
The Symmetry of the Past and of the Future: Bi-infinite
Time in the Verification of Temporal Properties

Matteo Pradella
IEIIT

Consiglio Nazionale delle
Ricerche

v. Ponzio 34/5
Milano, Italy

pradella@elet.polimi.it

Angelo Morzenti
Dipartimento di Elettronica e

Informazione
Politecnico di Milano

v. Ponzio 34/5
Milano, Italy

morzenti@elet.polimi.it

Pierluigi San Pietro
∗

Dipartimento di Elettronica e
Informazione

Politecnico di Milano
v. Ponzio 34/5
Milano, Italy

sanpietr@elet.polimi.it

ABSTRACT
Model checking techniques have traditionally dealt with temporal
logic languages and automata interpreted over ω-words, i.e., infi-
nite in the future but finite in the past. However, time with also an
infinite past is a useful abstraction in specification. It allows one
to ignore the complexity of system initialization in much the same
way as system termination may be abstracted away by allowing an
infinite future. One can then write specifications that are simpler
and more easily understandable, because they do not include the
description of the operations (such as configuration or installation)
typically performed at system deployment time. The present pa-
per is centered on the problem of satisfiability checking of linear
temporal logic (LTL) formulae with past operators. We show that
bounded model checking techniques can be adapted to deal with
bi-infinite time in temporal logic, without incurring in any perfor-
mance loss. Our claims are supported by a tool, whose application
to a case study shows that satisfiability checking may be feasible
also on nontrivial examples of temporal logic specifications.
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1. INTRODUCTION
Linear-time Temporal Logic (LTL), also in its version augmented

with past operators (PLTL: past LTL), has been extensively applied
to the specification, validation and verification of critical, real-time
systems [34, 26, 12]. Although its expressive power has some lim-
itations [40], its success resides also in the availability of power-
ful model checking engines, which allowed the task of verification
or debugging of real-life systems (see, e.g., [11, 9, 22]). Given
a system model M , defined using a finite state-transition system,
model checking is the verification whether a formula φ, describ-
ing an (un)desired property of M , holds. Following the automata-
theoretic approach [39, 21, 38, 17, 18], this is achieved by trans-
lating LTL formula ¬φ into a Büchi automaton, and then checking
whether L(M) ∩ L(¬φ) = ∅ holds, i.e., the intersection of the
language of M and the language of ¬φ is empty. Hence, model
checkers such as SPIN are basically emptiness checkers for Büchi
automata. In the Symbolic Model Checking [27] approach (typi-
cally, but not exclusively, applied to Computation Tree Logic [10]
rather than LTL), data structures such as Binary Decision Diagrams
(BDD) [6] allow for a compact symbolic representation ofM , often
achieving better performance. More recently, in Bounded Model
Checking (BMC) [4], given a bound k > 0, both formula φ and
system M are translated into a formula Ξk,M,φ of boolean logic,
which is satisfiable iff M has a counterexample of length k to
property φ. Hence, the verification problem is reduced to checking
the satisfiability of Ξk,M,φ. Since SAT solvers, such as MiniSat
[14] and Chaff [32], while solving an NP-hard problem, are often
very efficient in practice, bounded model checking may be faster
than automata-theoretic model checking or even BDD-based model
checking in many practical cases. The main obstacle to the appli-
cation of BMC is obviously the bound k itself, which makes BMC
an incomplete procedure. In fact, if the resulting boolean formula
is satisfiable, then we are assured that property φ (e.g., a safety or a
liveness property) is falsified. If, however, the formula is reported
to be unsatisfiable there is no assurance that the original property
φ is verified on M , since there might only exist counterexamples
to φ of length greater than k. This problem has been tackled for
instance in [37, 5]: given M,φ and the bound k, another boolean
formula Ψk,M,φ may be derived to check whether the bound k is
enough to exhaust all possible system behaviors. If both Ψk,M,φ

and Ξk,M,φ are unsatisfiable with bound k, then φ is verified on
M . In the worst case, this value of k is exponential in the length of
M and φ, but in practice this k may not be very large, especially if
the system has a limited level of nondeterminism.

Throughout our past research, we have dealt heavily with tem-
poral logic specifications and their application to industrial, criti-



cal real-time systems [31, 28, 8, 7]. In particular, our experience
has been based on the TRIO language [19]. TRIO is a first order,
linear-time temporal logic with both future and past operators and
a quantitative metric on time, providing also structuring and mod-
ularization constructs. Our approach has focused on using TRIO
for requirements specifications, without relying on machine mod-
els such as automata. A TRIO specification consists of a set of
temporal logic formulae that describe the desired properties of the
system being designed; this kind of specification does not include
any operational component (such as a state-transition system), sim-
ilarly to what occurs in any other purely descriptive specification
notation. Hence, the problem of property proving in TRIO takes
a form that is rather different from the model-checking approach,
since both the system to be specified and the property to be proven
are formalized as TRIO formulae. Property proving is therefore
formulated in terms of the validity of a logic formula of the kind
specification → property, where the premise specification is still
a set of TRIO formulae describing properties that are assumed to
hold for the analyzed system, and property is another TRIO for-
mula describing the conjecture that we want to prove to be implied
by the properties stated in the premise.

Our verification tools have mainly been based on test case gen-
eration [36, 15, 25] and theorem proving [16], due to the general
undecidability of TRIO language. More recently, we defined, for a
decidable fragment of TRIO (semantically equivalent to PLTL), a
tool for satisfiability checking via automata-theoretic model check-
ing [30, 35, 3, 2]. Our results confirm the obvious expectation that
satisfiability checking is harder than model checking of a system of
the same size, but that it may still be feasible in interesting cases.

