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Abstract

Several old and recent classes of picture grammars, that variously extend context-free
string grammars in two dimensions, are based on rules that rewrite arrays of pixels.
Such grammars can be unified and extended using an approach, whereby the right part
of a rule is formalized by means of a finite set of permitted tiles. We focus on a simple
type of tiling, namedregional, and define the corresponding regional tile grammars.
They include both Siromoney’s (or Matz’s) Kolam grammars and their generalization
by Průša, as well as Drewes’s grid grammars. Regionally defined pictures can be rec-
ognized with polynomial-time complexity by an algorithm extending the CKY one for
strings. Regional tile grammars and languages are strictlyincluded into our previous
tile grammars and languages, and are incomparable with Giammarresi-Restivo tiling
systems (or Wang systems).

Key words: picture language, tiling, picture grammar, 2D language, CKY algorithm,
syntactic pattern recognition

1. Introduction

Since the early days of formal language theory, considerable research effort has
been spent towards the objective of extending grammar basedapproaches from one
to two dimensions (2D), i.e., from string languages to picture languages. Several ap-
proaches have been proposed (and sometimes re-proposed) inthe course of the years,
which in different ways take inspiration from regular expressions and from Chomsky’s
string grammars, but, to the best of our knowledge, no general classification or detailed
comparison of picture grammars has been attempted. It is fair to say that the immense
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success of grammar-based approaches for strings, e.g. in compilation and natural lan-
guage processing, is far from being matched by picture grammars. Several causes for
this may exist. First, the lack of broadly accepted reference models has caused a disper-
sion of research efforts. Second, the algorithmic complexity of parsing algorithm for
2D languages has rarely been considered, and very few efficient algorithms, and fewer
implementations, exist. Last, but not least, most grammar types have been invented by
theoreticians and their applicability in picture or image processing remains to be seen.

We try to remove, or at least to partially offset, the first twocauses, thus hoping to
set in this way the ground for applied research on picture grammars. First, we outline
how several classical models of picture grammars based on array rewriting rules can
be unified by a tiling based approach. A typical rewriting rule replaces a pixel array,
occurring in some position in the picture, by a right part, which is a pixel array of equal
size. Each grammar type considers different forms of rewriting rules, that we show
how to formalize using more or less general sets of tiles. Then, we focus on a simple
type of tile sets, those ofregional tile grammars. This new class generalizes some
classical models, yet it is proved to permit polynomial-time recognition of pictures by
an approach extending the classical Cocke-Kasami-Younger(CKY) algorithm [2] of
context-free (CF) string languages.

From the standpoint of more powerful grammar models, regional tile grammars
correspond to a natural restriction of our previoustile (rewriting) grammars(TG) [3,
4]. For such grammars, a rule replaces a rectangular area filled with a nonterminal
symbol with a picture belonging to the language defined by a specified set of tiles over
terminal or nonterminal symbols. It is known that the TG family dominates the family
of languages defined by thetiling systems(TS) of Giammarresi and Restivo [5] (which
are equivalent to Wang systems [6][7]), and that the latter are NP-complete with respect
to picture recognition time complexity. The new model enforces the constraint that the
local language used to specify the right part of a rule is madeby assembling a finite
number of homogeneous rectangular pictures. Such tiling isrelated to Simplot’s [8]
interesting closure operation on pictures.

Regional tile grammars are then shown to dominate other grammar types. The first
is the classical Kolam grammar type of Siromoney [9] (which,in its context-free form,
is equivalent to the grammars of Matz [10]); it is less general because the right parts
of grammar rules must be tiled in ways decomposable as vertical and horizontal con-
catenations. Three other grammar families are then shown tobe less general:Průša’s
type[11], grid [12], andcontext-free matrix grammars[13]. The language inclusion
properties for all the above families are thus clarified.

The presentation continues in Section 2 with preliminary definitions, then in Sec-
tions 3 and 4 with the definition of tile grammars, their regional variant, and relevant
examples. In Section 4.1 we present the parsing algorithm and prove its correctness
and complexity. In Section 5 we compare regional tile grammars and languages with
other picture language families. The paper concludes by summarizing the main results.

2. Basic definitions

The following notation and definitions are mostly from [14] and [3].
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Definition 2.1. LetΣ be a finite alphabet. A two-dimensional array of elements ofΣ is
a picture overΣ. The set of all pictures overΣ is Σ++. A picture language is a subset of
Σ
++.

For h, k ≥ 1, Σ(h,k) denotes the set of pictures of size(h, k) (we will use the notation
|p| = (h, k), |p|row = h, |p|col = k). #< Σ is used when needed as aboundary symbol; p̂
refers to the bordered version of picture p. That is, for p∈ Σ(h,k), it is

p =

p(1, 1) . . . p(1, k)
...

. . .
...

p(h, 1) . . . p(h, k)

p̂ =

# # . . . # #
# p(1, 1) . . . p(1, k) #
...

...
. . .

...
...

# p(h, 1) . . . p(h, k) #
# # . . . # #

A pixel is an element p(i, j) of p. If all pixels are identical to C∈ Σ the picture is called
C-homogeneousor C-picture.

Row and column concatenationsare denoted⊖ andȅ, respectively. p⊖q is defined
iff p and q have the same number of columns; the resulting picture is the vertical
juxtaposition of p over q. pk⊖ is the vertical juxtaposition of k copies of p; p+⊖ is the
corresponding closure.ȅ,kȅ ,+ȅ are the column analogous.

Definition 2.2. Let p be a picture overΣ. Thedomainof a picture p is the setdom(p) =
{1, 2, . . . , |p|row} × {1, 2, . . . , |p|col}. A subdomainof dom(p) is a set d of the form{x, x+
1, . . . , x′}×{y, y+1, . . . , y′}where1 ≤ x ≤ x′ ≤ |p|row, 1 ≤ y ≤ y′ ≤ |p|col. We will often
denote a subdomain by using its top-left and bottom-right coordinates, in the previous
case the quadruple(x, y; x′, y′).

The set of subdomains of p is denoted D(p). Let d= {x, . . . , x′}×{y, . . . , y′} ∈ D(p),
the subpicturespic(p, d) associated to d is the picture of size(x′ − x + 1, y′ − y + 1)
such that∀i ∈ {1, . . . , x′ − x+ 1} and∀ j ∈ {1, . . . , y′ − y+ 1}, spic(p, d)(i, j) = p(x+ i −
1, y+ j − 1).

A subdomain is called C-homogeneous (or homogeneous) when its associated sub-
picture is a C-picture. C is called thelabelof the subdomain.

Two subdomains da = (ia, ja; ka, la) and db = (ib, jb; kb, lb) arehorizontally adjacent
(resp. vertically adjacent) iff jb = la + 1, and kb ≥ ia, ka ≥ ib (resp. ib = ka + 1, and
lb ≥ ja, la ≥ jb). We will call two subdomains adjacent, if they are either vertically or
horizontally adjacent.

The translationof a subdomain d= (x, y; x′, y′) by displacement(a, b) ∈ Z
2 is

the subdomain d′ = (x + a, y + b; x′ + a, y′ + b). We will write d′ = d ⊕ (a, b). We
will also sometimes apply⊕ to a set W of subdomains, meaning the set containing the
translations of all the elements of W.

Definition 2.3. Ahomogeneous partitionof a picture p is any partitionπ = {d1, d2, . . . , dn}

of dom(p) into homogeneous subdomains d1, d2, . . . , dn.
The unit partitionof p, writtenunit(p), is the homogeneous partition ofdom(p)

defined by single pixels.
An homogeneous partition is calledstrongif adjacent subdomains have different

labels.
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We observe that if a picturep admits a strong homogeneous partition of dom(p)
into subdomains, then the partition is unique and will be denoted byΠ(p).
To illustrate, in Figure 2 are depicted pictures with outlined borders of subdomains.
The marked partitions of the last two pictures are homogeneous but not strong, because
some adjacent subdomains hold the same letter.

We now introduce the central concepts oftile, andlocal language.

Definition 2.4. We calltile a square picture of size (2,2). We denote byJpK the set of
all tiles contained in a picture p.
LetΣ be a finite alphabet. A (two-dimensional) language L⊆ Σ++ is local if there exists
a finite setθ of tiles over the alphabetΣ ∪ {#} such that L= {p ∈ Σ++ | Jp̂K ⊆ θ}. We
will refer to such language as LOC(θ).
Locally testable languagesin the strict sense (LT) are analogous to local languages,
but are defined through square tiles with side possibly bigger than 2. In the rest of the
paper we will call these variants of tilesk-tiles, to avoid confusion with standard2× 2
tiles. For instance, 3-tiles are square pictures of size (3,3).

Last, we definetiling systems(TS). Tiling systems define the closure w.r.t. alpha-
betic projection of local languages, and are presented and studied extensively in [14].

Definition 2.5. A tiling system(TS) is a 4-tupleT = (Σ, Γ, θ, π), whereΣ andΓ are
two finite alphabets,θ is a finite set of tiles over the alphabetΓ ∪ {#}, andπ : Γ→ Σ is
an alphabetic projection.
The language defined by the tiling systemT (in the rest of the paper denoted by L(T ))
is the set of pictures{π(p) | p̂ ∈ LOC(θ)}.

3. Tile grammars

We are going to introduce and study a very general grammar type specified by a
set of rewriting rules (or productions). A typical rule has aleft and a right part, both
pictures of unspecified but equal (isometric) size. The leftpart is anA-homogeneous
picture, whereA is a nonterminal symbol. The right part is a picture of a locallanguage
over nonterminal symbols. Thus a rule is a scheme defining a possibly unbounded
number of isometric pairs: left picture, right picture. In addition there are simpler rules
whose right part is a single terminal.

The derivation process of a picture starts from aS(axiom)-homogeneous picture.
At each step, anA-homogeneous subpicture is replaced with an isometric picture of
the local language, defined by the right part of a ruleA→ . . .. The process terminates
when all nonterminals have been eliminated from the currentpicture.

