
1

Specification and Test Case Generation
for the Safety Kernel of the Naples Subway

Antonio Casazza (+), Dario Comini (*), Angelo Morzenti (o),

Matteo Pradella (o), Pierluigi San Pietro (o), Fabio Schreiber (o),

(o) Dipartimento di Elettronica, Politecnico di Milano

(*) Metropolitana Milanese

(+) Ansaldo Segnalamento Ferroviario

Abstract

We report on an experience in the application of formal methods to the specification, validation
and verification of a railway signaling system: the safety kernel of the Naples Subway. The
activity was performed ex post, several years after final system delivery, based on the design
documentation [MM93, Ans94]. We first illustrate the requirement specification using the
object-oriented temporal logic TRIO. Then we relate on the use of the specification, by means
of suitable support tools, to validate the requirements and to generate some scenarios to be
employed as test cases in the verification phase.

1. Introduction

The design and construction of the signaling system in the Naples subway presented an
interesting integration among a few conventional components, such as the ground apparatus
that realizes command and control functions for signals and switches, and some more
innovative ones, such as the ground apparatus that determine the free/blocked track status and
imposes the minimum distance among trains. These features differentiate it from other plants
constructed until then in Italy, as they were realized using microprocessor-based technology. In
particular, the safety critical functions of Automatic Train Block were accomplished through an
ATIS (Audiofrequency Transmission ad Interlocking System), a system whose main functions
are: train detection on the tracks, check of track integrity, and computation and transmission to
the trains of the information regarding the state of the signaling devices, to allow the on board
instrumentation to regulate the train running.

The ATIS was structured into a central component called Topological Interface, which was
connected, through a fiber optic network, to a set of Peripheral Posts displaced on the tracks.
These act as an interface to the track circuits, which constitute the medium for information
transmission to the trains. The component of the Topological Interface that selects the codes to
be sent to the trains for each automatic block section or for each track circuit, and that
communicates with the Peripheral Posts is called the Safety Kernel.

The present paper reports on the modeling of the Safety Kernel through a specification written
in the formal specification language TRIO [M&S94], and on the production of functional test
cases based on the TRIO model, for the purpose of validation of the specification itself and for
implementation verification. The activity was in fact performed after the Naples Subway had
been constructed, validated, and in operation since several years. This was an experiment in the
framework of a cooperation between Metropolitana Milanese and Politecnico di Milano in the

2

application of formal methods to the specification, validation and verification of signaling
systems for trains and subways.

The specification is not so strictly related to the Naples plant, since it is parametric with respect
to the plant topology. Thus, it can be easily reused to model different plants by means of a
simple redefinition of the specification module describing the plant topology.

The specification is based on some simplifying assumptions, which however do not limit its
completeness and generality. In particular, we ruled out some of the information that the
Topological Interface sends to the track circuits (the transmission frequency of the next track,
the braking profile and the remaining section length), which can however easily be added. The
considered aspects concern the running direction, the section entrance and exit speed, which
are assumed to be the same for all the track circuits of a given section. In other words, from
the viewpoint of the Topological Interface we do not distinguish the various circuits inside the
same section. These simplifying assumptions can be easily removed whenever necessary.

The document is structured as follows: Section 2 presents a brief overview of the TRIO
formalism; Section 3 includes the TRIO specification of the Safety Kernel; Section 4 describes
the test case generation activities carried out on the specification.

2. The specification language TRIO

TRIO is based on classical predicate calculus, extended with temporal operators to refer to
time instants different from the current one, which is left implicit in the formula. To allow a
specifier to describe time related entities, TRIO variables, functions, and predicates are divided
into Time Dependent (TD) and Time Independent ones. Time dependent variables represent
physical quantities or configurations that are subject to change with time; time independent
variables represent quantities or configurations that are unrelated with time. Time dependent
functions and predicates denote relations, properties or events that may or may not hold at a
given time instant, while time independent functions and predicates represent facts and
properties that are assumed not to change with time. TRIO is a typed language, in that every
variable is associated to the domain of the values that it can assume, every function is
associated with a domain/range pair, and a domain is associate to each of the arguments of
every predicate. Among the domains there exists a distinguished one, called the Time Domain,
that is numeric in nature: it can be, for instance, the set of integers, real, or rational numbers.
We assume as predefined, for all numerical domains (and hence for the Time Domain) all the
functions representing the common arithmetic operations, such as +, -, * , /, DIV, MOD, etc.,
and time independent predicates representing common relational operators, such as =, ≠, <, ≤.

Besides variables, functions, and predicates TRIO includes the propositional operators, ‘~’
(NOT), ‘−>’ (IMPLIES), ‘&’ (AND), ‘ |’ (OR), ‘≡’ , ‘XOR’, and the quantifiers ‘EXISTS’ and
‘FORALL’. TRIO formulas can also be composed by using primitive and derived temporal
operators, as explained next.

Primitive Operators
There are two temporal primitive operators, Futr and Past, that allow one to refer,
respectively, to events occurring in the future or in the past with respect to the current time,
which is left implicit in the formula. For any given formula F, the composed formulas Futr(F, t)
and Past(F, t) hold at the current time if and only if the property denoted by F holds at the
instant t time units after (respectively, before) the current time.

3

A First Example
Let us consider a simple railway track, where a train enters at one end and exits at the opposite
end after a given maximum time, say 10 seconds. The event of train arrival at the entrance end
is represented by the boolean TD variable in; the train exit event is denoted as out. The
requirement that every train exit exactly 10 seconds after its entrance is expressed by the
following formula:

in -> Futr (out, 10)

The formula expresses, through a logical implication, the constraint that if a train arrives at the

current time, a train will exit exactly 10 time units after.

Derived Operators
To specify more complex relations TRIO provides a set of derived temporal operators. In a
more realistic example, the entrance of a train into a railway track is followed by its exit within
a given time, not exactly after that time.