One of the features of TRIO that differentiates it from other tem-
poral logic languages is its ability to deal with different time do-
mains: dense or discrete, finite or infinite [29]. In particular, most
TRIO specifications adopt a bi-infinite time domain, i.e. a time
domain that is infinite both in the future and in the past.

Although philosophers such as Prior have always considered the
case that time may be bi-infinite, most temporal logics and au-
tomata models used in specification and verification consider time
to be finite in the past, even though Automata Theory has also
considered bi-infinite computations [20, 33]. This has historical
reasons, since both automata and temporal logic were applied to
model programs, where there is actually an initialization step, and
where logics with only future operators seemed adequate. This cor-
responds to the case where a system, such as a program, does not
necessarily have a final state (i.e., it may not terminate). It has
been widely argued that allowing time to be infinite in the future
is very convenient when describing reactive systems and studying
their properties (such as liveness and fairness), even though obvi-
ously all real systems have to terminate, sooner or later. Hence,
nontermination is only an abstraction, useful to write specifications
without explicitly considering the final disposal of the analyzed
system. For instance, the controller of a railroad crossing may be
considered as nonterminating, since one might simply not want to
model explicitly the case when the controller is stopped for fail-
ures, maintenance or replacement. This allows one to write simpler
formulae.

It is widely recognized that past operators allow one to write
specifications that are easier, shorter, more intuitive and, in some
significant cases even exponentially more succinct than LTL spec-
ifications [24]. But also the semantics of temporal logic languages
with both past and future modalities (such as PLTL) is usually de-
fined in terms of words which are infinite only in the future.

Here we argue that, analogously to the mono-infinite case where
termination may be ignored, interpreting a PLTL specification on

bi-infinite time is convenient to deal with system models where ini-
tialization may also be ignored. This may add another layer of
abstraction, since one can write specifications that are simpler and
more easily understandable, because they do not include the de-
scription of the operations (such as configuration, installation, ...)
typically performed at system deployment time. For instance, for
reactive systems embedded into devices that continuously monitor
or control some process, initialization may often be ignored and
one may focus only on routine behavior.

Using bi-infinite time with PLTL also helps in solving a technical
problem, called the “border effect” [29, 13]. The problem arises in
conjunction with bounded metric operators, such as the “previous
time” • operator. Consider the following example.

EXAMPLE 1. A transmission line Consider a simple transmis-
sion line, that receives messages at one end and delivers them at
the opposite end with a fixed delay (e.g., 1"). The arrival of a mes-
sage is represented by the propositional letter in, while its delivery
is represented by out. The following PLTL formula expresses that
every received message is delivered, and no spurious message is
emitted (i.e., every out is always preceded by an in).

�(out→ •in) ∧�(¬out→ •¬in)

The meaning of the formula should be clear by recalling that �
is the globally operator (�φ requires φ to be true in every instant
from now), ◦ is the next-time operator and • is the last-time (or
Yesterday) operator.

Since time is finite “on the left”, the evaluation of past operators
may be problematic. The traditional solution is to return a “default”
false value when the evaluation of a subformula is outside the time
domain (the typical PLTL semantics of •φ isw, i |= •φ⇔ i−1 ≥
0 ∧ w, i − 1 |= φ, which is false if i = 0). This definition may
easily lead to subtle specification errors. For instance, the above
specification is unsatisfiable: at instant 0, both •¬in and •in are
false. Therefore, at instant 0, if out holds then the formula out →
•in is false; otherwise, if out does not hold at 0, then ¬out →
•¬in is false. But if we rewrite •¬in as ¬•in, the original formula
becomes satisfiable. This is because, in general ¬ • φ may have a
different value from •¬φ. This behavior may be somehow “fixed”
by allowing two different forms of the • operators, the second one
being defined to the default true value when its argument cannot be
evaluated. This is clearly cumbersome and counterintuitive.

The simplest and most effective solution to the above described
subtle semantic problems is to adopt bi-infinite time, where the past
operators behave like the future operators: they are always defined.
Notice that the usage of bi-infinite time does not rule out the explicit
modeling of the initial state of a system, and hence it incurs in
no loss of expressive power (e.g., just use a propositional symbol
start, with the additional constraint that start must occur at some
time).

The goal of this paper is to show that the techniques developed
for Bounded Model Checking may be adapted to deal with tem-
poral logic specifications on bi-infinite time. While the encoding
of automata and LTL into boolean logic is simple enough, being
based on fixed point characterizations of the various temporal op-
erators, the encoding of PLTL has only recently been defined in a
satisfying way [1, 23]. In fact, the asymmetrical definition of past
and future in PLTL actually complicates the translation of PLTL
into a boolean formula. Our encoding for PLTL is actually simpler,
because we consider past and future as completely symmetrical.

The paper is structured as follows: Section 2 briefly recalls the
definition of LTL, introduces a syntactic variant of LTL (Metric
LTL) with metric operators on time and finally summarizes an en-
coding of LTL into boolean logic. Section 3 introduces our new



encoding of PLTL extended with past operators on bi-infinite time.
Section 4 reports on a tool, called ZOT, for translating Metric LTL
with Past into boolean logic formulae, to be fed to a SAT solver.
Section 5 introduces a nontrivial case study of specifications writ-
ten in Metric LTL with past and bi-infinite time, and reports on
verification results that support our goal. Section 6 reports future
developments and draws a few conclusions.

