
Cyclic Operator Precedence Grammars for Improved
Parallel Parsing⋆

Michele Chiari1[0000−0001−7742−9233], Dino Mandrioli2[0000−0002−0945−5947], Matteo
Pradella2,3[0000−0003−3039−1084]

1 Institute of Computer Engineering, TU Wien, Treitlstraße 3, 1040 Vienna, Austria
michele.chiari@tuwien.ac.at

2 DEIB, Politecnico di Milano, Piazza Leonardo Da Vinci 32, 20133 Milano, Italy
3 IEIIT, Consiglio Nazionale delle Ricerche, via Ponzio 34/5, 20133 Milano, Italy

{dino.mandrioli,matteo.pradella}@polimi.it

Abstract. Operator precedence languages (OPL) enjoy the local parsability prop-
erty, which essentially means that a code fragment enclosed within a pair of
markers —playing the role of parentheses— can be compiled with no knowledge
of its external context. Such a property has been exploited to build parallel compil-
ers for languages formalized as OPLs. It has been observed, however, that when
the syntax trees of the sentences have a linear substructure, its parsing must neces-
sarily proceed sequentially making it impossible to split such a subtree into chunks
to be processed in parallel. Such an inconvenience is due to the fact that so far
much literature on OPLs has assumed the hypothesis that the equality precedence
relation cannot be cyclic. We present an enriched version of operator precedence
grammars which allows to remove the above hypothesis, therefore providing a
little more expressive generality, and to further optimize parallel compilation.

Keywords: Operator Precedence Languages · Cyclic Precedence Relations ·
Parallel Parsing

1 Introduction

Operator precedence languages (OPL) are a “historical” family of languages invented
by R. Floyd [10] to support fast deterministic parsing. Together with their operator
precedence grammars (OPG), they are still used within modern compilers to parse
expressions with operators ranked by priority. The key feature that makes them well
amenable for efficient parsing and compilation is that the syntax tree of a sentence is
determined exclusively by three binary precedence relations over the terminal alphabet
that are easily pre-computed from the grammar productions. For example: the arithmetic
sentence a+ b× c does not make manifest the natural structure (a+ (b× c)), but the
latter is implied by the fact that the plus operator yields precedence to the times.

After Floyd’s pioneering contribution much subsequent research discovered further
important properties of OPLs, not necessarily related to deterministic parsing, that are

⋆ The extended version of this paper, available in [6], contains an omitted correctness proof,
explanatory examples and figures developed in more depth.

2 M. Chiari, D. Mandrioli, M. Pradella

typical of the much less powerful family of regular languages and therefore enabled
applications in fields such as automatic verification. In synthesis, they are: OPLs are
a boolean algebra [8]; they are also closed under concatenation and Kleene’s * [7];
they are characterized, besides original OPGs, by a special and simple family of push-
down automata, named Operator Precedence automata (OPA), a monadic second-order
(MSO) logic that naturally extends the classic one for regular languages [15], operator
precedence expressions (OPE) which similarly extend traditional regular expressions
[17], and in terms of a syntactic congruence with a finite number of equivalence classes
(OPSC) [13]. Finally, an FO-complete temporal logic equivalent to aperiodic OPLs
[17] has been defined which enabled the construction of a first model checker to verify
properties of OPLs with a complexity comparable with that of model checkers for regular
languages [5]. To the best of our knowledge, OPLs are the largest subclass of context-free
languages that enjoys the same properties of regular ones.

S

S

S

S

n

+ n

+ n

+ n

S

n + n + n + n

Fig. 1. Left-associative syntax tree
(top) vs equal-level one (bottom)
of the plus operator. The top syn-
tax tree imposes a sequential left-
to-right parsing and semantic pro-
cessing whereas the bottom one
can be split onto several branches
to be partially processed indepen-
dently and further aggregated.

It must be pointed out, however, that many —not
all— of the algebraic properties discovered during such
a research activity were proved by assuming a hypoth-
esis on the precedence relations defined on the input
alphabet. Although from a theoretical point of view
this hypothesis slightly affects the generative power of
OPGs —but is not necessary, e.g., for OPAs and MSO
logic so that these two formalisms are a little more pow-
erful than OPGs—, so far no practical limitation due to
it was discovered in terms of formalizing the syntax of
real-life programming and data description languages.
Thus, it has been constantly adopted in the various de-
velopments to avoid making the mathematical notation
and technical details too cumbersome.