For simplicity, this presentation focuses on nonterminal rules, thus excluding for
instance that both terminal and nonterminal symbols are in the same right part. This
normalization has a cost in terms of grammar dimension and readability, but does not
lose generality. Indeed, more general kinds of rules (e.g. like those used in [3]), can
be easily normalized by introducing some auxiliary nonterminals and rules. We will
present and use analogous transformations when comparing with other grammar de-
vices in Section 5, where we will talk aboutnonterminal normal forms.
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Definition 3.1. A tile grammar (TG)is a tuple(Σ,N,S,R), whereΣ is a set ofterminal
symbols, N is a set ofnonterminalsymbols, S∈ N is thestarting symbol, R is a set of
rules.
Let A∈ N. There are two kinds of rules:

Fixed size: A→ t, where t∈ Σ; (1)

Variable size: A→ ω, ω is a set of non-concave tiles over N∪ {#}. (2)

Concave tilesare like:
B B
C B

or a rotation thereof, whereB , # (so we use tiles having this structure only for bor-
ders). It is easy to see that all pictures inLOC(ω), whereω is a set of non-concave
tiles, admit a strong homogeneous partition.

Picture derivation is next defined as a relation between partitioned pictures.

Definition 3.2. Consider a tile grammar G= (Σ,N,S,R), let p, p′ ∈ (Σ ∪ N)(h,k) be
pictures of identical size. Letπ = {d1, . . . , dn} be a homogeneous partition ofdom(p).
We say that(p′, π′) derives in one stepfrom (p, π), written

(p, π)⇒G (p′, π′)

iff, for some A∈ N, there exist inπ an A-homogeneous subdomain di = (x, y; x′, y′),
called application area, and a rule A→ α ∈ R such that p′ is obtained substituting
spic(p, di) in p with:

• α ∈ Σ, if A→ α is of type (1);1

• s ∈ LOC(α), if A→ α is of type (2).

Moreover,π′ = (π \ {di}) ∪ (Π(s) ⊕ (x− 1, y− 1)).

We say that(p′, π′) derives from (p, π) in n steps, written(p, π)
n
⇒G (p′, π′), iff p = p′

and π = π′, when n= 0, or there are a picture p′′ and a homogeneous partition

π′′ such that(p, π)
n−1
=⇒G (p′′, π′′) and (p′′, π′′) ⇒G (p′, π′). We use the abbreviation

(p, π)
∗
⇒G (p′, π′) for a derivation with a finite number of steps.

Roughly speaking, at each step of the derivation anA-homogeneous subpicture is
replaced with an isometric picture of the local language, defined by the right part of a
rule A→ α, that admits a strong homogeneous partition. The process terminates when
all nonterminals have been eliminated from the current picture.

In the rest of the paper, and when considering also other grammatical devices, we

will drop theG symbol when it is clear from the context, writing e.g. (p, π)
∗
⇒ (p′, π′).

1In this case,x = x′ andy = y′.
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Definition 3.3. Thepicture languagedefined by a grammar G (written L(G)) is the set
of p ∈ Σ++ such that

(

S|p|, {dom(p)}
) ∗
⇒G (p, unit(p))

For short we also write S
∗
⇒G p.

We emphasize that, to generate a picture of a certain dimension, one must start
from a picture of the same dimension.

We also will use the notationL(X) to denote the class of languages generated by
some formal deviceX, e.g.L(TG) will denote the class of languages generated by tile
grammars.

The following examples will be used later for comparing language families.

Example 1. One row and one column ofb’s.
The set of pictures having one row and one column (both not at the border) that hold
b’s, and the remainder of the picture filled with a’s is definedby the tile grammar G1 in
Figure 1, where the nonterminals are{A1,A2,A3,A4,V1,V2,H1,H2,X,A, B}. We recall

G1 : S→

u

w

w

w

w

w

w

w

w

v

# # # # # # #
# A1 A1 V1 A2 A2 #
# A1 A1 V1 A2 A2 #
# H1 H1 V1 H2 H2 #
# A3 A3 V2 A4 A4 #
# A3 A3 V2 A4 A4 #
# # # # # # #

}

�

�

�

�

�

�

�

�

~

Ai →

u

w

w

w

w

v

# # # #
# X X #
# Ai Ai #
# Ai Ai #
# # # #

}

�

�

�

�

~

|

u

v

# # # #
# X X #
# # # #

}

~ , for 1 ≤ i ≤ 4

X→

u

v

# # # # #
# A X X #
# # # # #

}

~ | a; Hi →

u

v

# # # # #
# B Hi Hi #
# # # # #

}

~ | b, for 1 ≤ i ≤ 2

A→ a; B→ b; Vi →

u

w

w

w

w

v

# # #
# B #
# Vi #
# Vi #
# # #

}

�

�

�

�

~

| b, for 1 ≤ i ≤ 2.

p1 =

a a b a a
b b b b b
a a b a a
a a b a a

Figure 1: Tile grammarG1 (top) and a picturep1 (bottom) of Example 1.

that J K denotes the set of tiles contained in the argument picture. This notation is
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preferable to the listing of all tiles, shown next:

S→

{

# #
# A1

,
# #
A1 A1

, . . . ,
A1 V1

H1 V1
,

V1 A2

V1 H2
, . . . ,

A4 A4

# #
,

A4 #
# #

}

.

An example of derivation is shown in Figure 2, where partitions are outlined for read-
ability.

S S S S S
S S S S S
S S S S S
S S S S S

⇒

A1 A1 V1 A2 A2

H1 H1 V1 H2 H2

A3 A3 V2 A4 A4

A3 A3 V2 A4 A4

⇒

⇒

A1 A1 V1 A2 A2

H1 H1 V1 H2 H2

X X V2 A4 A4

A3 A3 V2 A4 A4

⇒

A1 A1 V1 A2 A2

H1 H1 V1 H2 H2

A X V2 A4 A4

A3 A3 V2 A4 A4

⇒

⇒

A1 A1 V1 A2 A2

H1 H1 V1 H2 H2

A a V2 A4 A4

A3 A3 V2 A4 A4

⇒

A1 A1 V1 A2 A2

H1 H1 V1 H2 H2

a a V2 A4 A4

A3 A3 V2 A4 A4

+

⇒

a a b a a
b b b b b
a a b a a
a a b a a

Figure 2: Derivation using grammarG1 of Example 1, Figure 1, with outlined partitions.

Example 2. Pictures with palindromic rows. Each row is an even palindrome over
{a, b}. The grammar G2 is shown in Figure 3.

G2 : SP →

u

w

w

w

w

v

# # # #
# R R #
# SP SP #
# SP SP #
# # # #

}

�

�

�

�

~

|

u

v

# # # #
# R R #
# # # #

}

~

R→

u

v

# # # # # #
# A R R A′ #
# # # # # #

}

~ |

u

v

# # # # # #
# B R R B′ #
# # # # # #

}

~

R→

u

v

# # # #
# A A′ #
# # # #

}

~ |

u

v

# # # #
# B B′ #
# # # #

}

~

A→ a; B→ b; A′ → a; B′ → b.

p2 =

a b b a
b a a b
a a a a

Figure 3: Tile grammarG2 (top) and a picturep2 (bottom) of Example 2.
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3.1. Properties of tile grammars

First, we state a language family inclusion between tiling systems (Definition 2.5)
and tile grammars, proved in [3]. We will illustrate it with an example, both to give the
reader an intuitive idea of the result, and to later re-use the example.

Proposition 3.1. L(TS) ⊂ L(TG).

Consider a TST = (Σ, Γ, θ, π), whereΣ is the terminal alphabet,θ is a tile-set,Γ is
the tile-set alphabet, andπ : Γ→ Σ is an alphabetic projection. It is quite easy to define
a TGT′ such thatL(T′) = L(T). Informally, the idea is to take the tile-setθ and add
two markers, e.g.{b,w} in a “chessboard-like” fashion to build up a tile-set suitable for
the right part of the variable size starting rule; other straightforward fixed size rules are
used to encode the projectionπ.

We note how bothL(TS) andL(TG) are closed under intersection with the class
of all height-1 pictures: the classes resulting in that intersection are the well-known
classes of recognizable and context-free, respectively, string languages. The inclusion
is hence proper: any context-free, non-recognizable string language is also (when con-
sidered as a picture language) inL(TG), but not inL(TS).

The next example illustrates the reduction from a TS to a TG.

Example 3. Square pictures of a’s.
The TS T3 is based on a local language over{0, 1} such that all pixels of the main
diagonal are 1 and the remaining ones are 0, and on the projection π(0) = π(1) = a.
T3 and the equivalent TG G3 are shown in Figure 4.

The “chessboard-like” construction is used to ensure that the only strong homoge-
neous partition obtained in applying a rule is the one in which partitions correspond
to single pixels. This allows the application of terminal rules encoding projectionπ.
Note that in the first rule of grammar G3 we used tiles arising from the two possible
chessboard structures, i.e. the one with a “black” in top-left position, and the one with
a “white” in the same place. Indeed, to fill areas above and below the diagonal with
0’s we need both tiles

0b 0w

0w 0b
and

0w 0b

0b 0w
.

Note also that the construction is applied in a straightforward way, just by imposing the
two complementary chessboard patterns on it. We could simplify it in this particular
case, because it is not necessary to distinguish1w and1b, as they appear only on the
diagonal so they are never horizontally or vertically adjacent.

The following complexity property will be used to separate the TG language family
from several subfamilies to be introduced.

In this paper as “parsing problem” we consider the problem ofdeciding if a given
input picture is inL(G), for a fixed grammarG (i.e. the also callednon-uniform mem-
bership problem). The complexity of parsing algorithms is thus expressed interm of
the size of the input picture.

Proposition 3.2. The parsing problem forL(TG) is NP-complete.
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T3 : θ =

u
wwwwwwv

# # # # # #
# 1 0 0 0 #
# 0 1 0 0 #
# 0 0 1 0 #
# 0 0 0 1 #
# # # # # #

}
������~
, π(0) = a, π(1) = a.