2. PRELIMINARIES
Given a finite alphabet Σ, Σ∗ denotes the set of finite words over

Σ. An ω-word over Σ is an infinite sequence w = a0a1a2 . . . ,
with aj ∈ Σ for every j ≥ 0. The set of all ω-words over Σ is
denoted as Σω . We denote an element aj of w = a0a1a2 . . . as
w(j), and the finite prefix a0a1 . . . ai of w as wi.

We briefly recall here traditional Linear Temporal Logic (LTL)
[34]. LTL could be defined as having also past operators (we call
it PLTL in this case), but in this section only its (more common)
future fragment is defined.

Syntax of LTL The alphabet of LTL includes: a finite set Ap
of propositional letters; two propositional connectives ¬,∨ (from
which other traditional connectives such as > (true), ⊥ (false),
¬,∨, ∧,→, . . . may be defined); two temporal operators, the “un-
til” operator U , and the “next-time” operator ◦ (from which other
temporal operators can be derived). Formulae are defined in the
usual inductive way: a propositional letter p ∈ Ap is a formula;
¬φ, φ∨ψ, φUψ, ◦φ, where φ, ψ are formulae, are formulae; noth-
ing else is a formula. The traditional eventually and globally oper-
ators may be, respectively, defined as: ♦φ is >Uφ, �φ is ¬♦¬φ.

Another useful operator is the dual of Until, i.e., the Release op-
erator: φRψ is ¬(¬φU¬ψ). Every LTL formula φ on the alphabet
{¬,∨,U , ◦} ∪ Ap may be transformed into an equivalent formula
φ′ on the alphabet {∧,∨,U ,R, ◦} ∪Ap∪Ap, where Ap is the set
of atomic formulae of the form ¬p for p ∈ Ap. Hence, negation in
φ′ may only occur on atoms. This is very convenient when defining
encodings of LTL into propositional logic.

Semantics of LTL The semantics of LTL may be defined on ω-
words. For all LTL formulae φ, for all w ∈ (2Ap)ω , for all natural
numbers i, the satisfaction relation w, i |= φ is defined as follows.

w, i |= p,⇐⇒ p ∈ w(i), for p ∈ Ap
w, i |= ¬φ⇐⇒ w, i 6|= φ
w, i |= φ ∨ ψ ⇐⇒ w, i |= φ or w, i |= ψ
w, i |= ◦φ⇐⇒ w, i+ 1 |= φ
w, i |= φUψ ⇐⇒
∃k ≥ 0 : w, i+ k |= ψ, and ∀0 ≤ j < k : w, i+ j |= φ.

Metric operators LTL can be extended by adding metric operators,
on discrete time. Metric operators are very convenient for modeling
hard real time systems, whose requirements include quantitative
time constraints. We call the resulting logic Metric LTL.

Syntax of Metric LTL The alphabet is obtained by extending
the alphabet of LTL with a bounded until operator U∼c, where ∼
represents any relational operator (i.e., ∼∈ {≤,=,≥}), and c is a
natural number. Also, we allow n-ary predicate letters (with n ≥ 1)
and the ∀, ∃ quantifiers as long as their domains are finite. Hence,
one can write, e.g., formulae of the form: ∃p gr(p), with p ranging
over {1, 2, 3} as a shorthand for

W
p∈{1,2,3} grp.

The bounded globally, bounded eventually and bounded release
operators are defined as follows: ♦∼cφ is>U∼cφ, �∼cφ is¬♦∼c¬φ,
φR∼cψ is ¬φU∼c¬ψ.

The “next-time” operator ◦ may then be considered as not prim-
itive since ◦φ is >U=1φ.

In the following, as a useful shorthand, we will use also the ver-
sions of the bounded operators with a strict bound. For instance,
φU>0ψ stands for ◦(φU≥0ψ), and similarly for the other ones.

Semantics of Metric LTL The semantics of Metric LTL may be
defined on ω-words, by a straightforward translation of its opera-
tors into LTL:

τ(φ1U≤0φ2) := φ2

τ(φ1U≤tφ2) := φ2 ∨ (φ1 ∧ ◦τ(φ1U≤t−1φ2)),with t > 0
τ(φ1U≥0φ2) := φ1Uφ2

τ(φ1U≥tφ2) := φ1 ∧ ◦τ(φ1U≥t−1φ2),with t > 0
τ(φ1U=0φ2) := φ2

τ(φ1U=tφ2) := φ1 ∧ ◦τ(φ1U=t−1φ2),with t > 0
τ(♦∼tφ1) := τ(>U∼tφ1)
τ(φ1R∼tφ2) := ¬τ(¬φ1U∼t¬φ2)
τ(2∼tφ1) := τ(⊥R∼tφ1)

Hence, in what follows we will consider Metric LTL as a syntac-
tic sugared version of LTL.

2.1 Mono-infinite future-tense Encoding for
Bounded Model Checking

We describe next the encoding of LTL formulae, whose result
includes additional information on the finite structure over which
an LTL formula is interpreted, so that the resulting boolean formula
is satisfied in the finite structure if and only if the original LTL
formula is satisfied in a (finite or possibly) mono-infinite structure.
This encoding is reported, to make the paper self-contained, from
[5], Section 3.2: BMC for LTL with Eventualities.