To express this constraint it is useful to employ the derived operator WithinF ("within in the
future"), defined as follows:

WithinF(A,t) =def exists d (0<d<t & Futr(A,d))

The meaning of WithinF(A, t) is that A will be true at a distance t or less in the future. Then the
requirement expressed informally before on the railway track can be formalized as follows:

in -> WithinF (out, 10)

An even more realistic example is that the train can not exit before a given time, such as 5
seconds (i.e., the train must run through a certain track with a given speed limit). A derived
operator useful for describing this situation is Lasts, defined as follows:

Lasts(A,t) =def forall d (0<d<t -> Futr(A,d)).

The meaning of Lasts(A, t) is that property A holds for all next t time instants (present time and
instant at distance t excluded). The previous constraint on the minimum time to exit the railway
track is therefore expressed as follows:

in -> Lasts(~out,5) &Within(out,10)

The meaning of the formula is that if in occurs at the current time then out will be false for at
least 5 five time units (that is, the train will not exit in the first five seconds) but it will become
true before 10 second elapse.

TRIO includes many other derived temporal operators, which allow a specifier to express even
the most complex timing requirements. For a thorough discussion on the derived temporal
operators, we remind the interested reader to [CC&98], as no other temporal operator is
necessary to describe the time requirements in the topological interface.

4

Axioms
Every axiom is a TRIO formula that expresses an invariant property of the specified system. As
opposed to methods based on states and transitions, which describe what the system must do
by indicating how it must be done, the TRIO language allows one to describe the system by
specifying the properties that it must satisfy. Each property is described by a formula, called
axiom. Therefore, in general, a TRIO specification is a collection of axioms.

M odularity
TRIO specifications are usually organized in modules. The possibility of structuring a
specification into modules provides a support to an incremental top-down approach, to the
specification activity through successive refinements but also permits to construct reusable
specifications of independent (sub)systems which can be composed in a different manner
depending on the application context. With TRIO it is also possible to describe a system at
different abstraction levels and to focus with greater attention and detail on some more critical
and relevant aspects, without specifying formally, or providing only a partial specification of
other parts that are considered as less critical or more standard.

TRIO modules are called classes. A class can be simple or structured. A simple class is a set of
axioms prefixed with the declaration of the class items, i.e., of the variables, predicates, and
functions, both time dependent and time independent, that occur in the axioms. As an example
of a simple class, let us consider class “topografia” , a fragment of the specification of the
topology in a subway plant:

class topografia

// Sba denotes the set of automatic block sections in the plant.
Outputs:
TI I tems //declaration of time dependent functions and predicates

functions
velMax : Sba -> Integer // the maximum speed, in km/h, allowed in a sba

predicates
succ(Sba, Sba); // succ(a,b) holds iff a is a topological successor of b
pred(Sba, Sba); // pred(a,b) holds iff a is a topological predecessor of b

Axioms
Vars s, s1, s2: Sba
1: succ(s1,s2) <-> pred(s2,s1)
2: forall s1 exist s2 succ(s1,s2) | pred(s1,s2)
// every sba has at least one successor or one predecessor (there is no isolated sba)
3: forall s (velMax(s) IN { 0, 15, 30, 45, 65, 77}) //possible speed values

end topografia

Structured classes
Classes that have components, called modules, belonging to other classes are called structured
classes. Structured classes support the description of modular TRIO specifications, suitable to
describe systems whose parts must be clearly identified.

For instance, the specification of the Topological Interface can be structured into three parts: a
route manager (module gestioneItinerari) a topology manager (module topografia) for a
particular plant and a module that computes the information to be sent to the track sections
(module calcoloCurva). Such a specification can be represented by a figure as follows.

5

succ
pred

velMax

gestioneI tinerar i

topografia

calcoloCurva

anormale

direzioneMarcia
liberazione
formato

segnale

deviatoio

Inter faccia Topografica: nucleo sicur ezza

itinerarioComandato
curva

stato

Figure 2.1. The structure of the Interfaccia Topografica.

The module Interfaccia Topografica receives information on the status of the plant (item stato)
and on the driven route (item itinerarioComandato) and provides the speed curve (item curva)
for the track circuits of the route. The three inner modules shown in the figure above,
gestioneItinerari, topografia, and calcoloCurva, correspond to the three parts previously
outlined. The connections among the modules represent the exchange of information in the
directions shown by the arrows. For instance, the maximal speed in a section (item velMax) is
provided by module topografia both to module gestoreItinerari and to module calcoloCurva.

3. The Specification

3.1 The specification entities

We now introduce the various entities that will be formalized in the specification.

A track circuit (circuito di binario, or cdb) is an electrical circuit whose purpose is to transmit
suitable messages, called codes, to the on board devices. A track circuit is the abstract
representation of the physical entity constituted by a piece of track. Each cdb is in relation with
a peripheral post (Posto Periferico) and is a component of an automatic block section (sezione
di blocco automatico, sba).

An automatic block section is the piece of track referenced by the messages that the ground
devices send to the on board devices. Each sba includes one or more track circuits, with two
signals (entrance signals in the two possible running directions) and zero, one, or more
switches. An sba is the piece of track of minimal length for which it is certain that, upon
occurrence of a train block, the train will reach a stop without overcoming its end. Each sba
receives form the topological interface a code: that is, the information on the entrance speed
(VISBA) and on the exit speed (VUSBA) of the sba itself, and on the currently set running
direction (DIMAR). The running direction (direzione di marcia) of an sba can be forward
(normale) or backward (inversa). The running direction of a route is, by definition, unique for
the entire route, and is determined by the first sba composing the route. Each sba is associated
to two final points (punto finale) corresponding to its two extremities.

A switch (deviatoio) can be in three positions forward blocked (bloccato normale), backward
blocked (bloccato rovescio), and not blocked (non bloccato).