G3 : S→

u
wwwwwwv

# # # # # #
# 1b 0w 0b 0w #
# 0w 1b 0w 0b #
# 0b 0w 1b 0w #
# 0w 0b 0w 1b #
# # # # # #

}
������~
∪

u
wwwwwwv

# # # # # #
# 1w 0b 0w 0b #
# 0b 1w 0b 0w #
# 0w 0b 1w 0b #
# 0b 0w 0b 1w #
# # # # # #

}
������~

1w→ a, 1b→ a, 0w→ a, 0b→ a.

Figure 4: For Example 3 the TS defining{a(n,n) | n > 1} (top), and the equivalent TG grammar (bottom).

PROOF. Since the construction, illustrated in Example 3, used forproving Proposition
3.1 can be done in polynomial time, and thanks to the fact thatthe parsing problem
for L(TS) is NP-complete (see [15] where tiling systems are calledhomomorphisms
of local lattice languages, or [16]) it follows that parsingL(TG) is NP-hard.
For NP-completeness, we show that parsingL(TG) is in NP. First, we assume without
loss of generality that a TGG does not contain anychain rule, i.e. a rule of the form

A→

u
wwv

# # # #
# B B #
# B B #
# # # #

}
��~ , B ∈ N

that corresponds to a renaming rule of a string grammar.
If this is not the case, it is possible to discard chain rules by directly using the well-

known (e.g. [17]) approach for context-free string grammars.
We assume to have a candidate derivation
(

S(h,k), {dom(p)}
)

⇒G (p1, π1)⇒G (p2, π2)⇒G · · · ⇒G (pn−1, πn−1)⇒G (p, unit(p))

and we are going to prove that checking its correctness takespolynomial time inh, k
(size of the picture), by considering the dominant parameters of time complexity.
First, the lengthn of this derivation, since there are no chain rules, is at mosth · k. In
fact, we start from a partition with only one element coinciding with dom(p), and at
each step at least one element is added, arriving at stepn, where the number of ele-
ments ish · k, each corresponding to a pixel.
For each step, we must find the application area in (pi , πi), and the corresponding
rewritten nonterminalA, by comparing (pi , πi) with (pi+1, πi+1). The number of com-
parisons to be performed is at mosth · k.
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Then, we have to find a ruleA → ω in R which is compatible with the rewritten sub-
picture ofpi+1 corresponding to the application area. So, at most we must check every
rule inR, and every tile of its right part, on a subpicture, given by the application area,
that has size at mosth · k. Hence, we have to consider for this step a number of checks
that is at most

h · k · |R| · max
(A→ω)∈R

|ω|

Each of these considered steps can be done in polynomial timein every reasonable
machine model, hence the resulting time complexity remainspolynomial.

From [3] it is known that the family of TG languages is closed w.r.t. union, col-
umn/row concatenations, column/row closure operations, rotation, and alphabetic pro-
jection.

As strings can always be seen as pictures having only one row,we mention that all
the families presented in this work, that exactly define the context-free string languages
if restricted to one dimension (i.e. all but tiling systems and grid grammars, presented
in Section 5.3), are not closed w.r.t. intersection and complement.

4. Regional tile grammars

We now introduce the central concept ofregional language, and a corresponding
specialization of tile grammars. The adjective “regional”is a metaphor of geograph-
ical political maps, where different regions are filled withdifferent colors; of course,
regions are rectangles.

Regional tile grammars are central to this work, because they are the most general
among the polynomial-time parsable grammar models considered in this paper. We
will see that it is easy to define the other kinds of 2D grammarsby restricting the tiles
used in regional tile grammars.

Definition 4.1. A homogeneous partition isregional(HR) iff distinct (not necessarily
adjacent) subdomains have distinct labels. A picture p isregionalif it admits a HR
partition. A language isregionalif all its pictures are so.

For example, consider Figure 5: the partitions in subdomains of the picture on the
left is homogeneous and strong, but not regional, since fourdifferent subdomains bear
the same symbolA. On right, a picture with regional partitions outlined is depicted.

A A B A A
A A B A A
D D B D D
A A C A A
A A C A A

A1 A1 B A2 A2

A1 A1 B A2 A2

D1 D1 B D2 D2

A3 A3 C A4 A4

A3 A3 C A4 A4

Figure 5: Pictures with outlined partitions in subdomains:strong homogeneous partition (left), and regional
(right).
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Another (negative) example is in Figure 4: a “chessboard-like” picture admits a
unique homogeneous partition, in which every subdomain corresponds to a single pixel.
Note that in general these partitions are strong (adjacent subdomains have different
symbols, like in a chessboard), but are not regional (e.g. inthe variable size rule of
grammarG3 there are multiple 0b symbols).

Definition 4.2. A regional tile grammar (RTG)is a tile grammar (see Definition 3.1),
in which every variable size rule A→ ω is such that LOC(ω) is a regional language.

We note that the tile grammars presented in Examples 1 and 2 are regional, while
the one of Example 3 (G3) is not. Another RTG is presented in the following example.

Example 4. Misaligned palindromes.
A picture is a “ribbon” of two rows, divided into four fields: at the top-left and at

the bottom right of the picture are palindromes as in Example2 (where rules for Sp
are defined). The other two fields are filled with c’s and must not be adjacent. The
corresponding regional tile grammar G4 is shown in Figure 6.

G4 : S→

u

w

w

v

# # # # # # # #
# P1 P1 P1 P1 C1 C1 #
# C2 C2 P2 P2 P2 P2 #
# # # # # # # #

}

�

�

~

; P1→ SP; P2 → SP

Ci →

u

v

# # # # #
# C Ci Ci #
# # # # #

}

~ | c, for 1 ≤ i ≤ 2; C→ c.

p4 =
a a b b a a c c c c
c c b a b a a b a b

Figure 6: Regional tile grammarG4 (top) and a picturep4 (bottom) of Example 4.

Next, we study the form of tiles occurring in a regional locallanguage.

Definition 4.3. Consider a tile setθ over the alphabetΣ ∪ {#}.
We define thehorizontal and vertical adjacency relationsHθ,Vθ ⊆ (Σ ∪ {#})2 as

AHθB⇔ A , B∧ ∃t ∈ θ,∃i ∈ {1, 2} : t(i, 1) = A∧ t(i, 2) = B;

AVθB⇔ A , B∧ ∃t ∈ θ,∃ j ∈ {1, 2} : t(1, j) = A∧ t(2, j) = B.

Then, theadjacency relationsareAθ = Hθ ∪Vθ andA′
θ
= H−1

θ
∪Vθ.

Proposition 4.1. Let p ∈ Σ++ and θ = Jp̂K; picture p is regional iff the incidence
graphs of bothAθ ∩ Σ

2 andA′
θ
∩ Σ2 are acyclic.

PROOF. First of all, we note that tiles occurring in ˆp for a regional picturep have the
following form (or a rotation thereof):

A A
A A

,
A A
B B

,
A A
B C

,
A B
C D

,
# #
A #

,
# #
A A

,
# #
A B

,
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with A, B,C,D ∈ Σ all different. The incidence graphs of the adjacency relations of
this tile-set are clearly all acyclic. Moreover, a picture exclusively made of these kinds
of tiles admits a unique strong homogeneous partition. So, if we start from a regional
picturep̂, we obtain acyclic incidence graphs for the tile-set made ofall its tiles.

Vice versa, if we consider a tile setθ such that its adjacency relations are both
acyclic, then tiles inθmust be like those considered in the previous paragraph. Also, for
any picture inLOC(θ), an acyclicAθ means that any path going from the top-left corner
and arriving to the bottom-right corner and performing onlydown and right movements
cannot traverse two distinct subdomains bearing the same label. ForA′θ it is analogous,
but starting from the top-right corner, arriving to the bottom-left corner and performing
only left and down movements. But this means thatLOC(θ) is a regional language.

Notice that this result uses the adjacency relations for tile-sets just described, i.e.
Aθ, andA′

θ
, in which the movements intuitively go from left to right andfrom top to

bottom, and from right to left and from top to bottom. The sameresults hold also for
different choices, e.g. we could consider aA′′t = Hθ ∪ V

−1
θ

, i.e. moving from left to
right and from bottom to top, instead ofA′

θ
.

Definition 4.4. A tile setθ is calledsimple regionaliff there exists a regional picture p
such thatθ = Jp̂K.

Proposition 4.2. For every simple regional tile setθ, the language LOC(θ) is regional.

PROOF. First, let us suppose thatL = LOC(θ) is non-regional. But this means that
there existsp ∈ L that is not regional. Then,θ is not simple regional, becauseJp̂K is
not (by Proposition 4.1).

Proposition 4.3. A local language L is regional iff there exist some simple regional tile
setsθ1, θ2, . . . , θn, n≥ 1, such that L=

⋃

1≤i≤n LOC(θi).

PROOF. If L is regional, then by Proposition 4.1 it suffices to set

{θ1, θ2, . . . , θn} = {Jp̂K | p ∈ L}.

The other direction is a consequence of Proposition 4.2 and the fact that a finite union
of regional languages is regional.

Thanks to this result and without loss of generality2, in the rest of the paper we will
always consider regional tile grammar where the right partsof type (2) rules are simple
regional. In practice, right parts will be written asJqK, whereq is a bordered regional
picture.

4.1. Parsing for regional tile grammars

To present our version of the Cocke-Kasami-Younger (CKY) algorithm [2], we
have to generalize from substrings to subpictures. Like theCKY algorithm for strings,

2X→ θ generates the same language as the rulesX→ θ1 | θ2 | . . . | θn.
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our algorithm works bottom-up, by considering all subpictures of the input picture,
starting from single pixels (i.e. 1× 1 subpictures), and then increasing their size. As
a substring is identified by the positions of its first and lastcharacters, a subpicture is
conveniently identified by its subdomain. For simplicity and without loss of generality,
we assume that the regional tile grammar considered does notcontain chain rules.

The algorithm’s main data structure is therecognition matrix, a four-dimensional
matrix, holding lists of nonterminals, that the algorithm fills during its run. A non-
terminal A is put into the matrix entry corresponding to subdomaind, if the same
nonterminal can derive the subpicture spic(p, d).