For brevity in the following we call state Si the set of assign-
ments of truth values to propositional variables at time i. The idea
on which the encoding is based is graphically depicted in Figure 1
(a). A ultimately periodic mono-infinite structure has a finite rep-
resentation that includes the initial non periodic portion, and the
periodic portion with a cycle that is encoded by having two equal
states in the sequence: the interpreter of the formula (in our case,
the SAT solver), when it needs to evaluate the subformula at a state
beyond the last state Sk, will follow the "backward link" and con-
sider the states Sl, Sl+1, ... as the states following Sk.

Let Φ be a LTL formula. Its semantics is given as a set of boolean
constraints over the so called formula variables, i.e., fresh uncon-
strained propositional variables. There is a variable |[φ]|i for each
subformula φ of Φ and for each instant 0 ≤ i ≤ k + 1 (instant
k + 1, which is not explicitly shown in Figure 1, has a particular
role in the encoding, as we will show next).

First, to allow for the representation of a mono-infinite structure
into a finite one composed of k + 1 states S0, S1, . . . Sk, other
k+1 fresh propositional variables l0, l1, . . . lk must be introduced,
called loop selector variables, which describe the loop that may
exist in the finite structure. At most one of these loop selector vari-
ables may be true. If li is true then state Si−1 = Sk, i.e., the bit
vectors representing the state Si−1 are identical to those for state
Sk. Further propositional variables, InLoopi (0 ≤ i ≤ k) and
LoopExists, respectively mean that position i is inside a loop and
that a loop actually exists in the structure.

The variables defining the loops in the finite structure are con-
strained by the following set of formulae, called loop constraints.

Loop constraints:

Base ¬l0 ∧ ¬InLoop0

1 ≤ i ≤ k

li ⇒ (Si−1 = Sk)
InLoopi ⇐⇒ InLoopi−1 ∨ li

InLoopi−1 ⇒ ¬li
LoopExists ⇐⇒ InLoopk



Figure 1: (a) Mono- and (b) bi-infinite bounded paths.

The above loop constraints state that the structure may have at
most one loop. In the case of a cyclic structure, they allow the SAT
solver to nondeterministically select exactly one of the (possibly)
many loops.

Other formulae constrain in a natural way the propositional op-
erators in Φ. For instance, if φi ∧ φ2 is a subformula of Φ, then
each variable |[φi ∧ φ2]|i must be equivalent to the conjunction of
variables |[φ1]|i and |[φ2]|i.

Propositional constraints, with p denoting a propositional sym-
bol:

φ 0 ≤ i ≤ k
p |[p]|i ⇐⇒ p ∈ Si

¬p |[¬p]|i ⇐⇒ p 6∈ Si

φi ∧ φ2 |[φi ∧ φ2]|i ⇐⇒ |[φ1]|i ∧ |[φ2]|i
φi ∨ φ2 |[φi ∨ φ2]|i ⇐⇒ |[φ1]|i ∨ |[φ2]|i

The following formulae define the basic temporal behavior of
LTL operators, by using their traditional fixpoint characterizations.

Temporal subformulae constraints (future):

φ 0 ≤ i ≤ k
◦φ1 |[◦φ1]|i ⇐⇒ |[φ1]|i+1

φ1Uφ2 |[φ1Uφ2]|i ⇐⇒ |[φ2]|i ∨ (|[φ1]|i ∧ |[φ1Uφ2]|i+1)
φ1Rφ2 |[φ1Rφ2]|i ⇐⇒ |[φ2]|i ∧ (|[φ1]|i ∨ |[φ1Rφ2]|i+1)

Notice that such constraints do not consider the implicit eventu-
alities that the definitions of U andR impose (they treat them as the
“weak” until and release operators), nor consider that there may be
loops (and hence “backward” constraints). To properly define even-
tualities, we need to introduce new propositional letters 〈〈♦φ2〉〉i,
for each φ1Uφ2 subformula of Φ, and for every 0 ≤ i ≤ k + 1.
Analogously, we need to consider subformulae containing the op-
erator R, such as φ1Rφ2, by adding the new propositional letters
〈〈2φ2〉〉i. Then, constraints on these eventuality propositions are
quite naturally stated as follows.

Eventuality constraints:

φ Base

φ1Uφ2 ¬〈〈♦φ2〉〉0 ∧
„

LoopExists ⇒
„
|[φ1Uφ2]|k ⇒
〈〈♦φ2〉〉k

««
φ1Rφ2 〈〈2φ2〉〉0 ∧

„
LoopExists ⇒

„
|[φ1Rφ2]|k ⇐
〈〈2φ2〉〉k

««

φ 1 ≤ i ≤ k
φ1Uφ2 〈〈♦φ2〉〉i ⇐⇒ 〈〈♦φ2〉〉i−1 ∨ (InLoopi ∧ |[φ2]|i)
φ1Rφ2 〈〈2φ2〉〉i ⇐⇒ 〈〈2φ2〉〉i−1 ∧ (¬InLoopi ∨ |[φ2]|i)

Last, the formulae in the following table provide the constraints
that must be included in the encoding to account for the absence of
a loop in the structure (the first line of the table states that if there
is no loop nothing is true beyond the k-th state) or its presence (the
second line states that if there is a loop at position i then state Sk+1

and Si are equivalent).
Last state constraints:

Base ¬LoopExists ⇒ ¬|[φ]|k+1

1 ≤ i ≤ k li ⇒ (|[φ]|k+1 ⇐⇒ |[φ]|i)

The complete encoding of Φ consists of the logical conjunction
of the above components regarding loops, propositional connec-
tives, temporal operators, and eventualities, together with |[Φ]|0
(i.e. Φ is evaluated only at instant 0).

