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Abstract

Operator precedence grammars, introduced by Floyd several decades ago, enjoy properties
that make them very attractive to face problems and to exploit technologies highly relevant
in these days. In this paper we focus on their local parsability property, i.e, the fact that
any substring s of a longer one x.s.y can be parsed independently of its context without the
risk of invalidating the partial parsing when analyzing another portion of the whole string.
We exploit this distinguishing property by developing parallel algorithms and suggest its
further application to error recovery and incremental analysis. Great savings in terms of
computational complexity are theoretically proved and have been reached in practice by
first prototype tools.
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1 Introduction

Floyd’s Operator Precedence grammars (OPGs) and their languages (OPLs) were
introduced half a century ago [6,8] and are still used [12] to support efficient de-
terministic parsing of context-free languages, despite minor limitations in terms of
generative power.

Recently the interest in this formalism has been renewed thanks to its closure prop-
erties which make it amenable to some fundamental “push-button” verification
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techniques such as model checking, normally restricted to less powerful language
families [5].

In this paper we exploit another distinguishing feature of OPLs, namely their local
parsability: unlike other classical deterministic languages, whose parsing actions
may depend on information arbitrarily distant from the current input string position,
for locally parsable languages all actions can be deterministically taken on the basis
of a bounded context of the current position. We argue that such property is a key
feature to allow a natural exploitation of parallel processing, especially in modern
computing systems. By contrast, previous attempts to apply parallel techniques to
other traditional parsing algorithms did not produce relevant results, due to the lack
of this critical property. The same property also allows to simplify and to enhance
the efficiency of previous incremental parsing techniques [10].

We present two algorithmic schemata: the first one splits the input text into sub-
strings and performs local parsing through independent “workers”, then the second
one recombines their partial outputs to be further processed until completion. We
show the benefits of parallelism in terms of computational complexity.

In this paper we focus on the theoretical aspects enabling the proposed techniques;
however, they have already been put in action in working tools: [1] complements
this paper by describing the practical implementation techniques employed to tailor
the algorithm to modern architectures, and includes benchmarks on real world data
sets, showing speedups very close to the theoretical expectations. In the conclu-
sions we also hint at further exploitation of the local parsability property to support
incremental parsing of locally modified strings and to improve error recovery tech-
niques.

2 Preliminaries

The reader may find more details on OPGs in [5,6,8].
Let VT be an alphabet and ε the empty string. Let G = (VT ,VN ,R, S ) be a context-
free (CF) grammar, where VN is the nonterminal alphabet, R the rule (or pro-
duction) set, and S the axiom. A rule is in operator form if its right hand side
(r.h.s.) has no adjacent nonterminals; an operator grammar (OG) contains only
such rules. The following naming convention will be adopted, unless otherwise
specified: lowercase Latin letters a, b, . . . denote terminal characters; uppercase
Latin letters A, B, . . . denote nonterminal characters; letters r, s, t, u, v, . . . denote
terminal strings; and Greek letters α, . . . , ω denote strings over VT ∪VN . The strings
may be empty, unless stated otherwise.

For an OG G and a nonterminal A, the left and right terminal sets are

LG(A) = {a ∈ VT | A
∗

⇒ Baα} RG(A) = {a ∈ VT | A
∗

⇒ αaB}
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Figure 1. Arithmetic expressions without parentheses.

where B ∈ VN ∪ {ε} and
∗

⇒ denotes the derivation relation.
The following binary operator precedence (OP) relations are defined:

equal in precedence: a � b ⇐⇒ ∃A→ αaBbβ, B ∈ VN ∪ {ε}

takes precedence: a m b ⇐⇒ ∃A→ αDbβ,D ∈ VN and a ∈ RG(D)
yields precedence: a l b ⇐⇒ ∃A→ αaDβ,D ∈ VN and b ∈ LG(D)

The operator precedence matrix (OPM) M = OPM(G) is a |VT | × |VT | array that
associates with any ordered pair (a, b) the set Mab of OP relations holding between
a and b.

Definition 1 An OG G is an operator precedence (OPG) if, and only if, M =

OPM(G) is a conflict-free matrix, i.e., ∀a, b, |Mab| ≤ 1.

Definition 2 A OPG is in Fischer normal form [7] if no two rules have the same
r.h.s.; no rule, possibly except one with the axiom S as the left hand side (l.h.s.),
has ε as the r.h.s.; renaming rules, i.e., those with a single nonterminal character
as the r.h.s., are those and only those with S as the l.h.s.