To decide if a rule can be used to derive the subpicture corresponding to subdomain
d, the right part of the rule is examined, together with all thesubdomains contained in
d. Type (1) rules are easily managed, because they can only generate single terminal
pixels, therefore they are considered only at the beginningwith unitary subdomains.
For example, let us consider grammarG1 of Example 1 (Figure 1), and its derivation
shown in Figure 2. The pixel at position (3, 2) is ana, and the only possible generating
terminal rules areX → a andA → a. So we enter bothX andA into the recognition
matrix at (3, 2; 3, 2).

For a type (2) ruleA→ ω we need to check all the pictures inLOC(ω), isometric
to the considered subpicture. Thanks to the regional constraint, every nonterminal used
in the right part of the rule corresponds to a unique homogeneous rectangular area,
if the rule is applicable. So we examine all the sets of nonterminals stored in the
recognition matrix for all the subdomains contained ind: if we are able to find a set
of subdomains which comply with the adjacency relations of the right part of the rule,
then the rule is applicable. For example, let us consider thesubdomain (3, 1; 3, 2) for
the derivation of Figure 2. Subdomains (3, 1; 3, 1) and (3, 2; 3, 2) have already been
considered, being “smaller”, and the set{A,X} has been entered at positions (3, 1; 3, 1)
and (3, 2; 3, 2). This means that, if we considerX at (3, 1; 3, 1), andA at (3, 2; 3, 2), then
all the adjacency relations of the type (2) rule forX in Figure 1 are satisfied (namely,
#H A, AH X, XH #, #V A, AV #, #VX, XV #). So the algorithm placesX into
(3, 1; 3, 2), since subpicture (3, 1; 3, 2) can be parsed toX.

Remark In the pseudo-code, loops on Cartesian products are to be executed in lexico-
graphic order. For example, in loop

for each (i, j) ∈ {1, . . . , 10} × {3, 5, . . . , 11}: . . .
the control variables (i.e. i and j in this case) will go through the following sequence
of values:(1, 3), (1, 5), . . . , (1, 11), (2, 3), (2,5), . . . , (10, 11).

We now present the details of the algorithm. Letp be a picture of size (m, n), to be
parsed with a regional tile grammarG = (Σ,N,S,R).

Definition 4.5. A recognition matrixM is a 4-dimensional m× n×m× n matrix over
the powerset of N.

Being a generalization of the CKY algorithm for strings, themeaning ofA ∈
M(i, j; h, k) is that A can derive the subpicture spic(p, (i, j; h, k)). In fact, only cells
(i, j; h, k), with h ≥ i, k ≥ j, are used: these cells are the four-dimensional counterpart
of the upper triangular matrix used in classical CKY algorithm.
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We introduce another data structure, thesubdomains vector, to be used for recog-
nizing the applicability of type (2) rules.

Definition 4.6. Consider a recognition matrixM, and a subdomain d= (i, j; k, l).
Let the nonterminal set N be arbitrarily ordered as A1,A2, . . . , A|N|. Thesubdomains
vectorD(M, d) is a tuple(D1,D2, . . . ,D|N|), where every Dt is the set of subdomains
d′ such that At ∈ M(d′) and d′ is a subdomain contained in d; if Dt is empty, then its
conventional value is set to(0, 0; 0, 0).

For any nonterminal A, the notationD(M, d)|A denotes the component of the vector
corresponding to A.

To simplify the notation, we shall writeD(d) instead ofD(M, d) at no risk of
confusion, because the algorithm refers to a unique recognition matrixM. Moreover,
we use the notationD(d) for referring to the set of all possible vectors of subdomains
present inD(d), i.e.D(d) := D1 × D2 × . . . × D|N|.

The main role of this ancillary data structure is to assign all the subdomains con-
tained in a given subdomaind, to nonterminals, if possible, by considering the already
filled portion ofM. UsingD, we are able to check if the adjacency relations of rules
are satisfied. For example, if a ruleA → α demandsA2HαA8, then we only have to
check if one of the elements ofD(d) has components 2 and 8 that are horizontally ad-
jacent, with the domain corresponding to nonterminalA2 to the left. Figure 7 shows
the procedure used to compute vectorD.

It is important to remark thatD is central for keeping the time of the parsing algo-
rithm polynomial w.r.t. the input size. Indeed, in a regional tile grammar the number of
homogeneous subdomains to be considered for a candidate application area is at most
|N|, because the number of different homogeneous areas arisingfrom the application
of a rule is at most the number of nonterminals of the grammar.HenceD has size
less than (m2n2)|N|. In principle, it would be possible to adapt this algorithm also to
an unrestricted tile grammar, but in this case the number of elements to be considered
could be exponential, as the number of different homogeneous subdomains could be as
big as the number of pixels of the application area, i.e. up tom · n (see e.g. grammar
G3 in Figure 4).

The actual procedure for checking if a rule of the grammar canbe applied to a
given rectangle (i, j; k, l) is presented in Figure 8. Based on vectorD, computed for the
relevant subdomain (i, j; k, l), the procedure checks, for a right partω of a variable-size
rule, if all adjacency constraints are satisfied.

TheMain procedure, presented in Figure 9, is structured as a straightforward gen-
eralization to two dimensions of the CKY parsing algorithm.The input picturep is in
L(G) iff S ∈M(1, 1; |p|row, |p|col).

4.1.1. Correctness and complexity of parsing
We start with a technical lemma, used to prove the correctness of the CheckRule

procedure.

Lemma 4.1. Let ω be a regional set of tiles and d a subdomain. CheckRule(ω, d)
returns true iff there exists a rule C→ ω, such that(p0, π0)⇒G (p1, π1), where d∈ π0,
andspic(p0, d) is a C-picture.
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ProcedureComputeD(M, (i, j; k, l)):
Every set inD is empty;
for each (i′, j′) ∈ {i, . . . , k} × { j, . . . , l}:

for each (k′, l′) ∈ {i′, . . . , k} × { j′, . . . , l}:

for each A ∈M(i′, j′; k′, l′):

put (i′, j′; k′, l′) into the setD|A;

for each A ∈ N:

if D|A = ∅ then put (0, 0; 0, 0) into the setD|A;

return D.

Figure 7: ComputeD

PROOF. By construction, a true output of CheckRule(ω, d) is equivalent to the fact
that there existq ∈ LOC(ω) and a partition ofd into the subdomainsd1, d2, . . . , dr ,
such that:

1. every spic(q, d j) is anA-picture, for some nonterminalA ∈M(d j);
2. if spic(q, d j) is anA-picture, then for alldk , d j the subpicture spic(q, dk) is not

anA-picture.

This means thatΠ(q) ⊕ (x − 1, y − 1), whered = (x, y; x′, y′), is the HR partition
{d1, d2, . . . , dr }. Moreover, starting from (p0, π0), where spic(p0, d) is a C-picture, it
is possible to apply a ruleC → ω in a derivation step (p0, π0) ⇒G (p1, π1), where
π0 = {d, d′1, d

′
2, . . . , d

′
n}, π1 = {d′1, d

′
2, . . . , d

′
n}∪ {d1, d2, . . . , dr}, andq = spic(p1, d) ∈

LOC(ω).

After this, the correctness is easy to prove, analogously tothe 1D case [2].

Theorem 4.1. M(d) = {A ∈ N | A
∗
⇒G spic(p, d)}, for every subdomain d.

PROOF. The proof is by induction on the size of subdomaind.

Base: d = (i, j; i, j). This means that|spic(p, d)| = (1, 1). Hence,A
∗
⇒G spic(p, d)

iff A → spic(p, d) ∈ R. This case is handled by the first loop of procedure Main, the
one over each pixelp(i, j). If spic(p, d) = t, and there exists a ruleA → t, then the
algorithm entersA into M(d). Vice versa,A ∈M(d) means that the algorithm has put
A in the set, therefore there must exist a ruleA→ spic(p, d).

Induction: let us considerd = (i, j; i + v− 1, j + h− 1), v > 1, orh > 1, or both. We

prove thatA
∗
⇒G spic(p, d) impliesA ∈M(d). In this case, the size of the subpicture is

not (1, 1), therefore the first rule used in the derivationA
∗
⇒G spic(p, d) is a variable size

ruleA→ ω. Thanks to the two nested loops with control variables (v, h) and (i, j), when
the algorithm considersd, it has already considered all its subdomainsd1, d2, . . . , dk.

By the induction hypothesis, for every 1≤ j ≤ k, B
∗
⇒G spic(p, d j) impliesB ∈M(d j).

Hence (Lemma 4.1), CheckRule(ω, d) must be true, and the algorithm putsA in M(d).
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ProcedureCheckRule(D, ω, (i, j; k, l)) :
for each (d1, d2, . . . , d|N|) ∈ D;

f := True;

for each (Na,Nb) ∈ Hω:

if da = (ia, ja; ka, la) anddb = (ib, jb; kb, lb) are not such that
jb = la + 1, andkb ≥ ia, ka ≥ ib,
then f := False;

for each (Na,Nb) ∈ Vω:

if da = (ia, ja; ka, la) anddb = (ib, jb; kb, lb) are not such that
ib = ka + 1, andlb ≥ ja, la ≥ jb,
then f := False;

for each (#,Na) ∈ Hω:

if da = (ia, ja; ka, la) and ja , j then f := False;

for each (Na, #) ∈ Hω:

if da = (ia, ja; ka, la) andla , l then f := False;

for each (#,Na) ∈ Vω:

if da = (ia, ja; ka, la) andia , i then f := False;

for each (Na, #) ∈ Vω:

if da = (ia, ja; ka, la) andka , k then f := False;

if f then return True;

return False.