3. PAST OPERATORS AND BI-INFINITE
TIME

The definition of LTL in Section 2 may easily be extended to
consider also past operators, by adding the (unbounded) since op-
erator S and a past-time (or Yesterday) operator, •, thus leading to
the temporal logic language PLTL.

Clearly, one can also add S∼c to Metric LTL, to define a metric
temporal logic with past, Metric PLTL. The cited TRIO language
without first-order variables and quantifiers, is actually equivalent
to Metric PLTL.

The past version of the eventually and globally operators, also in
the bounded versions, may be defined symmetrically to their future
counterparts: �φ is>Sφ, �φ is¬�∼c¬φ; �∼cφ is>S∼cφ, �∼cφ
is ¬�∼c¬φ. A useful operator for MPLTL is the Always operator
Alw, which can be defined by Alwφ1 := 2φ1 ∧ �φ1. The in-
tended meaning of Alwφ1 is that φ1 must hold in every instant in
the future and in the past. Its dual is the Sometimes operator Somφ
defined as ¬Alw¬φ.

3.1 Bi-infinite Encoding of PLTL
Traditionally, (e.g., in [5]) the encoding of PLTL is given on a

mono-infinite temporal domain, such as the one showed in Figure
1 (a). Such BMC semantics can be tricky to define, because of
the asymmetric role of future and past. Moreover, it needs the in-
troduction of a conventional value for •φ at instant 0, usually ⊥,
because it refers to an instant (-1) outside of the temporal domain.
For this reason, to push negation to propositional letters it is nec-
essary to have another operator, usually called Zeta (or •′), such
that •φ := ¬ •′ (¬φ). Furthermore, because of the asymmetric



structure of time, one must take into account also the possibility
that the evaluation of any (sub)formula involves some time point
outside the temporal domain, therefore the encoding defined in [5]
includes a complex mechanism that permits to set apart the cases
where some border effect in the formula evaluation may take place.
This is based on comparing the depth of the nesting of temporal
operators with the distance from the origin of the time axis of the
"current interpretation time", which in turn requires keeping track
of the number of times that the loop in the temporal structure has
been unfolded to reach the current time.

On the other hand, defining semantics for PLTL is more natural
on a bi-infinite time domain, because in this case past and future
have the same role and importance.

A bounded bi-infinite temporal structure is shown in Figure 1
(b). As the reader may notice, it is a natural extension of the mono-
infinite structure: the loops are now at most two, one towards the
future (as before), and a new one towards the past. There are new
loop selector variables l′i to define the loop which goes towards
the past, and the corresponding propositional letters InLoop′i, and
LoopEsists′.

To define the bi-infinite encoding of PLTL, we have to use the
following constraints, similar to those presented in Section 2.1, for
the future part. In addition to them, we introduce the following, for
the back-loops.

Back-loop constraints:

Base ¬l′k ∧ ¬InLoop′k

1 ≤ i ≤ k

l′i ⇒ (Si+1 = S0)
InLoop′i ⇐⇒ InLoop′i+1 ∨ l′i

InLoop′i+1 ⇒ ¬l′i
LoopExists′ ⇐⇒ InLoop′0

symmetrical to the temporal constraints for the future subformu-
lae, we introduce their past counterparts, and eventualities.

Temporal subformulae constraints (past):

φ 0 ≤ i ≤ k
•φ1 |[•φ1]|i ⇐⇒ |[φ1]|i−1

φ1Sφ2 |[φ1Sφ2]|i ⇐⇒ |[φ2]|i ∨ (|[φ1]|i ∧ |[φ1Sφ2]|i−1)
φ1T φ2 |[φ1T φ2]|i ⇐⇒ |[φ2]|i ∧ (|[φ1]|i ∨ |[φ1T φ2]|i−1)

Eventuality constraints (past):

φ Base

φ1Sφ2 ¬〈〈�φ2〉〉k ∧

0@LoopExists′ ⇒

0@ |[φ1Sφ2]|0
⇒

〈〈�φ2〉〉0

1A1A
φ1T φ2 〈〈�φ2〉〉k ∧

0@LoopExists′ ⇒

0@ |[φ1T φ2]|0
⇐

〈〈�φ2〉〉0

1A1A
φ 1 ≤ i ≤ k

φ1Sφ2 〈〈�φ2〉〉i ⇐⇒ 〈〈�φ2〉〉i+1 ∨

0@ InLoop′i
∧

|[φ2]|i

1A
φ1T φ2 〈〈�φ2〉〉i ⇐⇒ 〈〈�φ2〉〉i+1 ∧

0@ ¬InLoop′i
∨

|[φ2]|i

1A
Then, symmetrically to the last state, we must define first state

(i.e. 0 time) constraints (notice that in the bi-infinite encoding in-
stant -1 has a symmetric role of instant k + 1).

First state constraints:

Base ¬LoopExists′ ⇒ ¬|[φ]|−1

1 ≤ i ≤ k l′i ⇒ (|[φ]|−1 ⇐⇒ |[φ]|i)

Figure 2: ZOT’s architecture (external tools in grey).

Last, the following constraints must be added to allow mixing
past and future formulae. The past part is necessary also in a mono-
infinite time structure (and can therefore be found also in [5]). It
defines the behavior of the past operators on the future loop, if this
is present.