A route (itinerario) is composed of an ordered sequence of consecutive sba, by a driven signal
(segnale comandato) and by the state of the final point of the last sba in the sequence. The
route is provided by the ACEI (see below for its definition) upon request by the train operators

6

and it always includes, when it is constructed, at least two automatic block sections. The first
section is the one where the train that is requesting the route is currently positioned; the second
one is the immediately successive sba. The final point of a route can be either free (libero), if
the sba does not belong to any route, or blocked (bloccato) otherwise. In general the final
point of a route should be blocked, to indicate that the last sba of the route is not used for any
other route, a situation to be avoided because it can cause train collision.

A signal (segnale) is a semaphore that can be in one of three positions: stop (via impedita
imperativa) when no train can be authorized to go beyond the signal, dark (spento), warning
(rosso permissivo) when the trains must stop but may be authorized to proceed in some
particular cases, and drive (via libera). The main link between a route and a signal is the driven
signal (segnale comandato). A driven signal is the signal at the entrance of the second sba of a
route: this signal is important because the second sba is the first following the sba where the
train is running. The peripheral post handles the signal based on the operational state of the
related track circuit.

 A stop (fermata) is a subway station.

The ACEI (Apparato Centrale Elettrico a pulsanti di Itinerario) is the subsystem that receives
from the on board devices the request of a route, and that is in charge of reserving (by blocking
them) the necessary sections, switches, and signals.

The peripheral post (Posto Periferico, or PP) is the set of electronic appliances that define,
through the track circuits, the free or blocked state for the piece of track under control. It can
exchange data with the ACEI and the topological interface.

The Topological Interface (Interfaccia Topografica, or IT) is the central subsystem that
manages and selects the codes. It receives information from the peripheral posts on the state of
the track and on the requested routes; it generates all the codes to be sent to each track circuit.
Such codes are necessary to send a train on a given route.

The main purpose of the specification is to describe the requirements of the safety kernel of the
topological interface. Under the simplifying hypotheses reported in the introduction, the
individual track circuits of a given sba are not distinguished in the present specification, and are
therefore ignored.

3.2 The TRIO Specification

The specification is parametric with respect to the system, which is actually defined by the sets:
Deviatoio, Segnale, Sba, PuntoFinale, Itinerario, and Codice.

Some useful functions defined on I tinerario (route):
Function length of a route
lung: Itinerario -> Integer
returns the number of Sba in the route;

Function rest of a route
rest: Itinerario -> Itinerario
rest(i) returns the route i without its first
Sba

Function element of a route
sba: (Integer , Itinerario) -> Sba
sba(k,i) returns the k-th Sba of the route i

Function first of a route
prima: Itinerario -> Sba
prima(i) ≡ sba(1,i)

Function last of a route
ultima: Itinerario -> Sba
ultima(i) ≡ sba(lung(i),i)

Function last-but-one of a route
penultima: Itinerario -> Sba
penultima(i) ≡ sba(lung(i)-1,i)

7

The Structure of the Topological Interface

We now describe the structure of the class interfacciaTopografica (the Topological Interface).
The input items of the class are the function stato (the current state of switches, block sections,
sba signals and cdb) and the itinerarioComandato signal (i.e. the driven signal), which
corresponds to a route request/block.

The output is the speed curve associated to every sba. The overall structure of the system is
represented by the modules' diagram, which consists of three modules: gestioneItinerari,
topografia and calcoloCurva.

class interfacciaTopografica
Inputs:
TD I tems

functions
The function stato is overloaded over the sets of devices of the rail network:
stato: deviatoio -> { bloccatoNormale, bloccoRovescio, nonBloccato}
stato: segnale -> { viaImpeditaImperativa, spento, rossoPermissivo, viaLibera}
stato: Sba -> { libero, bloccato, occupato}
stato: Cdb -> { libero, occupatoDaTreno, occupatoDaDisturbo}
stato: PuntoFinale -> { libero, bloccato}

predicates
itinerarioComandato(Itinerario) The set of the new routes (requested routes).

 Every requested route includes at least two Sba’s.
Outputs:
TD I tems

functions
curva: Sba -> Codice

Modules
//The module decomposition is reported in Figure 2.1
end interfacciaTopografica

The topological data management module: topografia

The topografia module provides the main topological data to the other modules, gestioneItinerari
and calcoloCurva. It contains all the static and embedded information about the topological
structure of the system: its physical displacement and the network characteristics.

The network structure is represented by succ, pred e velMax. The succ predicate identifies the
topological successor(s) of a given section, with respect to the forward running direction. The
pred predicate identifies the topological predecessor(s) of a given section (likewise, succ identifies
successors). The maximum speed allowed for a section is represented by the velMax function.

Moreover, gestioneItinerari uses the predicate segnale, representing the semaphore signal at the
entrance of a section (as usual with respect to the forward running direction), and the predicate
deviatoio, representing a section's switches. The complete specification is reported in Section 2,
while the definition of the topology of the Naples plant is reported in Section 4.

The module gestioneI tinerari

The module for route managing (gestioneItinerari) provides the module calcoloCurva with
important information about the various routes. Such items of information are called formato,
liberazione, and direzioneMarcia.

The time-dependent item formato is the set of formed routes at every instant.

The time-dependent item liberazione is the set of routes whose number of sba has been reduced,
because the train in the route has completed its first sba: such sba is then freed and made available
to form other routes; in the particular case that a route i was composed of just one sba,

8

liberazione(i) means that route i has been completed, that is the train arrived at the end of the
route.

The time-dependent item direzioneMarcia supplies the direction of every formed route, which can
be either normale (forward) or inversa (backward).