Figure 8: CheckRule
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ProcedureMain:
Every set inM is empty;
for eachpixel p(i, j) = t:

if there exists a fixed size ruleA→ t ∈ R,
then put A into the setM(i, j; i, j);

for each (v, h) ∈ {1, . . . ,m} × {1, . . . , n}:

for each (i, j) ∈ {1, . . . ,m− v} × {1, . . . , n− h}:

D := ComputeD(M, (i, j; i + v− 1, j + h− 1));

for eachvariable size rule (A→ ω) ∈ R:

if CheckRule(D, ω, (i, j; i + v− 1, j + h− 1)),
then put A into the setM(i, j; i + v− 1, j + h− 1);

return M.

Figure 9: Main

Conversely, we prove thatA ∈ M(d) implies A
∗
⇒G spic(p, d). A ∈ M(d) means

that procedure Main has putA in the set. Therefore, CheckRule(ω, d) must be true.
Thanks to Lemma 4.1, this is equivalent to the existence of anapplicable variable

size ruleA → ω for the first step of the derivationA
∗
⇒G spic(p, d). The rest of the

derivation holds by induction hypothesis.

Theorem 4.2. The parsing problem forL(RTG) has temporal complexity that is poly-
nomial with respect to the input picture size.

PROOF. First, it is straightforward to see thatComputeD performs a number of opera-
tions that isO

(

|N| ·m2n2
)

.
Let us now consider theCheckRuleprocedure. This procedure performs a loop for

each element ofD, which contains a number of elements that is less than (m2n2)|N|,
and nested loops onHω andVω. Therefore the number of checks performed by it is
dominated by a value that is

O

(

(m2n2)|N| · max
(A→ω)∈R

{|Hω|, |Vω|}

)

.

Coming finally to theMain procedure, we note that its core part consists of two
nested loops, over two sets that are at mostm · n each. The body of these two loops
consists in a call to ComputeD, and then another loop over the grammar rules, com-
prising a call toCheckRule(hence the dominant part).

Therefore, the number of operations performed is at most

O

(

|R| · max
(A→ω)∈R

{|Hω|, |Vω|} · (m2n2)|N| ·m2n2

)

.
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x′ 1 x 1 x 0 x
0 1′ 0 1 0 0 0
x 1 x′ 1 x 0 x
1 1 1 1′ 1 1 1
x 1 x 1 x′ 0 x
0 1 0 1 0 0′ 0
x 1 x 1 x 0 x′

Figure 10: A picture of the languageLlt of Example 5

Each of these operations can be done in polynomial time in every reasonable machine
model, therefore the resulting time complexity is polynomial w.r.t. the picture size.

The property of having polynomial time complexity for picture recognition, united
with the rather simple and intuitively pleasing form of RTG rules, should make them a
worth addition to the series of array rewriting grammar models conceived in past years.

5. Comparison with other language families

In this section we prove or recall some inclusion relations between grammar models
and corresponding language families. To this end we rely on the examples of Section
4, and on the separation of complexity classes.

In presenting other grammatical models we have been faced with a dilemma: to
stick to the original formulation, or to reformulate the definition in terms more compa-
rable with our own. We have opted for the former, because otherwise we would have
incurred the penalty of proving that the old and new formulations are equivalent.

We start by comparing regional tile grammars and tiling systems. To this end, we
adapt a proof and an example introduced by Průša in [11].

Example 5. Consider a language Llt over the alphabetΣ = {0, 0′, 1, 1′, x, x′} where
the “primed” symbols are used on the diagonal. A picture p is in Llt if, and only if:

1. p is a square picture of odd size;
2. p(i, j) ∈ {0, 1, x}, when i, j; p(i, j) ∈ {0′, 1′, x′}, otherwise.
3. p(i, j) ∈ {x, x′} iff i and j are odd;
4. if p(i, j) ∈ {1, 1′} then the i-th row or the j-th column (or both) is made of symbols

taken from{1, 1′}.

An example picture is shown in Figure 10. It is quite easy to see that Llt is a locally
testable language, definable through a set of 3-tiles. Primed symbols by definition
appear only on the main diagonal, and are used to have only square pictures.

Proposition 5.1. L(RTG) andL(LT) are incomparable.
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PROOF. First, we know from [14] thatL(LT) ⊂ L(TS), and thatL(RTG) define
context-free string languages, if restricted to one dimension, so there are languages
in L(RTG) that are not inL(LT).

To end the proof, we need a language that is inL(LT) but not inL(RTG). We
suppose, by contradiction, that there exists a RTGG = (Σ,N,S,R) such thatL(G) = Llt

of Example 5. Without loss of generality, we assume thatR does not contain chain
rules, and that all right sides of rules inR are simple regional. We consider a natural
numbern = 2k + 1 big enough to comply with the requirements presented in therest
of the proof.

First, letL1 be {p ∈ Llt | |p| = (n, n)}. Clearly,|L1| = 2n−1, and it contains at least
⌈2n−1/|R|⌉ pictures that can be generated in the first step by the same rule.

We now fix such a rule, e.g.S→ α, and letL2 be the subset ofL1 generated by this
rule. In an× n picture, the number of possible partitions in homogeneous subpictures
is less than (n4)|N|. This means that there exists a setL3 ⊆ L2, having size|L3| ≥

2n−1

|R|·n4|N|

such that every picture in it was generated byG starting with the same ruleS→ α, and
such that the initialS-homogeneous picture was replaced by the sames ∈ LOC(α).

Depending on the chosen rule’s right part, i.e.α, we now identify a row or a column
of the picture in an odd position, and call itλ. We have two cases: either (1) every
s ∈ LOC(α) is made of homogeneous subpictures having all both width and height less
thann; or (2) in everys ∈ LOC(α) there is at least one homogeneous subpictures′

having width or height equal ton (but clearly not both, because we are not considering
chain rules). In case (1), letλ be the first row. In case (2), letλ be one of the rows or
columns in an odd position and completely contained ins′.

Let L4 be a subset ofL2 such that every picture in it has the sameλ. Because of
its definition, if we fix an odd row of pictures inLlt , then columns of even indexes that
are completely filled by 1 and 1′ are determined by it (if we fix an odd column, it is
analogous but with rows). Hence,|L4| ≤ 2

n−1
2 .

We can assume thatn is sufficiently large so that|L3| > |L4|, i.e. there is at least a
picture inL3 which is not present inL4. So we are able to find inL3 two picturesp
andq that are generated by the same initial rule,S → α, with the same initial strong
homogeneous partition (the one determined bys), and such thatλ in p is different
from λ in q. Now consider all the subpictures ofp and q that are in the positions
corresponding to the initial strong homogeneous partition. Of these subpictures, we
consider only the setsP′ = {p′1, p

′
2, . . . , p

′
i }, andQ′ = {q′1, q

′
2, . . . , q

′
i }, with i ≤ |N|, that

contain subpictures that intersect withλ in p and inq, respectively. If we replace inp
all the elements ofP′ with the elements inQ′, we obtain a picture which is derivable
from S → α, but it is not inLlt , because it contains columns (or rows in some cases
(2)) that are not compatible with the fixedλ.

The fact thatL(LT) ⊂ L(TS) implies the following statement.

Corollary 5.1. L(RTG) andL(TS) are incomparable.

This last result, together with the facts that RTG rules are arestricted form of TG
rules, and thatL(TS) ⊂ L(TG), gives us the following:

Corollary 5.2. L(RTG) ⊂ L(TG).
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5.1. Context-free Kolam grammars
This class of grammars has been introduced by Siromoney et al. [9] under the name

“Array grammars”, later renamed “Kolam Array grammars” in order to avoid confusion
with Rosenfeld’s homonymous model. Much later Matz reinvented the same model
[10] (considering only CF rules). We prefer to keep the historical name, CF Kolam
grammars (CFKG), and to use the more succint definition of Matz.

Definition 5.1. A sentential formover an alphabet V is a non-empty well-parenthe-
sized expression using the two concatenation operators,⊖ andȅ, and symbols taken
from V. SF (V) denotes the set of all sentential forms over V. A sentential form φ

defines either one picture over V denoted byLφM, or none.

For example,φ1 = ((a ȅ b) ⊖ (b ȅ a)) ∈ SF ({a, b}) andLφ1M is the picture
a b
b a

.

On the other handφ2 = ((a ȅ b) ⊖ a) denotes no picture, since the two arguments of
the⊖ operator have different column numbers.

CF Kolam grammars are defined analogously to CF string grammars. Derivation
is similar: a sentential form over terminal and nonterminalsymbols results from the
preceding one by replacing a nonterminal with some corresponding right hand side of
a rule. The end of a derivation is reached when the sententialform does not contain
any nonterminal symbols. If this resulting form denotes a picture, then that picture is
generated by the grammar.

Definition 5.2. A context-free Kolam grammar (CFKG)is a tuple G= (Σ,N,S,R),
whereΣ is the finite set ofterminalsymbols, disjoint from the set N ofnonterminal
symbols; S∈ N is thestartsymbol; and R⊆ N × SF (N ∪ Σ) is the set ofrules. A rule
(A, φ) ∈ R will be written as A→ φ.

For a grammarG, we define thederivation relation⇒G on the sentential forms
SF (N ∪ Σ) by ψ1⇒G ψ2 iff there is some ruleA→ φ, such thatψ2 results fromψ1 by

replacing an occurrence ofA by φ. As usual,
∗
⇒G denotes the reflexive and transitive

closure of⇒G. Notice that the derivation thus defined rewrites strings, not pictures.
From the derived sentential form, one then obtains the denoted picture. The picture

language generated byG is the set

L(G) = {LψM | ψ ∈ SF (Σ),S
∗
⇒G ψ}.

With a slight abuse of notation, we will often writeA
∗
⇒G p, with A ∈ N, p ∈ Σ++,

instead of∃φ : A
∗
⇒G φ, LφM = p.

It is convenient to consider a normal form with exactly two orzero nonterminals in
the right part of a rule [10].

Definition 5.3. A CF Kolam grammar G= (Σ,N,S,R), is in Chomsky Normal Form
(CNF) iff every rule in R has the form either A→ t, or A→ B⊖ C, or A→ B ȅ C,
where A, B,C ∈ N, and t∈ Σ.