Stabilizing constraints (past):

φ 1 ≤ i ≤ k

•φ1
|[•φ1]|i ⇐⇒

(li ∧ |[φ1]|k ∨ ¬li ∧ |[φ1]|i−1)

φ1Sφ2
|[φ1Sφ2]|i ⇐⇒

|[φ2]|i ∨ (|[φ1]|i ∧ (li ∧ |[φ]|k ∨ ¬li ∧ |[φ]|i−1))

φ1T φ2
|[φ1T φ2]|i ⇐⇒

|[φ2]|i ∧ (|[φ1]|i ∨ (li ∧ |[φ]|k ∨ ¬li ∧ |[φ]|i−1))

Similarly and symmetrically, we must take into account the be-
havior of future operators on the back-loop, if present.

Stabilizing constraints (future):

φ 1 ≤ i ≤ k

◦φ1
|[◦φ1]|i ⇐⇒

(l′i ∧ |[φ1]|0 ∨ ¬l′i ∧ |[φ1]|i+1)

φ1Uφ2
|[φ1Uφ2]|i ⇐⇒

|[φ2]|i ∨ (|[φ1]|i ∧ (l′i ∧ |[φ]|0 ∨ ¬l′i ∧ |[φ]|i+1))

φ1Rφ2
|[φ1Rφ2]|i ⇐⇒

|[φ2]|i ∧ (|[φ1]|i ∨ (l′i ∧ |[φ]|0 ∨ ¬l′i ∧ |[φ]|i+1))

4. A TOOL
The encoding of Section 3.1 was incorporated into a tool called

ZOT, an agile and easily extendible bounded satisfiability checker,
designed and implemented by the first author. ZOT can be down-
loaded at http://www.elet.polimi.it/upload/pradella, together with
the case study described in Section 5. The tool supports differ-
ent logic languages through a multi-layered approach: its core uses
PLTL, and on top of it a decidable predicative fragment of TRIO
is defined. An interesting feature of ZOT is its ability to support
different encodings of temporal logic as SAT problems. Indeed,
the user can choose a particular encoding to carry out verification,
while the tool automatically loads the corresponding plugin. This



approach encourages experimentation, as plugins are usually quite
simple, compact (usually around 500 lines of code), easily mod-
ifiable, and extendible. At the moment, a few variants of some
of the encodings presented in [5] are supported, together with the
bi-infinite encoding presented here. Figure 2 shows ZOT’s inter-
nal architecture. At present ZOT and communicates with the SAT
solver MiniSat through files. Being the input file format for SAT
solvers standard (DIMACS CNF), it is easy to adapt ZOT to use
other SAT solvers.

At present, ZOT essentially adapts bounded model checking tech-
niques to purely descriptive TRIO specifications. This means that
both the model and the property are expressed as TRIO formulae,
like in [30], and unlike typical model checking.

ZOT offers two basic usage modalities:

1. Bounded satisfiability checking (BSC): given as input a spec-
ification formula, the tool returns a (possibly empty) history
(i.e., an execution trace of the specified system) which sat-
isfies the specification. An empty history means that it is
impossible to satisfy the specification with the given bound.

2. History checking and completion (HCC): The input speci-
fication file can also contain a partial (or complete) history
H . In this case, if H complies with the specification, then a
completed version of H is returned as output, otherwise the
output is empty.

The provided output histories have always temporal length ≤ k,
the bound given by the user, but may represent infinite behaviors
thanks to the loop selector variables, marking the start of the pe-
riodic sections of the history. The BSC modality can be used to
check if a property prop of the given specification spec holds over
every periodic behavior with period ≤ k. In this case, the input file
contains spec ∧ ¬prop, and, if prop indeed holds, then the output
history is empty. If this is not the case, the output history is a useful
counterexample which explains why prop does not hold.

ZOT also supports completeness checks, through a logic-based
variant of some of the algorithms described in [37]. Essentially,
completeness checking is based on an encoding very similar to the
one presented in the previous part of this paper. The main dif-
ference resides in the loops: the completeness encoding consid-
ers only the finite component of the temporal structure. To assure
completeness, constraints are added asserting that it is impossible
to have two states Si and Sj , such that Si = Sj , for any i 6= j.
Therefore, we are considering all the possible finite behaviors of
the system under analysis. This check can trivially be iterated to
automatically find the bound which ensures completeness. For sys-
tems described using pure logic, this check can be very expensive,
because they usually contain a high degree of nondeterminism, and
the completeness check is by its very nature exhaustive. We will
show some consequences of this behavior in the next section.

5. CASE STUDY AND EXPERIMENTS
To assess the actual feasibility of our approach, we applied it to

a case study consisting of a real-time allocator which serves a set
of client processes, competing for a shared resource. Each process
p requires the resource by issuing the message rq(p), by which it
identifies itself to the allocator. Requests have a time out: they
must be served within Treq time units, or else be ignored by the
allocator. If the allocator is able to satisfy p’s request within the
time-out, then it grants the resource to p by a gr(p) signal. Once
a process is assigned the resource by the allocator, it releases the
resource, by issuing a rel signal, within a maximum of Trel time
units. The allocator grants the request to processes according to a

FIFO policy, considering only requests that are not timed out yet
and in a timely manner, i.e., no process will have to wait for the
resource while it is not assigned to any other process.