In the sequel, we assume, without loss of generality, that OPGs are in Fischer nor-
mal form. Following the custom of sequential parsers, we enclose the input string
between two # special characters, and we assume that # yields precedence to any
other character and any character takes precedence over #.

Example 1 Fig. 1 presents an OPG generating arithmetic expressions where, as
usual, multiplication takes precedence over sum (left), the derivation tree of string
n + n × n (center) and its OPM (right), where relations with # are left implicit.

As said, OPGs enjoy a distinguishing local parsability property, unlike other deter-
ministic families of CF languages (e.g. LR(k)). In fact, the definition of precedence
relations is such that, if there exists a derivation S

∗

⇒ αAγ ⇒ αβγ then it must be
α = α′a, γ = bγ′, β = N1c1N2c2 . . . cn−1Nn, with Ni ∈ VN ∪ {ε}, ci � ci+1, 1 ≤ i < n,
alc1, cn−1mb [7]. In other words any r.h.s is enclosed within a pair lm and � holds
between consecutive terminal characters within it (nonterminals are irrelevant or
“transparent” in OPGs); furthermore, being the grammar in Fisher normal form,
there are no repeated r.h.s. in R; thus, a shift-reduce algorithm applied to an OPG
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can extract any r.h.s of any rule within a string in (VN ∪ VT )∗ and reduce it to the
corresponding l.h.s. with the certainty that, if the string is legal, then the chosen
rule is part of the derivation and will not have to be invalidated by any backtracking
action. For instance, with reference to the grammar of Figure 1, if we find a sub-
string +n×n× in any context, given that +lnm× we can reduce it to +B×n×; then,
since + l × and n m × we further reduce it to +B× no matter what is the contents
of the unspecified part of the string. More generally, if we start with a string a.s.b
embedded in any context (t, u), whenever we find a r.h.s. enclosed within a pair lm
which in turn is in the context (t.a, b.u), we can proceed with reducing it to its l.h.s.
until no more pairs lm exist in the reduced string in (VN ∪ VT )∗. As a consequence
we obtain the following fundamental statement, which is the basis of the algorithms
described in this paper.

Statement 1 For any string asb such that S
∗

⇒ tasbu there exists a unique α such
that S

∗

⇒ taαbu
∗

⇒ tasbu, and, in aαb, α = β.γ and in β (resp. γ) only m and �
relations occur (resp. l and �). If β or γ are ε, then either only l and � or only m
and � relations occur between consecutive terminal characters.

Such a unique α is called the minimal reduced string deriving s in the context (a, b);
in fact this condition implies that no further reduction can be applied to α without
affecting its context (a, b).

We now present two algorithms for sequential and parallel parsing of OPLs, based
on Statement 1. They can be used either in isolation or integrated with a compiler.

3 Parallel parsing of Operator Precedence Languages

As a first step we generalize the traditional shift-reduce parsing algorithm for OPGs
to analyze strings in (VN∪VT )∗; such strings begin and end with terminal characters
but not necessarily #. This feature is needed when the algorithm is called to parse
internal substrings in the parallel version.

Algorithm 1 is based on a stack S containing symbols (x, p), x ∈ VT ∪ VN , p ∈
{l,�,m,⊥}, ⊥ standing for undefined. The second component is used to encode
the precedence relation found between two terminal symbols - thus, it is always
p = ⊥ for nonterminals. When the precedence symbols are not needed, we will
use the post-fix operator |1 to denote the homomorphism that erases precedence
information, i.e. (x, p)|1 = x. We assume that the stack grows rightwards.

When used sequentially and not as part of the parallel version outlined below, the
algorithm is called with u = #s#, S = (#,⊥), never performs step (4), and accepts
the input only if S = (#,⊥)(S ,⊥).

With reference to Statement 1, string aα is exactly the contents of the stack of an
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Algorithm 1
Sequential-parsing(S, u, head, end)
Initialization: u = a.s.b; S = (a,⊥); head, end are respectively set to the position
of the first character of s, and of b.
(1) Read the symbol x at position head in u, and consider its precedence relation

with the top-most terminal y found in S.
(2) If y l x, push (x,l); head := head + 1.
(3) If y � x, push (x,�); head := head + 1.
(4) If x ∈ VN , push (x,⊥); head := head + 1.
(5) If y m x, consider S:

(a) If S does not contain l then push (x,m); head := head + 1.
(b) Else, let S be (x0, p0)(x1, p1) . . . (xi, pi) . . . (xn, pn)

where ∀ j, i + 1 < j ≤ n, p j , l; either pi = l and pi+1 , l, or pi = ⊥

(i.e. xi ∈ VN) and pi+1 = l then
if ∃A: A → xi . . . xn ∈ R, replace (xi, pi) . . . (xn, pn) in S with (A,⊥);
otherwise start an error recovery procedure. 1

(6) If head < end or (head = end and S , (a,⊥)(B,⊥)), for any B ∈ VN , repeat
from step (1); else return S.