We know from [10] that for every CFKGG, if L(G) does not contain the empty
picture, there exists a CNF CFKGG′, such thatL(G) = L(G′). Also, the classical
algorithm to translate a string grammar into CNF can be easily adapted to CFKGs.
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Example 6. The following Chomsky Normal Form grammar G5 defines the set of pic-
tures such that each column is an odd length palindrome.

S → V ȅ S | A1 ⊖ A2 | B1 ⊖ B2 | a | b
V → A1 ⊖ A2 | B1 ⊖ B2 | a | b
A2 → V ⊖ A1 | a
B2 → V ⊖ B1 | b
A1 → a
B1 → b.

5.1.1. Comparison with other models
First, we sketchily and intuitively show that the original CF Kolam definition is

equivalent to the one introduced by Matz. The following description is directly taken
from [9].

Let G = (Σ,N,S,R), be aKolam context-free grammar, where N= N1 ∪ N2, N1

a finite set ofnonterminals, N2 a finite set ofintermediates, Σ a finite set ofterminals,
R = R1 ∪ R2 ∪ R3, R1 a finite set ofnonterminal rules, R2 a finite set ofintermediate
rules, R3 a finite set ofterminal rules. S ∈ N1 is the start symbol.
R1 is a set of pairs(A, B) (written A→ B), A∈ N1, B ∈ (N1∪N2)+ȅ or B ∈ (N1∪N2)+⊖.
R2 is a set of pairs(B,C), B ∈ N2, C ∈ (N2 ∪ {x1, x2, · · · , xk})+ȅ,
with x1, · · · , xk ∈ Σ

++, |xi |row = |xi+1|row, 1 ≤ i < k;
or C ∈ (N2 ∪ {x1, x2, · · · , xk})+⊖, with x1, · · · , xk ∈ Σ

++, |xi |col = |xi+1|col, 1 ≤ i < k.
R3 is a set of pairs(A, t), A ∈ (N1 ∪ N2) and t∈ Σ++.

(Derivation) If A is an intermediate, then the intermediatelanguage generated by A

is MA = {x | A
∗
⇒ x, x ∈ {x1, · · · , xk}

+ȅ, x j ∈ Σ
++, |xi |row = |xi+1|row, 1 ≤ i < k} or

MA = {x | A
∗
⇒ x, x ∈ {x1, · · · , xk}

+⊖, x j ∈ Σ
++, |xi |col = |xi+1|col, 1 ≤ i < k}. Deriva-

tion proceeds as follows. Starting from S , nonterminal rules are applied without any
restriction as in a string grammar, till all the nonterminals are replaced, introducing
parentheses whenever necessary. Now replace for each intermediate A in N2 elements
from MA, subject to the conditions imposed byȅ, ⊖. The replacements start from the
innermost parentheses and proceeds outwards. The derivation comes to an end if the
condition for⊖ or ȅ is not satisfied.

GrammarG5 of Example 6 complies with this definition. In it,A1 and B1 are
intermediates.

It is very easy to see that the original definition of CF Kolam grammars is equiva-
lent to the new one given by Matz. Right part of rules are made of vertical or horizontal
concatenations of nonterminals or fixed terminal pictures.So we can define an equiv-
alent grammar that is as stated in Definition 5.2, by translating the right part of rules
that contain terminal picturesx1, x2, . . . , xp, decomposing each picturexi in a senten-
tial form φ such thatxi = LφM. Vertical or horizontal concatenations are then treated
analogously (e.g. we translateAB into (Aȅ B)). Clearly, we do not need to distinguish
nonterminals from intermediate symbols.

Proposition 5.2. L(CFKG) ⊂ L(RTG).
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PROOF. In [3] a construction is given to prove that a CF Kolam grammar (in the form
defined by Matz [10]) can be transformed into a TG. It turns outthat the TG thus
constructed is a RTG.

Sketchily, consider a CF Kolam grammarG in CNF. RulesA→ t, t ∈ Σ are iden-
tical in the two models and generate the same kind of languages (i.e. single terminal
symbols). RulesA → B ȅ C of G are equivalent to RTG rules having the following
form:

A→

u
wwv

# # # # # #
# B B C C #
# B B C C #
# # # # # #

}
��~

RulesA→ B⊖C of G are equivalent to RTG rules having the following form:

A→

u
wwwwwwv

# # # #
# B B #
# B B #
# C C #
# C C #
# # # #

}
������~

The inclusion is strict, because the language of Example 1 was shown by Matz [10]
to trespass the generative capacity of his grammars.

The fact that the picture recognition problem for CF Kolam grammars has been re-
cently proved [18] to be polynomial in time of course followsfrom the above inclusion
property and from Theorem 4.2.

For the special case of CF Kolam grammars in CNF, we note that the parsing time
complexity isO(m2n2(m+ n)) [18]. Some of the reasons of this significant difference
are the following. Kolam grammars in CNF are much simpler, because in the right part
of a rule there are at most two distinct nonterminals. So, checking if a rule is applicable
has complexity which is linear with respect to the picture width or height.

5.2. Pr̊uša’s context-free grammars

In the quest for generality, D. Průša [11] has recently defined a grammar model that
extends CF Kolam rules, gaining some generative capacity. The model is for instance
able to generate the language of Example 1.

5.2.1. Definitions
The following definitions are taken and adapted from [19, 11].

Definition 5.4. A 2D CF Pr̊uša grammar (PG) is a tuple(Σ,N,S,R), whereΣ is the
finite set ofterminalsymbols, disjoint from the set N ofnonterminalsymbols; S∈ N is
thestartsymbol; and R⊆ N × (N ∪ Σ)++ is the set ofrules.

Definition 5.5. Let G = (Σ,N,S,R) be a PG. We define a picture language L(G,A)
overΣ for every A∈ N. The definition is given by the following recursive descriptions:
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(i) If A → w is in R, and w∈ Σ++, then w∈ L(G,A).

(ii) Let A → w be a production in R, w= (N ∪ Σ)(m,n), for some m, n ≥ 1. Let pi, j,
with 1 ≤ i ≤ m,1 ≤ j ≤ n, be pictures such that:

1. if w(i, j) ∈ Σ, then pi, j = w(i, j);
2. if w(i, j) ∈ N, then pi, j ∈ L(G,w(i, j));
3. let Pk = pk,1 ȅ pk,2 ȅ · · ·ȅ pk,n. For any1 ≤ i < m, 1 ≤ j ≤ n, |pi, j |col =

|pi+1, j |col; and P= P1 ⊖ P2 ⊖ · · · ⊖ Pm.

Then P∈ L(G,A).

The set L(G,A) contains all and only the pictures that can be obtained by applying
a finite sequence of rules (i) and (ii). The language L(G) generated by grammar G is
defined as the language L(G,S).

Informally, rules can either be terminal rules, in this casemanaged exactly as tile
grammars or Kolam grammars, or have a picture as right part. In this latter case, the
right part is seen as a “grid”, where nonterminals can be replaced by other pictures, but
maintaining its grid-like structure. Note that the grid meshes may differ in size.

Example 7. The grammar G6 of Figure 11 generates the language of pictures with one
row and one column of b’s in a background of a’s (see Example 1).

S→
A V A
H b H
A V A

, A→ AM | M, M →
a
M
| a,

V →
b
V
| b, H → bH | b.

Figure 11: PGG6 of Example 7.

It would be simple to prove that every Průša grammar admitsthe following normal
form:

Definition 5.6. A Průša grammar G= (Σ,N,S,R), is in Nonterminal Normal Form
(NNF) iff every rule in R has the form either A→ t, or A→ w, where A∈ N, w∈ N++,
and t∈ Σ.

5.2.2. Comparison with other models
To compare Průša grammars with tile grammars, we note thatthe two models are

different in their derivations. Tile grammars start from a picture made ofS’s having a
fixed size, and being every derivation step isometric, the resulting picture, if any, has
the same size. On the other hand, Průša grammars start froma singleS symbol, and
then “grow” the picture derivation step by derivation step,obtaining, if any, a usually
larger picture.

First, we prove that the language of Example 4 cannot be defined by Průša gram-
mars, so the language families are different. To this aim, weuse a technique analogous
to the one introduced for proving Proposition 5.1.
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Proposition 5.3. L(PG) , L(RTG).

PROOF. Let G = (Σ,N,S,R) be a PG such thatL(G) = L(G4), whereG4 is the RTG
presented in Example 4. Without loss of generality we assumethatR does not contain
chain rules, and that for every ruleA→ ω, it is |ω|row ≤ 2.

In the rest of the proof we classify the derivations, depending on the rule that is
applied first, call itS → ω, where|ω| = (x, y), 1 ≤ x ≤ 2, y ≥ 1. Moreover, we will
consider the subsetL′ ⊆ L(G4), such that every picture has two rows, 3n columns for
anyn ≥ 1, and is such that the twoc-homogeneous subpictures in it have size (1, n):

L′ =

{

w wR cn

cn w′ w′R
∈ L(G4) | n > 0, |w| = |w′| = n

}

.

We will call L′ω the set of pictures inL′ generated by applyingS→ ω first.
First, we consider the case in whichω has the formA

B . In this case bothA and
B must generate CF string languages. Since the languagewwRc|w| is not context free,
A cannot generate exactly, and for anyn, such strings, and the same holdsmutatis
mutandisfor B.

Indeed, if we consider the string languages{wwRch} and{ckw′w′R}, we can apply
the pumping lemma for CF string languages by considering for“pumping” either the
wwR part, or thew′w′R, or the parts made ofc symbols, or a combination thereof.
If we keeph or k bounded, we can nonetheless generare an unbounded number of
pictures ofL(G4), but there will also be an unbounded number of pictures ofL′ not
generable in such a way (i.e. those having a number ofc’s greater than the chosen
bound). Analogously, if we keep one of both the partswwR andw′w′R bounded, there
will be an unbounded number of pictures ofL′ not generable as well.