Another distinguishing property of OPLs is their
local parsability, i.e. the fact that a chunk included
within a pair of symmetric precedence relations can
be deterministically parsed even without knowing its
context. This feature was exploited to produce a parallel
parser generator which exhibited high performances

w.r.t. traditional parsers [4,3].
The recent contribution [14], however, pointed out a weakness of the parallel com-

pilation algorithm described in [3] which in some cases hampers partitioning the input
to be parsed in well-balanced chunks, so that the benefits of parallelism are affected.
Intuitively, the weakness is due to the fact that the “normal” precedence relation on the
arithmetic operator + compels to parse a sequence thereof by associating them either
to the left or to right so that parsing becomes necessarily sequential in this case. The
authors also proposed a special technique to overtake this difficulty by allowing for an
acceptable level of ambiguity, which in the case of OPGs determines a conflict for some
precedence relations on the terminal alphabet.

Such normal precedence relation, however, which either lets + yield precedence to,
or take precedence over itself, has no correspondence with the semantics of the operation,

Cyclic Operator Precedence Grammars for Improved Parallel Parsing 3

whose result does not depend on the order of association. So, why not giving the various
occurrences of the + operator the same precedence level as suggested by arithmetic’s
laws? Fig. 1 gives an intuitive idea of the different structures given to a sequence of +
operators by traditional OPGs and the natural semantics of the sum operation.

The answer to this question comes exactly from the above mentioned hypothesis:
it forbids cyclic sequences of symbols that are at the same level of precedence; so that
+ cannot be at the same level of itself. Thus, the discovery of this practical restriction
“compelled” us to finally remove this relatively disturbing hypothesis: this is the object
of the present paper. The solution we devised consists in allowing grammar right hand
sides (rhs) to include the Kleene ∗ operator. Thus, we introduce the Cyclic operator-
precedence grammars (C-OPG) which include the above feature: whereas such a feature
is often used in general context-free grammars to make the syntax of programming
languages more compact but does not increase their expressive power, we show that
C-OPGs are now fully equivalent to OPAs and other formalisms to define OPLs, such
as the MSO logic. We also show that all results previously obtained under the above
hypothesis still hold by using C-OPGs instead of traditional OPGs. Although the goal of
this paper is not to develop parallel compilation algorithms rooted in C-OPGs, we show
how they naturally overtake the difficulty pointed out by [14] and would allow to revisit
their techniques, or to improve the efficiency of our previous parallel parser [3].

2 Background

We assume some familiarity with the classical literature on formal language and automata
theory, e.g., [19,12]. Here, we just list and explain our notations for the basic concepts
we use from this theory. The terminal alphabet is usually denoted by Σ, and the empty
string is ε. The character # ̸∈ Σ is used as delimiter, and we define Σ# = Σ ∪ {#}.

A context-free (CF) grammar is a tuple G = (Σ,VN , P, S) where Σ and VN , with
Σ ∩ VN = ∅, are resp. the terminal and the nonterminal alphabets, the total alphabet is
V = Σ ∪ VN , P ⊆ VN × V ∗ is the rule (or production) set, and S ⊆ VN , S ̸= ∅, is
the axiom set. For a generic rule, denoted as A → α, where A and α are resp. called
the left/right hand sides (lhs / rhs), the following forms are relevant: axiomatic A ∈ S;
terminal α ∈ Σ+; empty α = ε; renaming α ∈ VN ; operator α ̸∈ V ∗VNVNV ∗, i.e., at
least one terminal is interposed between any two nonterminals occurring in α.

A grammar is backward deterministic (BD) if (B → α,C → α ∈ P) implies
B = C. If all rules of a grammar are in operator form, it is called an operator grammar
or O-grammar. We give for granted the usual definition of derivation denoted by the
symbols ==⇒

G
(immediate derivation), ∗

==⇒
G

(reflexive and transitive closure of ==⇒
G

), +
==⇒
G

(transitive closure of ==⇒
G

); the subscript G will be omitted whenever clear from the

context. We give also for granted the notion of syntax tree (ST). As usual, the frontier of
a syntax tree is the ordered left-to-right sequence of the leaves of the tree.

The language defined by G, said L(G), is {w | w ∈ Σ∗, A
∗

==⇒
G

w ∧A ∈ S}. Two

grammars defining the same language are equivalent. Two grammars generating the
same set of syntax trees, up to a renaming of internal nodes, are structurally equivalent.

4 M. Chiari, D. Mandrioli, M. Pradella

From now on, w.l.o.g., we exclusively deal with O-grammars without renaming and
empty rules with the only exception that, if ε is part of the language, there is a unique
empty rule whose lhs is an axiom that does not appear in the rhs of any production. In
fact, this is a well-known normal form for CF grammars [2,12].

We now define operator precedence grammars (OPGs) following primarily [16].
Intuitively, OPGs are O-grammars whose parsing is driven by three precedence relations,
called equal, yield and take, included in Σ# × Σ#. They are defined in such a way
that two consecutive terminals of a grammar’s rhs —ignoring possible nonterminals in
between— are in the equal relation, while the two extreme ones —again, whether or not
preceded or followed by a nonterminal— are preceded by a yield and followed by a take
relation, respectively; in this way a complete rhs of a grammar rule is identified and can
be reduced to a corresponding lhs by a typical bottom-up parsing.