5.1 Formal specification of the case study
The following table lists the alphabet of the specification, includ-

ing the names of predicates, predicate letters, time constants with a
sketchy description of their meaning.

Spec. item Description

rq(p) process p requests the resource

gr(p) the resource is granted by the allocator to
process p

rel the resource is released (by the process cur-
rently holding it)

Trel Timeout after which any process must re-
lease the resource

Treq Timeout of a request: after it elapses the re-
quest expires (it is not active any more) and
the allocator must ignore it

APR(p) (Active Pending Request) in the recent past
process p has issued a request that is still
active (timeout Treq not elapsed yet) and is
pending (it has not been satisfied so far)

LRAPR(p) (Least Recent Active Pending Request)
there is an active pending request (see pred-
icate APR(p)) by process p, and it is the
least recent one (all other active pending re-
quests are more recent)

available the resource is available (not assigned to
any process)

The specification is composed of the following axioms, where
variables p and q denoting processes are ranging over the integer
set [1..n], n being the assumed number of processes.

1. The resource is assigned to process p iff it is available and p
has the least recent active pending request

gr(p) ↔ available ∧ LRAPR(p)

2. The resource is available iff it has not been granted to any
process, either from the release by the last process that was
assigned it, or forever in the past

available ↔ ¬∃p (gr(p)S>0rel) ∨�¬∃p gr(p)

3. A request by process p is active and pending if it was issued
by a process p less than Treq time units ago, and the resource
was not granted to p since then

APR(p) ↔

0@ ¬gr(p)S>0rq(p)
∧

(•¬gr(p))S<Treq rq(p)

1A



4. A request by process p is the least recent active pending one
if it is an active pending request and if there is no other less
recent request by another process q. Here variables tp and tq
indicate time distances, and range on the set [1..Treq].

LRAPR(p)
↔

∃tp

0BBBBBBBBB@

APR(p)
∧

¬rq(p)S=tprq(p)
∧

¬∃q ∃tq

0BB@
q 6= p∧
tq > tp∧
APR(q)∧

¬rq(q)S=tprq(q)

1CCA

1CCCCCCCCCA
5. Once granted the resource, any process p keeps it for at least

one time unit and releases it within Trel time units

gr(p) → ¬rel ∧ ♦<=Trelrel

6. There are no spurious release signals: a release signal is is-
sued only if there has been no previous release since the last
grant of the resource to any process p

rel → ¬relS>0∃p gr(p)

7. There can be no simultaneous requests by two distinct pro-
cesses (this is an immaterial, simplifying assumption, which
may correspond to some feature of the device that samples
the resource requests by the processes)

¬∃p ∃q (rq(p) ∧ rq(q) ∧ p 6= q)

8. There are no spurious resource requests by any process, i.e.,
a process will not issue a resource request if there is an ac-
tive pending request by the same process, or if the process
is holding the resource (the resource has been granted to the
process and since then it has not released it)

(APR(p) ∨ ¬relS≥0gr(p)) → ¬rq(p)

The overall specification of the real-time allocator system is ob-
tained by prefixing all axioms by universal quantifications on any
free variable, by conjoining the axiom and prefixing universal tem-
poral quantification operator Alw.

5.2 Property verification
We employed the tool, as reported in the next subsection, to an-

alyze the following (conjectured) properties.
If a process that does not obtain the resource always requests it

again immediately after the request is expired, then if it requests
the resource it will eventually obtain it. This property is called
SimpleFairness.

Alw
`
(rq(p) ∧�≤Treq¬gr(p)) → ♦=Treq rq(p)

´
→

Alw (rq(p) → ♦gr(p))

The results we obtained by analyzing the property with the tool
depend on the number of processes that are assumed to be included
in the system.

With two processes, the tool procedure to find a bound k on
length number of states in the interpretation structure that ensures
completeness succeeded with k = 65, and the fact that the negation
of the property was declared unsatisfiable enables us to conclude
that the property in fact holds.

On the other hand, for a configuration of three processes, the
procedure for finding the bound k ensuring completeness did not
converge in any reasonable time. However, the the tool provided
as a counterexample of the analyzed property a trace of the system
where two of the processes are alternating in requiring and getting
the resource, at the expenses of the third process, who continu-
ously requires and never receives it because one of the other two
has required the resource right before it. Hence the negation of the
property is satisfiable, and the property is therefore disproved, even
though we were not able produce the bound ensuring completeness.

A second, more complex property may be intuitively described
as a sort of “conditional fairness”. Let us define the notion of “un-
constrained rotation” among processes: a process will require the
resource only after all other ones have requested and obtained it.
Notice that this requirement does not impose any precise ordering
among the requests made by the processes (though, once requests
take place in a given order, the order remains unchanged from one
rotation among processes to the next one). This property is de-
scribed by the following formula:

Alw

0@ rq(p) →

∀q
„
q 6= p→ ¬rq(p)S

„
rq(q)∧

♦≤Treqgr(q)

«« 1A
Under this assumption of “unconstrained rotation” the allocator

system is fair for all processes: if a process, when it requests the
resource and does not obtain it, always requests it again after the
request is expired, then, when it requests the resource, it will even-
tually obtain it. If for brevity we symbolically indicate the property
of “unconstrained rotation” as UNROT, then the “ConditionalFair-
ness” property may be stated as:

UNROT →

0@ Alw(rq(p) ∧�≤Treq¬gr(p) → ♦>0rq(p))
→

Alw(rq(p) → ♦>0gr(p))

1A
Again, the property was proven by the tool, for a k ensuring

completeness, in the cases of two processes. For the case with three
processes, the tool answered “unsatisfiable” for the negation of the
property with reference to any structure with a number of states
up to 200, hence we are led to conjecture that the property in fact
holds, but as long as no bound k ensuring completeness is found in
the case of three processes this must remain a (likely) conjecture.