An internal time-dependent set of gestioneItinerari, called anormale, is used to denote the routes
whose behavior becomes abnormal, for instance because a switch is not correctly blocked.

class gestioneItinerari
Input:
TD I tems

functions
The function stato is overloaded (it is descrived also in module Interfacccia
Topografica):
stato: deviatoio -> { bloccatoNormale, bloccoRovescio, nonBloccato}
stato: segnale -> { viaImpeditaImperativa, spento, rossoPermissivo, viaLibera}
stato: Sba -> { libero, bloccato, occupato}
stato: Cdb -> { libero, occupatoDaTreno, occupatoDaDisturbo}
stato: PuntoFinale -> { libero, bloccato}

predicates
itinerarioComandato(itinerario)
segnale: (Sba, { normale, inversa}) -> Segnali
segnale(s,d) is the signal of the sba d for the running direction d (normale is forward,
inversa is backward)

Output:
TD items

predicates
 liberazione(Itinerario) set of freed routes at every instant

formato (Itinerario) set of formed routes at every instant
direzioneMarcia(Itinerario, { normale, inversa}) running direction of routes

Internal:
TD items

predicates
anormale(Itinerario) set of abnormal routes at every instant

Axioms
vars i, i1: Itinerario, s: Sba, d: deviatoi, dir: { normale, inversa}

liberazioneItinerario:
a route is freed (liberazione) when the train has completed its first sba

liberazione(i) <-> past(stato(prima(i)) = occupato, 1) & stato(prima(i)) = libero
formazioneItinerario:
a route is formed (formato) when it is not abnormal and one of the following conditions holds:
• it is a requested route (itinerario comandato);
• or at the previous instant it was formed and not yet freed (liberazione has a delayed effect);
• or it derives from a freed route which is not yet empty.

formato(i) <->
~anormale(i) &
(itinerarioComandato(i) |
 past(formato(i), 1) & ~ liberazione(i) |
 exists i1 (past(formato(i1) & liberazione(i1), 1) & i = rest(i1) & lung(i)>0)
)

direzioneDiMarciaComandati:
The running direction of a requested route can be derived from the topology of the system, since its
length is at least 2:
itinerarioComandato(i) -> (direzioneMarcia(i, normale) <-> pred(penultima(i), ultima(i)) &

 direzioneMarcia(i, inversa) <-> succ(penultima(i), ultima(i)))

9

direzioneDiMarciaEsistenti:
the direction of a formed route does not change in time; moreover, if a formed route is freed, the new
corresponding formed route keeps the same direction of the old one:
formato(i) & ~ itinerarioComandato(i) ->

(forall i1 (past(formato(i1),1) & (i = i1 | past(liberazione(i1),1) & i = rest(i1) ->
 direzioneMarcia(i,dir) <-> direzioneMarcia(i1,dir))

segnaleComandato:
the definition of the driven signal of a route: the signal, in the appropriate running direction, of the
first sba of the route:

formato(i) -> exists dir (direzioneMarcia(i,dir) &
 segnaleComandato(i) = segnale(sba(2,i), dir))

anormalita':
a route is abnormal (anormale) when:
 its final point is not blocked (bloccato)
 or one of its switches (deviatoio) is not blocked
 or its driven signal (segnaleComandato) is in the barred position (viaImpeditaImperativa) or it is off
(spento).
anormale(i) <->

(stato(puntoFinale(i)) <> bloccato |
 exists s exists d (s IN i & deviatoio(d,s) & stato(d) = nonBloccato) |

 stato(segnaleComandato(i)) = viaImpeditaImperativa |
 stato(segnaleComandato(i)) = spento
)

end gestioneItinerari

The speed curve module: calcoloCurva

The speed curve module (calcoloCurva) calculates and provides the speed signal for every sba
involved in a route. The speed signal is coded using the record items VISBA, VUSBA e DIMAR,
which are Italian acronyms for entrance speed, exit speed and running direction, respectively.

The DIMAR item is fixed in every formed route, and corresponds to its first sba's default running
direction: this information is provided by gestioneItinerari, using the direzioneMarcia predicate.

Now consider the case DIMAR = normale (forward running direction). The backward-direction
case is immediately obtained by swapping VISBA and VUSBA. The speed curve is computed as
follows.

Let i be the current formed route, and let s be its current sba.

• VISBA is the max speed allowed in s, verifying the equation:

curva(s).VISBA = velMax(s).

• VUSBA depends on the next, with respect to the route, sba's maximum speed limit. If t is the
next section, the constraint is:

curva(s).VUSBA = velMax(t).

We now consider the case of the last sba of a formed route. Since it is assumed that the train must
stop, after finishing its route, the speed in the last sba is set to 0.

Another constraint is given by the presence of another train in the next sba: it is necessary to keep
at least one free sba between two trains, as a security measure. In this case the speed curve must
be 0, from the last-but-one sba, to the end of the current route.

Topografia sends to calcoloCurva all the topology information about the sba's (this is done using
the succ and pred predicates) and their speed limits (function velMax).

The module for route managing supplies the following information about routes: liberazione,
direzioneMarcia and formato.

10

The output of calcoloCurva is the speed curve, computed for every section.

The state of the network (stato) - provided by the Peripheral Posts - is used to determine if there is
a train in the following sections.
class calcoloCurva
Inputs:
TI I tems
 functions

velMax : Sba -> Integer; sba's speed limit
predicates

succ(Sba,Sba);
pred(Sba,Sba);

TD I tems
predicates

formato(Itinerario);
liberazione(Itinerario);
direzioneMarcia(Itinerario, { normale, inversa});

Outputs:
TD I tems
 functions

curva : Sba -> Codice; the speed curve
Codice : record
 VISBA : Integer; sba's entrance speed
 VUSBA : Integer; sba's exit speed
 DIMAR : { normale, inversa} ; sba's current running direction

end;
Internals:
TD I tems
 predicates

trenoProssimo(i) holds iff there is a train in at least one of the i route
next adjoining sections

trenoProssimo(Itinerario);
Axioms
 vars

i : Itinerario;
s : Sba;
k : Integer;
d : {normale, inversa} ;

Speed curve for the sections not in formed routes
Every sba not belonging to formed routes is in a default rest state:
VISBA = VUSBA = 0.
axNonFormati:
forall s
 (~exists i (formato(i) & s IN i) ->
 (curva(s).VISBA = 0 &
 curva(s).VUSBA = 0)
);

Running direction for formed routes
It is supplied by the gestioneItinerari module, to send the current DIMAR to very sba.
axDirezMarcia:
 forall i forall d
 (formato(i) & direzioneMarcia(i,d)->
 forall k
 (1 <= k <= lung(i) ->
 curva(sba(k,i)).DIMAR = d
)));