So, eitherL′ω is finite (or empty), orA andB generate CF languages that properly
contain{wwRc|w|} and{c|w|w′w′R}, respectively.A andB must generate strings having
respectively the formwwRch, andckw′w′R, whereh and k are not bounded by any
constants. Beingh andk unbounded, we can take a string generated byA and one
generated byB such thath > 2|w′|, andh + 2|w| = k + 2|w′|. But in this case the
corresponding picture is not inL(G4). Hence, we can safely assume thaty > 1.

Now we have to consider starting rules having 1≤ x ≤ 2, y > 1. We fixn, so that
there are not any pictures ofL′ generable starting with a rule withx = 2 andy = 1, and
the value ofn is big enough to comply with the requirements of the rest of the proof.

Clearly, the number of elements in the setX(n) defined as the one of pictures inL′

for the fixedn is 22n, andX(n) contains at least⌈22n/|R|⌉ pictures that are generated in
the first step by the same ruleS→ ω. We call this subsetL′ω(n), because it corresponds
to the finite subset ofL′ω for the chosen value ofn.

Without loss of generality, we assume thatn > y, so each nonterminal inw gener-
ates a subpicture (that in the rest of the proof we will index by pi, j, 1 ≤ i ≤ x, 1≤ j ≤ y)
having at most two rows and at least one column. Being the number of different se-
quences|p1,1|col, |p1,2|col, . . .|p1,y|col, |p1,1|row, |p2,1|row limited by 2(3n)y (each|p1,i |col is
less than 3n and at most there are two rows), there exists a subsetY(n) of L′ω(n), having
cardinality |Y(n)| ≥ 22n/ (2|R|(3n)y), in which for any two picturesp and p′, and for
everyi, j, the size|pi, j | is equal to|p′i, j |.
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Let W(n) be a subset ofL′ω(n) such that every picture in it is like
qR q cn

cn q qR , (i.e.

the central third of the picture is made of two equal rows). Clearly,|W(n)| ≤ 2n.
We can assume thatn is large enough so that|Y(n)| > |W(n)|. But this means that in

Y(n) there are two different picturesp =
qR q cn

cn s sR
, andp′ =

q′R q′ cn

cn s′ s′R
, with

q , s, q′ , s′, and (1)q , q′ or (2) s , s′. We know thaty > 1, so if we replacep1,1

andp2,1 (if x = 2) in p with p′1,1 andp′2,1, in case (1), we obtain a picture generated by
G that is not inL(G4). Case (2) is analogous, but considers the right part ofp, i.e. p1,y

andp2,y.

Indeed, Průša grammars can be seen as a restricted form of regional tile grammars,
as stated by the following proposition.

Proposition 5.4. L(PG) ⊂ L(RTG).

PROOF. Consider a PG in NNFG. First of all, we assume without loss of generality
that for any rule, nonterminals used in its right part are alldifferent. If this is not the
case, e.g. assume that we have a rule

A→
X Y
Z X

,

then we can rename one of theX symbols to a freshly introduced nonterminalX′, and
then add the chain ruleX′ → X.

Let us define a RTGG′ equivalent toG. Since the conversion of terminal rules is
obvious we only discuss nonterminal rules. For a nonterminal rule of G, e.g.

A→

B1,1 . . . B1,k
...

. . .
...

Bh,1 . . . Bh,k

we introduce the following rule inG′:

A→

u
wwwwwwwwwv

# # # . . . # # #
# B1,1 B1,1 . . . B1,k B1,k #
# B1,1 B1,1 . . . B1,k B1,k #
...

...
...

. . .
...

...
...

# Bh,1 Bh,1 . . . Bh,k Bh,k #
# Bh,1 Bh,1 . . . Bh,k Bh,k #
# # # . . . # # #

}
���������~

.

Note that each nonterminalBi, j is repeated four times in the right part of the rule, so

to have the tile
Bi, j Bi, j

Bi, j Bi, j
, that can be used to “cover” a rectangular area of any size.

Notice that the original grid alignments are preserved by RTG derivations.
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Essentially, Průša grammars can be seen as RTG’s with the additional constraint
that tiles used in the right parts of rules must not have one ofthese forms:

A B
C C

,
A C
B C

,
C C
A B

,
C A
C B

with A, B,C all different.

Proposition 5.5. L(CFKG) ⊂ L(PG).

PROOF. For containment, it suffices to note that the constraints ontiles of the corre-
sponding tile grammar, introduced in the proof of Proposition 5.4, are a weaker form
of the constraints used for proving Proposition 5.2.

The containment is strict, since Průša grammar can generate the language of one
column and one row ofb’s in a field ofa’s (see Example 7), while CF Kolam grammar
cannot [10].

5.3. Grid grammars
Grid grammars are an interesting formalism defined by Drewes[20],[12]. Grid

grammars are based on an extension of quadtrees [21], in which the number of “quad-
rants” is not limited to four, but can bek2, with k ≥ 2 (thus forming a square “grid”).

Following the tradition of quadtrees, and differently fromthe other formalisms
presented here, grid grammars generate pictures which are seen as sets of points on
the “unit square” delimited by the points (0,0), (0,1), (1,0), (1,1) of the Cartesian plane.
The following definitions are taken (and partially adapted)from [12].

Let the unit square be divided by a evenly spaced grid into k2 squares, for some
k ≥ 2. A productionof a grid picture grammar consists of a nonterminal symbol onthe
left-hand side and the square grid on the right-hand side, each of the k2 squares in the
grid being either black or white or labelled with a nonterminal.

A derivationstarts with theinitial nonterminalplaced in the unit square. Then
productions are applied repeatedly until there is no nonterminal left, finally yielding a
generated picture. As usual, a production is applied by choosing a square containing
a nonterminal A and a production with left-hand symbol A. Thenonterminal is then
removed from the square and the square is subdivided into smaller black, white, and
labelled squares according to the right-hand side of the chosen production. The set of
all pictures generated in this manner constitutes thepicture languagegenerated by the
grammar.

A picture generated by a grid picture grammar can be written as a string expres-
sion. Let the unit black square be represented by the symbol B, and the white unit
square by W. By definition, each of the remaining pictures in the generated language
consists of k2 subpicturesπ1,1, . . . , π1,k, . . . , πk,1, . . . , πk,k, each scaled by the factor1/k,
going from bottom-leftπ1,1 to top rightπk,k. If ti, j is the expression representingπi, j (for
1 ≤ i, j ≤ k), then[t1,1, . . . , t1,k, . . . , tk,1, . . . , tk,k] represents the picture itself (for k= 2
it is a quadtree).

In order to compare such model, in which a picture is in the unit square and back-
and-white, with the ones presented in this work, we introduce a different but essentially
compatible formalization, in which the generated picturesare square arrays of symbols,
and the terminal alphabet is not limited to black and white.
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5.3.1. Definitions
To define grid grammars and their languages, we introduce a new definition that is

similar to the one used for Kolam grammars in Section 5.1.

Definition 5.7. For a fixed k≥ 2, a sentential formover an alphabet V is either a
symbol a∈ V, or [t1,1, . . . , t1,k, . . . , tk,1, . . . , tk,k], and every ti, j being a sentential form.
SF (V) denotes the set of all sentential forms over V.

A sentential formφ defines a set of picturesLφM:
• LaM, with a ∈ V, represents the set{a}(n,n), n ≥ 1 of all a-homogeneous square

pictures;

• L[t1,1, . . . , t1,k, . . . , tk,1, . . . , tk,k]M, represents the set of all square grid pictures
where everyLti, jM has the same size n×n, for n≥ 1, andLt1,1M is at the bottom-left
corner, . . . ,Lt1,kM is at the bottom right corner, . . . , andLtk,kM is at the top right
corner.

Note that we maintained in the sentential forms the originalconvention of starting
from the bottom-left position. For example, consider the sentential form

φ = [[a, b, [a, b, b, a], c], a, B, [b,a,a,b]] .

The smallest picture inLφM is depicted in Figure 12.

B B B B a a b b
B B B B a a b b
B B B B b b a a
B B B B b b a a
b a c c a a a a
a b c c a a a a
a a b b a a a a
a a b b a a a a

Figure 12: Example picture generated by the form [[a, b, [a, b, b, a], c], a, B, [b, a, a,b]].

Definition 5.8. A grid grammar (GG)is a tuple G= (Σ,N,S,R), whereΣ is the finite
set ofterminalsymbols, disjoint from the set N ofnonterminalsymbols; S∈ N is the
startsymbol; and R⊆ N × SF (N ∪ Σ) is the set ofrules. A rule (A, φ) ∈ R will be
written as A→ φ.

For a grammarG, we define thederivation relation⇒G on the sentential forms
SF (N ∪ Σ) by ψ1⇒G ψ2 iff there is some ruleA→ φ, such thatψ2 results fromψ1 by

replacing an occurrence ofA by φ. As usual,
∗
⇒G denotes the reflexive and transitive

closure of⇒G. As with Kolam grammars, the derivation thus defined rewrites strings,
not pictures.

The derived sentential form denotes a set of pictures. Formally, the picture language
generated byG is the set

L(G) =
{

p ∈ LψM | ψ ∈ SF (Σ),S
∗
⇒G ψ

}

.
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In the literature, parameterk is fixed for a grid grammarG, i.e. all the right parts
of rules are either terminal ork by k grids. This constraint could be relaxed, by al-
lowing differentk for different rules: the results that are shown next still hold for this
generalization.

It is trivial to see that grid grammars admit the following normal form:

Definition 5.9. A grid grammar G= (Σ,N,S,R), is in Nonterminal Normal Form
(NNF) iff every rule in R has the form either A→ t, or A → [B1,1, . . . , B1,k, . . . , Bk,1,

. . . , Bk,k], where A, Bi, j ∈ N, and t∈ Σ.

Example 8. A simple example of a grid grammar in NNF is:

S→ [S, B,S, B, B, B,S, B,S], S→ a, B→ b.

The generated language is that of “recursive” crosses of b’sin a field of a’s. Figure
13 shows an example picture of the language.

a b a b b b a a a
b b b b b b a a a
a b a b b b a a a
b b b b b b b b b
b b b b b b b b b
b b b b b b b b b
a b a b b b a a a
b b b b b b a a a
a b a b b b a a a

Figure 13: A picture of Example 8;b symbols are written in boldface for better readability.