The property of unconstrained rotation, in the simple form of
the above UNROT formula (this was the simplest formalization
we could devise) implies a sequence of request events (and cor-
responding grant and release) that goes back indefinitely towards
the past, therefore it can be satisfied only by the kind of bi-infinite
structure that can be built by our tool. While it is a trivial fact that
no events sequence that goes infinitely towards the past can actu-
ally take place, we remark that since the structure considered by
the tool by any simulation is periodic, the objects generated by the
tool during the analysis of the property are finite; besides, the for-
mal characterization of the UNROT property is quite compact right
because of this assumption of periodicity in the past: the formula



k 2 processes 3 processes
50 unsat (183s,50s,117Mb) sat (405s,101s,170Mb)
100 valid not valid
200 valid not valid

Table 1: Verification of SimpleFairness (translation time, SAT-
solver time, memory)

k 2 processes 3 processes
50 unsat (198s,54s,122Mb) unsat (459s,130s,180Mb)
100 valid unsat (1764s,528s,347Mb)
200 valid unsat (6456s,2814s,399Mb)

Table 2: Verification of ConditionalFairness (translation time,
SAT-solver time, memory)

describing that property would be much more complex if the de-
signer had to refer to a finite trace that includes a start event before
which no other event took place. In summary, in can be stated that
the assumption of a sequence of events that extends itself indefi-
nitely in the past is a useful abstraction with respect to the start of
the allocator system: a designer might prefer to ignore the behavior
of the allocator right after its start and consider its properties only
on routine behavior.

5.3 Experimental results
The experiments were run on a PC equipped with AMD Athlon

64 X2 4600+, 2 Gb RAM, Linux OS. The SAT-solver was Min-
iSat, v. 2.0 beta, along with SAT2CNF, part of the Alloy Analyzer
(http://alloy.mit.edu). The experimental results on properties Sim-
pleFairness and ConditionalFairness and on completeness for the
allocator case study are shown in Tables 1,2 and 3. The experiments
considered three different values of k (the bound for the bounded
model checking enconding): 50, 100, 200. We also studied the dif-
ferences in performance of allowing two or three processes in the
case study.

As it can be seen, both SimpleFairness and ConditionalFairness
could easily be checked by the tool, in the cases of two and three
processes, for every chosen value of k. As reported, Condition-
alFairness holds in every case, while SimpleFairness holds for the
case of two processes (the tool returned “unsat”), but it is violated
(the tool returns “sat”) with three processes already with k = 50.

The actual bound k used in the verifications, while influencing
the performance, was not really critical. Completeness was critical
instead. The tool is able to find that, with two processes, the bound
k = 50 is enough for completeness. Hence, since both SimpleFair-
ness and ConditionalFairness were unsatisfiable with k = 50, there
was no need to bother with greater values of k: completeness en-
sures that these results hold on any bi-infinite domain. For the case
of three processes, the result for SimpleFairness (“sat”) is enough to
say that the property is violated. However, since no bound could be
found for completeness in the case of three processes, the verifica-
tion of property ConditionalFairness up to k = 200 is not enough to

k 2 processes 3 processes
50 unsat (32s,54s,71Mb) sat (74s,16s,71Mb)
100 useless ? (>24h)
200 useless ? (>24h)

Table 3: Completeness output (translation time, SAT-solver
time, memory (Mb))

ensure that the property actually holds, since in theory there might
exist a counterexample of length greater than 200.

Translating from PLTL into a boolean formula was the most
time-consuming activity. This is not always the case, since when a
property is very hard to be verified, the time for the SAT solver may
be dominant. Translation time is heavily dependent on the normal-
ization of the boolean formulae encoding PLTL into the conjunctive
normal form expected by SAT solvers. This could be improved by
better tools.

6. CONCLUSIONS AND FUTURE WORK
In this paper we have argued that bi-infinite time in specification

is a useful abstraction, allowing one to ignore the complexity of
system initialization. Although bi-infinite time has certainly been
used before in specification (also by us), we are not aware of any
other work to extend automated formal verification in general, and
bounded model checking in particular, to deal with bi-infinite time.

Our approach in the present paper was centered on the prob-
lem of satisfiability checking of temporal logic formulae, since this
was our motivating concern with the TRIO language. Our main
focus was to show that bounded model checking techniques may
be adapted to deal with bi-infinite time in temporal logic, without
essentially any loss in performance with respect to the traditional
mono-infinite case. The experimental results of Section 5 show that
satisfiability checking may be feasible also on nontrivial examples
of temporal logic specifications. Even the size of the bound was
not particularly critical.

The only difficulty came from the procedure for computing the
bound k that ensures completeness of the proofs, which suffered
from the combinatorial explosion of allowing three, rather than
two, processes. In fact, the computation of this bound with three
processes was the only case where our tool was unable to terminate
in reasonable time. We plan to refine the implemented procedure
for completeness, which was derived with limited adjustments from
similar procedures appeared in the literature on bounded model
checking. We are aware, however, that the problem is intrinsically
combinatorial, and strongly influenced by the degree of nondeter-
minism of a model, hence we do not expect major breakthrough in
this direction.
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