11

Axioms for trenoProssimo
These axioms manage the last sections of a formed route: if there is a train in at least one of the next
adjoining sections, then the route speed curve is set to 0 in the current section. This assures the fact
that betweed two running trains there is at least one completely free section.
When a route has a length less than or equal to 2, calcoloCurva must consider even the axioms
concerning "liberazione".
trenoProssimo(i) holds iff there is a train in at least one of the i route's following adjoining sections.
axTrenoProssimo:
 forall i (formato(i) ->
 (trenoProssimo(i) <->
 (direzioneMarcia(i,normale) &
 exists s (succ(s,ultima(i)) &

 stato(s) = occupato
) |

 direzioneMarcia(i,inversa) &
 exists s (pred(s,ultima(i)) &

 stato(s) = occupato
))));
There is not a close train in the forward running direction: the speed curve is set to 0 only for the last
section's VUSBA.
axNonTrenoProssimoDirNorm:
 forall i (formato(i) ->
 (~trenoProssimo(i) &
 (lung(i) > 2 | lung(i) = 2 & ~liberazione(i)) &
 direzioneMarcia(i,normale) ->
 (curva(penultima(i)).VISBA = velMax(penultima(i)) &
 curva(penultima(i)).VUSBA = velMax(ultima(i)) &
 curva(ultima(i)).VISBA = velMax(ultima(i)) &
 curva(ultima(i)).VUSBA = 0)
));

There is not a close train in the backward running direction: the speed curve is set to 0 only for the last
section's VISBA (it exchanges its role with VUSBA because of the direction).
axNonTrenoProssimoDirInv:
 forall i (formato(i) ->
 (~trenoProssimo(i) &
 (lung(i) > 2 | lung(i) = 2 & ~liberazione(i)) &
 direzioneMarcia(i,inversa) ->
 (curva(penultima(i)).VUSBA = velMax(penultima(i)) &
 curva(penultima(i)).VISBA = velMax(ultima(i)) &
 curva(ultima(i)).VUSBA = velMax(ultima(i)) &
 curva(ultima(i)).VISBA = 0)
));

There is a close train in the forward running direction: the speed curve is set to 0 from the last-but-one
section's VUSBA to the end of the route.
axTrenoProssimoDirNorm:
 forall i (formato(i) ->
 (trenoProssimo(i) &
 (lung(i) > 2 | lung(i) = 2 & ~liberazione(i)) &
 direzioneMarcia(i,normale) ->
 (curva(penultima(i)).VISBA = velMax(penultima(i)) &
 curva(penultima(i)).VUSBA = 0 &
 curva(ultima(i)).VISBA = 0 &
 curva(ultima(i)).VUSBA = 0)
));

12

There is a close train in the backward running direction: the speed curve is set to 0 from the last-but-
one section's VISBA (like before it exchanges its role with VUSBA because of the direction) to the end
of the route.

axTrenoProssimoDirInv:
 forall i (formato(i) ->
 (trenoProssimo(i) &
 (lung(i) > 2 | lung(i) = 2 & ~liberazione(i)) &
 direzioneMarcia(i,inversa) ->
 (curva(penultima(i)).VUSBA = velMax(penultima(i)) &
 curva(penultima(i)).VISBA = 0 &
 curva(ultima(i)).VUSBA = 0 &
 curva(ultima(i)).VISBA = 0)
));

Routes with unitary length:with a close train, the speed curve is set identically to 0; without, only the
exit speed is set to 0.
axLung1:
 forall i (formato(i) ->
 (~liberazione(i) & lung(i) = 1 ->
 (trenoProssimo(i) ->
 (curva(prima(i)).VISBA = 0 &
 curva(prima(i)).VUSBA = 0)
) &
 (~trenoProssimo(i) &
 direzioneMarcia(i,normale) ->
 (curva(prima(i)).VISBA = velMax(prima(i)) &
 curva(prima(i)).VUSBA = 0)
) &
 (~trenoProssimo(i) &
 direzioneMarcia(i,inversa) ->
 (curva(prima(i)).VUSBA = velMax(prima(i)) &
 curva(prima(i)).VISBA = 0)
)));

Axioms for new and unchanged routes

VISBA and VUSBA are computed in this way: with a forward running direction, VISBA is set to the
speed limit (velMax) of the same section, while VUSBA is set to the limit of the next sba. As usual
VISBA exchanges its role with VUSBA with a backward running direction.
Note: the last two sections are managed by the trenoProssimo axioms.
- forward running direction
axStazionario-NuovoDirNorm:
 forall i (formato(i) ->
 (~liberazione(i) &
 direzioneMarcia(i,normale) ->
 forall k
 (1 <= k < lung(i)-1 ->
 (curva(sba(k,i)).VISBA = velMax(sba(k,i)) &
 curva(sba(k,i)).VUSBA = velMax(sba(k+1,i))))));

- backward running direction
axStazionario-NuovoDirInv:
 forall i (formato(i) ->
 (~liberazione(i) &
 direzioneMarcia(i,inversa) ->
 forall k
 (1 <= k < lung(i)-1 ->
 (curva(sba(k,i)).VUSBA = velMax(sba(k,i)) &
 curva(sba(k,i)).VISBA = velMax(sba(k+1,i)))
)));

13

Axioms for reduced routes

These axioms manage the case of reduced routes: the once-first sba is disposed and marked as free for
other routes. Its VISBA and VUSBA curve items are set to 0. Like before, the 2-length case is partially
managed by the trenoProssimo axioms.