5.3.2. Comparison with other models
First, we note that this is the only 2D grammatical model presented in this paper

which cannot generate string (i.e. 1D) languages, since allthe generated pictures, if
any, have the same number of rows and columns by definition.

It is easy to see that the class of languages generated by gridgrammars are a proper
subset of the one of Průša grammars. In fact, a grid grammarcan be seen as a particular
kind of Průša grammar, in which symbols in right part of rules generate square pictures
having the same size.

Surprisingly, the same reasoning can be applied also to prove inclusion w.r.t. CF
Kolam grammars.

Proposition 5.6. L(GG) ⊂ L(CFKG).

PROOF. Given a grid grammarG = (Σ,N,S,R) for simplicity in NNF, we construct an
equivalent CFKG.
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(i) For terminal rulesA→ t, t ∈ Σ, we introduce the following rules in the equivalent
CF Kolam grammarG′:

A→ (A ȅ Av) ⊖ (Ah ȅ t) | t, Ah→ Ah ȅ t | t, Av→ t ⊖ Av | t

whereAh,Av are freshly introduced nonterminals, not used in other rules. It is
easy to see that these rules can only generate all the square pictures made oft’s.

(ii) For nonterminal rulesA→ [B1,1, . . . , B1,k, . . . , Bk,1, . . . , Bk,k], we add the follow-
ing “structurally equivalent” kind of rules:

A→

(Bk,1 ȅ · · ·ȅ Bk,k)
⊖

· · ·

⊖

(B1,1 ȅ · · ·ȅ B1,k)

To show the equivalenceL(G) = L(G′), we use induction on derivation steps. As
base case, we note that terminal rules ofG are equivalent to the rules ofG′ introduced
at (i).

Induction step: consider a nonterminal rule like in (ii). Byinduction hypothesis, all
B j,i of G′ generate languages equivalent to their homonym inG, and all made of square
pictures. We will use the notationb j,i for referring to pictures generated byB j,i.

By definition of⊖, |(b j,1ȅ · · ·ȅb j,k)|col = |(b j+1,1ȅ · · ·ȅb j+1,k)|col, for all 1 ≤ j < k.
Moreover, by definition ofȅ, |b j,i |row = |b j,i−1|row, for all 1 ≤ i < k. Being all squares,
this means that the sentential form (bk,1 ȅ · · · ȅ bk,k) ⊖ · · · ⊖ (b1,1 ȅ · · · ȅ b1,k) of G′

generates a picture iff allb j,i have the same size. But this also means that it is equivalent
to the sentential form [B1,1, . . . , B1,k, . . . , Bk,1, . . . , Bk,k] of G.

The inclusion is proper, because by definition grid grammarscannot generate non-
square pictures (e.g. string languages).

5.4. Context-free matrix grammars
The early model of CF matrix grammars [13] is a very limited kind of CF Kolam

grammars. The following definition is taken and adapted from[22].

Definition 5.10. Let G = (H,V) where H= (Σ′,N,S,R) is a string grammar, where
N is the set of nonterminals, R is a set of productions, S is thestarting symbol,Σ′ =
{A1,A2, · · · ,Ak}, V is a set of string grammars, V= {V1,V2, · · · ,Vk} where each Ai is
the start symbol of string grammar Vi . The grammars in V are defined over a terminal
alphabetΣ, which is the alphabet of G. A grammar G is said to be acontext-free matrix
grammar(CFMG) iff H and all Vi are CF grammars.

Let p∈ Σ++, p = c1ȅc2ȅ · · ·ȅcn. p ∈ L(G) iff there exists a string Ax1Ax2 · · ·Axn ∈

L(H) such that every column cj , seen as a string, is in L(Vx j ), 1 ≤ j ≤ n. The string
Ax1Ax2 · · ·Axn is said to be anintermediatestring deriving p.

Informally, the grammarH is used to generate a horizontal string of starting sym-
bols for the “vertical grammars”V j, 1 ≤ j ≤ k. Then, the vertical grammars are used
to generate the columns of the picture. If every column has the same height, then the
generated picture is defined, and is inL(G).

29



Example 9. The language of odd-width rectangular pictures over{a, b}, where the first
row, the last row, and the central column are made of b’s, the rest is filled with a’s is
defined by the CFMG G7 of Figure 14.

G7 = (H, {V1,V2}) where
H : S→ A1S A1 | A2

V1 : A1→ bA; A→ aA | b;
V2 : A2→ bA2 | b.

p7 =

b b b b b b b
a a a b a a a
a a a b a a a
a a a b a a a
a a a b a a a
b b b b b b b

Figure 14: CF matrix grammarG7 of Example 9 (top), and an example picture (bottom).

5.4.1. Comparison with other grammar families
First, we note that it is trivial to show that the class of CFMGlanguages is a proper

subset of CF Kolam languages.

Proposition 5.7. L(CFMG) ⊂ L(CFKG).

Intuitively, it is possible to consider the string sub-grammarsG, andG j , of a CF
matrix grammarM, all in Chomsky Normal Form. This means that we can define an
equivalent CF Kolam grammarM′, in which rules corresponding to those ofG use only
theȅ operator, while rules corresponding to those ofG j use only the⊖ operator.

Also, it is easy to adapt classical string parsing methods tomatrix grammars [22].

Proposition 5.8. L(CFMG) andL(GG) are incomparable.

PROOF. First, we know that by definition Grid grammars can generateonly square
pictures. On the other hand, it is impossible to define a CF matrix grammar generating
infinitely many and only squares. This is because classical string pumping lemmata can
be applied both toG (the “horizontal component” of the grammar), and toG j , 1 ≤ j ≤ k
(see e.g. [23]). Therefore the two language classes are incomparable.

6. Summary

We finish with a synopsis of the previous language family inclusions, and a presen-
tation of the constraints on the tile set of tile grammars corresponding to each class.
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Tile grammars

Tiling systems Regional tile grammars

Locally testable languages Průša grammars

CF Kolam grammars

Grid grammars CF Matrix grammars

Průša grammars

Průša grammars in Nonterminal Normal Form are regional tile grammars with the
constraint that tiles used in right part of rules must not have one of these forms:

A B
C C

,
A C
B C

,
C C
A B

,
C A
C B

with A, B,C all different nonterminals. (See Proposition 5.4.)

CF Kolam grammars

CF Kolam grammars in Chomsky Normal Form can be seen as regional tile gram-
mars such that the tile-sets used in the right parts of rules must have one of the following
forms:

u
wwv

# # # # # #
# A A B B #
# A A B B #
# # # # # #

}
��~ ,

u
wwwwwwv

# # # #
# A A #
# A A #
# B B #
# B B #
# # # #

}
������~

with A , B. (See Proposition 5.2.) Clearly, this is also compatible with the constraint
of Průša grammars.

Grid grammars

For grid grammars in Nonterminal Normal Form, we have the same constraints on
nonterminal rules as in CF Kolam grammars. Moreover, there is a different treatment
of terminal rules of the grid grammar, i.e. rules likeA→ t, t ∈ Σ. The corresponding
regional tile grammar rules (still maintaining the CF Kolamgrammars constraints)
are used to generate fromA squaret-homogeneous pictures of any size, and are the
following:

A→

u
wwwwv

# # # #
# A1 A1 #
# A1 A1 #
# A2 A2 #
# # # #

}
����~
, A1→

u
wwv

# # # # #
# A A A3 #
# A A A3 #
# # # # #

}
��~ ,
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A2→

u
v

# # # # #
# A4 A4 A5 #
# # # # #

}
~ |

u
v

# # #
# A5 #
# # #

}
~ , A5→ t.

A3→

u
wwwwv

# # #
# A5 #
# A3 #
# A3 #
# # #

}
����~
|

u
v

# # #
# A5 #
# # #

}
~ ,

with A1, . . . ,A5 all freshly introduced nonterminals. In practice, we are using the CF
Kolam grammar rules corresponding to terminal rules of gridgrammars of Proposition
5.6, translated into regional tile grammar rules followingthe construction of Proposi-
tion 5.2.

CF matrix grammars

Following the construction sketched in Proposition 5.7 forproving that CF matrix
grammars define a subset of the class defined by CF Kolam grammars, we note that
the constraints as for CF Kolam grammars apply. The added constraint is that if a
nonterminalC is used as left part of a “horizontal” rule

C→

u
wwv

# # # # # #
# A A B B #
# A A B B #
# # # # # #

}
��~

then it shall not be used as left part of a “vertical” rule

C→

u
wwwwwwv

# # # #
# A A #
# A A #
# B B #
# B B #
# # # #

}
������~

and vice versa. (This is a direct consequence of the informalconsiderations at the
beginning of Section 5.4.1 and the proof of Proposition 5.2.)

From all that, regional tile grammars prove to be useful as a unifying, not overly
general, concept for hitherto separated grammar models.

AcknowledgmentsWe thank the anonymous referees for many suggestions, in partic-
ular the structure of proof of Proposition 4.3, and various improvements of the parsing
algorithm.
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[19] D. Průša, Two-dimensional context-free grammars, in: G. Andrejkova, S. Krajci
(Eds.), Proceedings of ITAT 2001, 2001, pp. 27–40.

[20] F. Drewes, Language theoretic and algorithmic properties of d-dimensional col-
lages and patterns in a grid, Journal of Computer and System Sciences 53 (1)
(1996) 33–66.

[21] R. A. Finkel, J. L. Bentley, Quad trees: A data structurefor retrieval on composite
keys, Acta Informatica 4 (1974) 1–9.

[22] V. Radhakrishnan, V. T. Chakaravarthy, K. Krithivasan, Pattern matching in ma-
trix grammars, Journal of Automata, Languages and Combinatorics 3 (1) (1998)
59–72.

[23] M. Nivat, A. Saoudi, V. R. Dare, Parallel generation of finite images, International
Journal Pattern Recognition and Artificial Intelligence 3 (3-4) (1989) 279–294.

34