OPG parser that parses left-to-right asb just before shifting b. As a particular case,
a and/or b can be the delimiter #.

To split the load among different workers, we divide the input string into k sub-
strings, depending on the actual parallelism offered by the machine. The division
is arbitrary, unlike other parallel parsers (e.g. [15]), which require the input to be
cut in positions marked by characters (e.g. begin) that open syntactic constituents.
We then apply Algorithm 1 to each substring. Thanks to the locality principle, its
output will certainly be part of the complete parsing of the whole original string.
Due to the fact that OP parsing is rooted in a look-ahead/look-back of one char-
acter to evaluate the precedence relations between consecutive terminal characters,
the last character of each substring coincides with the first character of the fol-
lowing one. For instance, consider the grammar of Example 1. If the input string
is n + n + n × n × n + n × n + n and k = 3, we may split it in three parts︷︸︸︷
n + n +

︷       ︸︸       ︷
n × n × n+ n

︷ ︸︸ ︷
×n + n where # delimiters are left implicit and the symbols

+, n not embraced are shared by the two adjacent substrings.

Thanks to Statement 1, after a sequential step on a substring we arbitrarily choose
a point where to split the stack S into two parts SL and SR, such that SL does not
contain l relations, and SR does not contain m relations.
In our example, we obtain the following three stacks: S1 = (#,⊥)(A,⊥)(+,l); S2 =

(+,⊥)(B,⊥)(+,m)(n,l); S3 = (n,⊥)(×,m)(n,�)(+,m)(B,⊥)(#,m). In this case, we
have SL

2 = (+,⊥)(B,⊥)(+,m), and SR
2 = (n,l).

To combine the results SLSR and S′LS′R of two adjacent workers, sayW andW′

to its right, respectively, we need to prepare the initial stack S and input string u
of another run of Algorithm 1 for each worker. We take S as Scombine(SL,SR) :=
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(a,⊥)SR, where a is the top symbol of SL; while the input string u is ucombine(S′L) :=
u′, where u′ is the suffix of S′L|1 without its first symbol (which is already on the
top of SR).
In our example, we obtain: Scombine(SL

2 ,S
R
2 ) = (+,⊥)(n,l), and ucombine(SL

3) = ×n +

B#.

A few special but simple cases, e.g. whenS′ contains only l and � precedence rela-
tions, i.e., when the string α referred to in Statement 1 is empty, are not considered
here in detail for brevity.

Algorithm 2
Parallel-parsing(u, k)
(1) Split the input string u into k substrings: #u1u2 . . . uk#.
(2) Launch k instances of Algorithm 1, where, for each 1 ≤ i ≤ k, the parameters

are Si = (a,⊥), u = uib, head = |u1u2 . . . ui−1|, end = |u1u2 . . . ui| + 1; a is the
last symbol of ui−1, and b the first of ui+1. Conventionally u0 = uk+1 = #. The
result of this phase are k pairs of stacks SL

i S
R
i , as specified above.

(3) Repeat: 2

(a) For each adjacent non-empty stack pair SL
i S

R
i and SL

i+1S
R
i+1, launch an

instance of Algorithm 1, with S = Scombine(SL
i ,S

R
i ), s = ucombine(SL

i+1),
head = 1, end = |u|.

(b) Until either we have a single reduced stack S or the computation is
aborted and some error recovery action is taken.

(4) Return S.

4 Complexity

Parallel parsing techniques are obviously motivated by achieving gains in effi-
ciency. In terms of asymptotic complexity the first requirements that we state for a
positive evaluation of such techniques are: a best-case linear speedup w.r.t the num-
ber of processors; a worst case performance that does not exceed the complexity of
a complete sequential parsing.