General case (route length greater than 2): the speed curve for the first sba is set to 0, while the
following - with the excepiton of the last two sections - maintain their configuration.
axLiberatoGenerale:
 forall i (formato(i) ->
 (liberazione(i) & (lung(i) <> 2) ->
 (curva(prima(i)).VISBA = 0 &
 curva(prima(i)).VUSBA = 0 &
 forall k
 (1 < k < lung(i)-1 ->
 past(curva(sba(k,i)).VISBA,1) = curva(sba(k,i)).VISBA &
 past(curva(sba(k,i)).VUSBA,1) = curva(sba(k,i)).VUSBA
))));
Route length equal to 2: the speed curve is set to 0 in the first sba. The speed curve of the last sba
depends on trenoProssimo.
axLiberatoLung2:
 forall i (formato(i) ->
 (liberazione(i) & lung(i) = 2 ->
 (curva(prima(i)).VISBA = 0 &
 curva(prima(i)).VUSBA = 0) &
 (trenoProssimo(i) ->
 (curva(ultima(i)).VISBA = 0 &
 curva(ultima(i)).VUSBA = 0)
) &
 (~trenoProssimo(i) &
 direzioneMarcia(i,normale) ->
 (curva(ultima(i)).VISBA = velMax(ultima(i)) &
 curva(ultima(i)).VUSBA = 0)
) &
 (~trenoProssimo(i) &
 direzioneMarcia(i,inversa) ->
 (curva(ultima(i)).VUSBA = velMax(ultima(i)) &
 curva(ultima(i)).VISBA = 0)
)
));
end calcoloCurva

4. Test case generation for the specification of the Safety Kernel

The test case generation activity was concentrated on a small set of scenarios, which are situations
deemed worth a verification activity. Although considering other scenarios could be useful, the
selected ones were quite significant and the most important to verify for the system.

The test case generation activity in TRIO is based on the generation, supported by suitable tools,
of histories for the specified system. Such histories (henceforth called test cases) describe possible
execution sequences of the system, including both input data to be provided to the system and the
expected corresponding output data. The supporting tools allow generation of test cases in an
optimized way avoiding as much as possible the production of redundant information,
characterizing input vs. output events, and effective handling of nondeterministic behaviors.

In a first phase of the testing activity, test cases can be used to check the specification itself,
verifying whether what we specified is consistent with the knowledge of experts about the system.
For instance, it is possible to propose a history of the system breaking some safety requirements
and automatically verifying whether such behavior is allowed by the specification. This kind of
analysis increases confidence in the correctness of the specification, much in the same way as

14

testing a program may increase the confidence in its reliability: in fact, although testing cannot
prove the absence of errors, it is especially valuable as a means to validate functional requirements.

In a second phase, when the specification is considered correct, the test cases can be collected and
used to test the implementation of the system. Testing is simplified because the correct output data
are also available.

In this project, the testing activity has allowed us to find a small, but subtle, error in the
specification, due to an erroneous interpretation of the informal requirements of the system. The
error was indeed fixed very easily. However, this experience is far from uncommon: without such
a validation activity, there are errors in the specification that can easily go undetected and be
included in the implementation of the system.

The scenarios

The study has considered six sba's (called sba_1, .., sba_6) and ten routes (it_1, .., it_10). Every
route corresponds to the travel from one sba to another one, as described in Table 4.1. Many other
routes are possible, but the study was restricted to the routes of the proposed scenarios.

route Starting sba arrival sba

it_1 Sba_1 sba_6

it_2 Sba_2 sba_6

it_3 Sba_3 sba_6

it_4 Sba_4 sba_6

it_5 Sba_5 sba_6

it_6 Sba_6 sba_6

it_7 Sba_1 sba_4

it_8 sba_2 sba_4

it_9 sba_3 sba_4

it_10 sba_4 sba_4

Table 4.1: The routes considered during the testing activity

The test case generation activity has covered the following situations:

1. a train goes from beginning to the end in forward direction (hence, from sba_1 to sba_6);

2. two trains, one following the other, proceed in the forward direction: the first train proceeds
from sba_2 to sba_6, while the second enters only later, going from sba_1 to sba_4;

3. two trains proceed as in the previous case, but are too close one to each other, violating safety
requirements;

4. two trains, one following the other, proceed in the backward direction (this scenario is
symmetrical to case 1).

The results show that the specification correctly allows the generation of test cases corresponding
to scenarios 1, 2 and 4, while scenario 3 is, again correctly, rejected by the tools because it violates
the formal specification.

For reasons of efficiency of execution, the topology of the Naples subway has been included in the
form of constraints for every history rather than as axioms. Such constraints describe the values,
for such particular subway, of the following time independent items:

the relation pred between pairs of contiguous sba's;

15

the function rest, which maps every route to the corresponding route deprived of the first sba;

the function sba, which gives the i-th sba of a given route;

the function velMax, denoting the maximum speed for each sba;

the function lung, which gives the number (length) of sba of every route;

the puntoFinale function, which gives back the indication of the final point of every route.

