is impossible to define a CFixngitammar generating
infinitely many and only squares. This is because clasdigaggpumping lemmata can
be applied both t& (the “horizontal component” of the grammar), an@p1 < j <k
(see e.qg. [23]). Therefore the two language classes arenipable. O

6. Summary

We finish with a synopsis of the previous language familyusins, and a presen-
tation of the constraints on the tile set of tile grammarsesponding to each class.
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Tile grammars
Tiling systems Regional tile grammars
Locally testable languages Prlisa grammars
CF Kolam grammars

Grid grammars CF Matrix grammars

PrliSa grammars

Prlisa grammars in Nonterminal Normal Form are regioteagtiammars with the
constraint that tiles used in right part of rules must notehane of these forms:

A B||A C||C C||IC A
c Cc/|B CJ|A BJ|C B

with A, B, C all different nonterminals. (See Proposition 5.4.)

CF Kolam grammars

CF Kolam grammars in Chomsky Normal Form can be seen as r&ditengram-
mars such that the tile-sets used in the right parts of rulex have one of the following
forms:

# # # #
# # # # # # # A A #
# A A B B # # A A #
# AAA B B #|° # B B #
# # # # # # # B B #
# # # #

with A # B. (See Proposition 5.2.) Clearly, this is also compatibléahie constraint
of PriSa grammars.

Grid grammars

For grid grammars in Nonterminal Normal Form, we have theesaamstraints on
nonterminal rules as in CF Kolam grammars. Moreover, theeedifferent treatment
of terminal rules of the grid grammar, i.e. rules like— t,t € £. The corresponding
regional tile grammar rules (still maintaining the CF Kolgrammars constraints)
are used to generate froAsquaret-homogeneous pictures of any size, and are the
following:

# #
A—) #A]_Al#,A]_—> s
# A A A #
# oA A # ¥ OH OH OH# #
¥ # O # #
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¥ # # # #] # O# #
Aol # A A As # |1l # A #|, st
# # # # #] # o# #
# # #
# A # [ # # #
As— |l # A # 1]l # A5 #],
# A # ¥ O# #
# # #|

with Ay, ..., As all freshly introduced nonterminals. In practice, we arimgishe CF
Kolam grammar rules corresponding to terminal rules of grasmmars of Proposition
5.6, translated into regional tile grammar rules followthg construction of Proposi-
tion 5.2.

CF matrix grammars

Following the construction sketched in Proposition 5.7@dmving that CF matrix
grammars define a subset of the class defined by CF Kolam gresnwe note that
the constraints as for CF Kolam grammars apply. The addesti@nt is that if a
nonterminal is used as left part of a “horizontal” rule

# #
A B
A B
# # # #

W W #*

#
#
#

H H H R
# > >

then it shall not be used as left part of a “vertical” rule

H O HHHHF
HWW>>H
HFWW> > H
# HHH H

and vice versa. (This is a direct consequence of the infonoasiderations at the
beginning of Section 5.4.1 and the proof of Proposition)5.2.

From all that, regional tile grammars prove to be useful agifying, not overly
general, concept for hitherto separated grammar models.

AcknowledgmentsWe thank the anonymous referees for many suggestions, tis-par
ular the structure of proof of Proposition 4.3, and varioupiiovements of the parsing
algorithm.
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