To meet these requirements, it is essential that the combination of stacks Si and
Si+1, inside step (3)(a) of Algorithm 2, takes O(1) time (hence overall O(k) for
k workers). This goal is easily achieved by maintaining, during the execution of
Algorithm 2, a marker that keeps track of the separation between SL and SR. Such
a marker can be initialized at the position where the first l is detected and then
updated every time a reduction is applied and a new element is shifted on the stack
as a consequence of a new l relation. For instance, in the case of S2 in the example
above, it is initialized at the position of the + symbol and remains there after the
three reductions B ⇒ n, B ⇒ B × n, B ⇒ B × n, because + l n and + l ×; then,
when the second + (the third of the whole string) is shifted (without removing the
previous one because the m between the two + is not matched by a corresponding
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l at its left), the marker is moved to point to the position of the second + since
+l n where it will mark the beginning of SR

2 . These operations require a time O(1)
whether we implement the stacks by means of arrays or by means of more flexible
linked lists.

5 Related Works

In principle, other formal conditions and related families of grammars capturing
the notions of local parsability could be devised. For instance, Floyd himself pro-
posed a generalization of his grammars by dropping the operator grammar form and
considering a “bounded context of length k” as the one that allows to decide unam-
biguously the reduction to be applied [9]; OPGs fall in this category with k = 1, but
the generalization did not prove cost-effective for serial parsing.

The local parsability property can also be found in some grammar families that are
based on Church-Rosser (CR) Thue systems. The simplest family are the Nonter-
minally Separated grammars [3], which have a rather limited generative capacity.
Other CR families include also some context-sensitive languages [13]. The abil-
ity to start reduction at any position makes CR grammars potentially attractive for
parallel parsing, but we do not know of published work in that direction.

Other approaches, e.g., [14,11,2] aimed at building parallel parsers for LR gram-
mars but, due to the lack of the local parsability property, the few people who have
performed some limited experimentation on such algorithms have generally found
that performances critically depend on the cut points between substrings: if a sub-
string starts, say, with begin, the parser can recognize almost completely a full lan-
guage block. On the contrary, starting a substring on an identifier opens too many
syntactic alternatives. As a consequence such parsers have been typically combined
with language-dependent heuristics for splitting the source text into substrings that
start on keywords announcing a splitting friendly construct.

We also report that the efforts toward parallelizing the parsing of common LR gram-
mars, such as the ones made by Mickunas and Schell [14] were not able to devise
an algorithm able to exploit parallel architectures. Their technique is based on start-
ing multiple parsing processes in different portions of the input and, if a reduction
move needs more symbols than the ones present on the stack, it is checked whether
the previous workers produced them. This implies that the parse actions done by
the different workers are not final as the absence of the required nonterminals may
invalidate reductions.

In summary, since OPGs are currently the only ones of any practical usage that en-
joy a local parsability property, we focused our attention on this class of grammars.
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6 Conclusions and Further Work

In this paper we have set the theoretical foundations to exploit the local parsability
property of OPLs by means of parallel elaboration. A first practical application of
the proposed techniques for parallel parsing is reported in [1] together with very
encouraging experimental results which fully confirm theoretical expectations. The
local parsability property, however, can be further exploited along other directions:

• First, it can be applied to incremental parsing. In many cases original input
strings are modified, either to fix mistakes of previous versions or to adapt
them to new requirements; most often such changes affect only a small part
of the syntax tree associated with the input string, so that an incremental tech-
nique that avoids redoing parsing of unaffected portions may result in much
saving in time and space complexity. Various incremental parsing algorithms
have been presented in the literature, mostly based on traditional LR parsing
and originated by our early work [10]. In the case of OPLs the local parsability
property can further enhance the benefits of incrementality. In fact, if, for an
OPG aAb

∗

⇒ asb, then for every t, u, S
∗

⇒ tasbu iff S
∗

⇒ taAbu
∗

⇒ tasbu. As
a consequence, if s is replaced by v in the context (ta, bu), if aAb

∗

⇒ avb, then
S
∗

⇒ taAbu
∗

⇒ tavbu, and (re)parsing of tavbu can be stopped at aAb
∗

⇒ avb.
• The capability to recover from errors is essential in any practical application,

the more so for the very large texts that our parallel algorithm is able to ef-
ficiently parse. Error recovery in sequential parsing has a long history (see,
e.g., [12]) but very little has been done to adapt the sequential approach to par-
allel parsing [4]. A risk is that traditional error recovery actions would slow-
down parallel parsing. As a future development, we hint to the possibility to
increase the worker pool with one or more workers devoted to error handling
or to augment present workers with ad-hoc error handling procedures.

• Furthermore syntactic parallel and/or incremental analysis could be naturally
paired with semantic analysis, e.g., based on attribute schemata [4].

In summary we aim at building a complete syntactic and semantic environment
that assists the user in the managing of any type of long and complex documents
by parallelizing lexical 3 , syntactic, and semantic analysis and by supporting their
evolution in an incremental way.
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