 pred(sba_1,sba_2) : [1..60] pred(sba_2,sba_3) : [1..60] pred(sba_3,sba_4) : [1..60]
 pred(sba_4,sba_5) : [1..60] pred(sba_5,sba_6) : [1..60]
 rest(it_1) = it_2 : [1..60] rest(it_2) = it_3 : [1..60] rest(it_3) = it_4 : [1..60]
 rest(it_4) = it_5 : [1..60] rest(it_5) = it_6 : [1..60] rest(it_6) = undef : [1..60]
 rest(it_7) = it_8 : [1..60] rest(it_8) = it_9 : [1..60] rest(it_9) = it_10 : [1..60]
 rest(it_10) = undef : [1..60] sba(1,it_1) = sba_1 : [1..60]
 sba(1,it_2) = sba_2 : [1..60] sba(1,it_3) = sba_3 : [1..60] sba(1,it_4) = sba_4 : [1..60]
 sba(1,it_5) = sba_5 : [1..60] sba(1,it_6) = sba_6 : [1..60]
 sba(1,it_7) = sba_1 : [1..60] sba(1,it_8) = sba_2 : [1..60] sba(1,it_9) = sba_3 : [1..60]
 sba(1,it_10) = sba_4 : [1..60] sba(2,it_1) = sba_2 : [1..60] sba(2,it_2) = sba_3 : [1..60]
 sba(2,it_3) = sba_4 : [1..60] sba(2,it_4) = sba_5 : [1..60] sba(2,it_5) = sba_6 : [1..60]
 sba(2,it_7) = sba_2 : [1..60] sba(2,it_8) = sba_3 : [1..60] sba(2,it_9) = sba_4 : [1..60]
 sba(3,it_1) = sba_3 : [1..60] sba(3,it_2) = sba_4 : [1..60] sba(3,it_3) = sba_5 : [1..60]
 sba(3,it_4) = sba_6 : [1..60] sba(3,it_7) = sba_3 : [1..60] sba(3,it_8) = sba_4 : [1..60]
 sba(4,it_1) = sba_4 : [1..60] sba(4,it_2) = sba_5 : [1..60] sba(4,it_3) = sba_6 : [1..60]
 sba(4,it_7) = sba_4 : [1..60] sba(5,it_1) = sba_5 : [1..60] sba(5,it_2) = sba_6 : [1..60]
 sba(6,it_1) = sba_6 : [1..60] sba(5,it_7) = undef : [1..60] sba(6,it_7) = undef : [1..60]
 sba(4,it_8) = undef : [1..60] sba(5,it_8) = undef : [1..60] sba(6,it_8) = undef : [1..60]
 sba(3,it_9) = undef : [1..60] sba(4,it_9) = undef : [1..60] sba(5,it_9) = undef : [1..60]
 sba(6,it_9) = undef : [1..60] sba(2,it_10) = undef : [1..60] sba(3,it_10) = undef : [1..60]
 sba(4,it_10) = undef : [1..60] sba(5,it_10) = undef : [1..60] sba(6,it_10) = undef : [1..60]
 sba(2,it_6) = undef : [1..60] sba(3,it_6) = undef : [1..60] sba(4,it_6) = undef : [1..60]
 sba(5,it_6) = undef : [1..60] sba(6,it_6) = undef : [1..60] sba(3,it_5) = undef : [1..60]
 sba(4,it_5) = undef : [1..60] sba(5,it_5) = undef : [1..60] sba(6,it_5) = undef : [1..60]
 sba(4,it_4) = undef : [1..60] sba(5,it_4) = undef : [1..60] sba(6,it_4) = undef : [1..60]
 sba(5,it_3) = undef : [1..60] sba(6,it_3) = undef : [1..60] sba(6,it_2) = undef : [1..60]
 velMax(sba_1) = v30 : [1..60] velMax(sba_2) = v65 : [1..60] velMax(sba_3) = v77 : [1..60]
 velMax(sba_4) = v77 : [1..60] velMax(sba_5) = v65 : [1..60] velMax(sba_6) = v30 : [1..60]
 lung(it_1) = 6 : [1..60] lung(it_2) = 5 : [1..60] lung(it_3) = 4 : [1..60]
 lung(it_4) = 3 : [1..60] lung(it_5) = 2 : [1..60] lung(it_6) = 1 : [1..60]
 lung(it_7) = 4 : [1..60] lung(it_8) = 3 : [1..60] lung(it_9) = 2 : [1..60]
 lung(it_10) = 1 : [1..60] puntoFinale(it_1) = pf6 : [1..60] puntoFinale(it_2) = pf6 : [1..60]
 puntoFinale(it_3) = pf6 : [1..60] puntoFinale(it_4) = pf6 : [1..60] puntoFinale(it_5) = pf6 : [1..60]
 puntoFinale(it_6) = pf6 : [1..60] puntoFinale(it_7) = pf4_5 : [1..60] puntoFinale(it_8) = pf4_5 : [1..60]
 puntoFinale(it_9) = pf4_5 : [1..60] puntoFinale(it_10) = pf4_5 : [1..60]

Table 4.2: The topology of the Naples subway

16

Experimental results

Scenario 1: one train

This is the most basic scenario: there is only a train running in the subway. This train must cover,
with a forward running direction, every section of the subway. There are no delays, faults or other
abnormal behaviors.

The requested route is it_1 at instant 5. This causes the train, initially in the sba_1 section, to begin
its march, headed towards sba_6.

As we can see in the following figure, sba_1's VISBA and VUSBA are set to their maximum
values, during the time interval 5.10 - i.e. when the train is on sba_1.

At instant 11 the train passes sba_1: it_1 route is freed and the current route becomes it_2 (i.e.
from sba_2 to sba_6).

Similarly, every ten instants the train passes an sba, which is released: the train reaches sba_3 at
21; sba_4 at 31 etc.

At instant 51 the trains stops: the destination (sba_6) is reached.

t

v

0
20
40
60

80

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57

VISBA sba_1

VUSBA sba_1

t

v

0
20

40
60
80

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57

VISBA sba_2

VUSBA sba_2

t

v

0
20

40
60
80

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57

VISBA sba_3

VUSBA sba_3

t

v

0
20

40
60
80

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57

VISBA sba_4

VUSBA sba_4

17

t

v

0
20

40
60
80

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57

VISBA sba_5

VUSBA sba_5

t

v

0

10

20

30

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57

VISBA sba_6

VUSBA sba_6

Figure 4.1. The time progress of the speed curve - the VISBA and VUSBA items

Scenario 2: two trains

The second scenario is more complex: there are two trains (train 1 and 2) placed in sba_2 and
sba_1, respectively. The first train must cover sba_2 to sba_6 with a forward running direction.
The second train starts from sba_1 and must reach sba_4, clearly with the same running direction.
The two routes are it_2 and it_7, respectively.

The requested route is it_7 at instant 5: train 1 starts up. As depicted in the next figure, train 1
remains on sba_2 until instant 13. Then it covers sba_3, then sba_4 at instant 23, and sba_5 at 31.
From 31 to 50 it is blocked in sba_5.

At instant 33 the route it_7 becomes active - the train 2 is set in motion to reach sba_4. It takes 5
instants to get through sba_1. It then reaches sba_2 at instant 38, then sba_3 at 41. Here the
second train stops, because train 1 blocks sba_5. Actually, the specification states that there must
be at least one completely free sba between two trains-namely, sba_4.

Sba_4 is available only since instant 51, because train 1 passes to sba_6. So train 2 can go through
sba_3 to reach its destination: sba_4. This is the end of the scenario: the two trains attended their
duties.

18

t

v

0
20

40
60
80

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57

VISBA sba_1

VUSBA sba_1

t

v

0
20

40
60
80

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57

VISBA sba_2

VUSBA sba_2

t

v

0
20

40
60
80

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57

VISBA sba_3

VUSBA sba_3

t

v

0
20

40
60
80

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57

VISBA sba_4

VUSBA sba_4

t

v

0
20

40
60
80

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57

VISBA sba_5

VUSBA sba_5

t

v

0

10

20

30

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57

VISBA sba_6

VUSBA sba_6

Figure 4.2. The time progress of the speed curve - the VISBA and VUSBA items for scenario 2.

19

Scenario 3: two trains in a potentially dangerous situation

As an interesting critical situation, we forced a speed curve in which the two trains - described in
scenario 2 - can collide. Particularly, we consider the case of a non-zero speed curve in sba_3 and
sba_4 when the two trains are in sba_5 and sba_3, respectively (see figure 4.3).

t

v

0
20

40
60
80

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57

VISBA sba_3

VUSBA sba_3

t

v

0
20

40
60
80

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57

VISBA sba_4

VUSBA sba_4

Figure 4.3. The modified dangerous speed curve of scenario 3.

This is a very dangerous situation, because train 2 could reach train 1 and then crash. However, as
we can see in figure 4.4, the TRIO semantics tools immediately reject this pattern: it is not
compatible with the specification of the speed curve-computing module.

In fact the execution trace show that the TRIO tools reject the history at instant 41: the axiom
axNonTrenoProssimoDirNormale does not hold.

F o r m u l a a x N o n F o r m a t i is T r u e a t 4 0

F o r m u l a a x D i r e z M a r c ia is T r u e a t 4 0

F o r m u l a a x T r e n o P r o s s im o is T r u e a t 4 0

F o r m u l a a x N o n T r e n o P r o s s im o D ir N o r m is T r u e a t 4 0

F o r m u l a a x N o n T r e n o P r o s s im o D ir I n v i s T r u e a t 4 0

F o r m u l a a x T r e n o P r o s s im o D ir N o r m i s T r u e a t 4 0

F o r m u l a a x T r e n o P r o s s im o D ir I n v is T r u e a t 4 0

F o r m u l a a x L u n g 1 i s T r u e a t 4 0

F o r m u l a a x S t a z io n a r i o N u o v o D ir N o r m is T r u e a t 4 0

F o r m u l a a x S t a z io n a r i o N u o v o D ir I n v i s T r u e a t 4 0

F o r m u l a a x L ib e r a t o G e n e r a le i s T r u e a t 4 0

F o r m u l a a x L ib e r a t o L u n g 2 is T r u e a t 4 0

F o r m u l a a x N o n F o r m a t i is T r u e a t 4 1

F o r m u l a a x D i r e z M a r c ia is T r u e a t 4 1

F o r m u l a a x T r e n o P r o s s im o is T r u e a t 4 1

F o r m u l a a x N o n T r e n o P r o s s im o D ir N o r m is F a l s e a t 4 1

Figure 4.4: Execution trace of the TRIO testing tools for the dangerous scenario 3.

20

Scenario 4: two trains moving backward

This last scenario is practically identical to the second one: the only difference is the running
direction, which is backward for the two trains.

Actually, the topological configuration is the following:
/*** inverted Topological Configuration ***/
 pred(sba_2,sba_1) : [1..60]
 pred(sba_3,sba_2) : [1..60]
 pred(sba_4,sba_3) : [1..60]
 pred(sba_5,sba_4) : [1..60]
 pred(sba_6,sba_5) : [1..60]
We used the scenario to test the axioms for the backward running direction. The results turned out
to be, as expected, wholly symmetrical to those of the forward running direction scenario and are
omitted here.

5 Conclusions

The main goal of this study was to investigate and assess the potential applicability of the TRIO
technique in the field of railway signaling systems. The experiment was certainly successful. We
derived from the informal documentation of the Safety Kernel of the Naples Subway a formal
specification of the requirements, written in the TRIO language. Then a validation phase, based on
testing techniques was performed on the specification, leading to the discovery of a subtle error in
the specification. The validation activity also produced a small set of scenarios that could be used
as functional test cases. As a modeling language TRIO certainly proved to be adequate to describe
the data and timing requirements of the Safety Kernel. We believe that the adoption of the same
formal method would be very beneficial in the development of other very critical components of
the signaling system of the subway such as the ACEI and the Peripheral Post. In general, we
estimate that the adoption of the TRIO language and tool environment would provide better
specifications and improve the quality of the test plans, in terms of: a explicit correspondence
between test cases and properties they are meant to verify, a precise evaluation of the obtained
coverage, and a greater confidence of test case correctness (test cases would be obtained
systematically by means of semiautomatic tools from the specification).

References

[Ans94] ”METRO NAPOLI – Interfaccia Topografica – Descrizione Funzionale” , Ansaldo Trasporti,
Gennaio 1994.

[CC&99] E.Ciapessoni, A.Coen-Porisini, E.Crivelli, D.Mandrioli, P.Mirandola, A.Morzenti, “From
formal models to formally-based methods: an industrial experience”, ACM TOSEM -
Transactions On Software Engineering and Methodologies, vol. 8, No 1, January 1999, pages
80-115.

[M&S94] A. Morzenti, P. San Pietro, “Object-Oriented Logic Specifications of Time Critical Systems”,
ACM TOSEM - Transactions on Software Engineering and Methodologies, vol.3, n.1, January
1994, pp. 56-98.

[MM93] “ Impianti di segnalamento e automazione. Relazione di integrazione al progeto esecutivo”,
Metropolitana Milanese, Progettazione e direzione lavori, Novembre 1993.