Definition 1 ([10]). Let G = (Σ,VN , P, S) be an O-grammar. Let a, b denote elements
in Σ, A,B in VN , C either an element of VN or the empty string ε, and α, β range over
V ∗. The left and right terminal sets of nonterminals are respectively:
LG(A) =

{
a ∈ Σ | ∃C : A

∗
==⇒
G

Caα
}

and RG(A) =
{
a ∈ Σ | ∃C : A

∗
==⇒
G

αaC
}
.

The operator precedence (OP) relations are defined over Σ# ×Σ# as follows:
Equal in precedence a

.
= b ⇔ ∃A → αaCbβ ∈ P .

Takes precedence a⋗b ⇔ ∃A → αBbβ ∈ P, a ∈ R(B); a⋗# ⇔ a ∈ R(B), B ∈ S.
Yields precedence a⋖b ⇔ ∃A → αaBβ ∈ P, b ∈ L(B);#⋖b ⇔ b ∈ L(B), B ∈ S.

The OP relations can be collected into a |Σ#| × |Σ#| array, called the operator
precedence matrix of the grammar, OPM(G): for each (ordered) pair (a, b) ∈ Σ#×Σ#,
OPMa,b(G) contains the OP relations holding between a and b.

An OPM is said conflict-free iff ∀a, b ∈ Σ#, 0 ≤ |Ma,b| ≤ 1. A conflict-free OPM
is total or complete iff ∀a, b ∈ Σ#, |Ma,b| = 1. If M#,# is not empty, M#,# = { .

=}.
An OPM is =̇-acyclic if the transitive closure of the =̇ relation over Σ ×Σ is irreflexive.

We extend the set inclusion relations and the Boolean operations in the obvious
cell-by-cell way, to any two matrices having the same terminal alphabet. Two matrices
are compatible iff their union is conflict-free.

Definition 2 (Operator precedence grammar). A grammar G is an operator prece-
dence grammar (OPG) iff the matrix OPM(G) is conflict-free. An OPG is =̇-acyclic if
OPM(G) is so. An operator precedence language (OPL) is a language generated by an
OPG.

Fig. 2 (left) displays an OPG, GAE , which generates simple, unparenthesized arith-
metic expressions and its OPM (center). The left and right terminal sets of GAE’s nonter-
minals E, T and F are, respectively: L(E) = {+,×, n}, L(T) = {×, n}, L(F) = {n},
R(E) = {+,×, n}, R(T) = {×, n}, and R(F) = {n}.
Remark. If the relation =̇ is acyclic, then the length of the rhs of any rule of G is bounded
by the length of the longest =̇-chain in OPM(G).

The key feature of OPLs is that a conflict-free OPM M defines a universe of strings
compatible with M and associates to each of them a unique syntax tree whose internal
nodes are unlabeled and whose leaves are elements of Σ. We illustrate such a feature

Cyclic Operator Precedence Grammars for Improved Parallel Parsing 5

through a simple example and refer the reader to previous literature for a thorough
description of OP parsing [11,16].

GAE : S = {E}
E → E + T | T × F | n
T → T × F | n
F → n

+ × n #

+ ⋗ ⋖ ⋖ ⋗
× ⋗ ⋗ ⋖ ⋗
n ⋗ ⋗ ⋗
⋖ ⋖ ⋖

N

N

N

N

n

+ N

N

n

× N

n

+ N

n

#

Fig. 2. GAE (left), its OPM (center), and the syntax tree of n+ n× n+ n according to the OPM
(right).

Example 3. Consider the OPM(GAE) of Fig. 2 and the string n+ n× n+ n. Display
all precedence relations holding between consecutive terminal characters, including the
relations with the delimiters # as shown here:

#⋖ n⋗+⋖ n⋗×⋖ n⋗+⋖ n⋗#

Each pair ⋖,⋗ (with no further ⋖,⋗ in between) includes a possible rhs of a production
of any OPG sharing the OPM with GAE , not necessarily a GAE rhs. Thus, as it happens
in typical bottom-up parsing, we replace —possibly in parallel— each string included
within the pair ⋖,⋗ with a dummy nonterminal N ; this is because nonterminals are
irrelevant for OPMs. The result is the string #N +N ×N +N#. Next, we compute
again the precedence relation between consecutive terminal characters by ignoring
nonterminals: the result is #⋖N +⋖N ×N ⋗+N ⋗#.

This time, there is only one pair ⋖,⋗ including a potential rhs determined by the
OPM (the fact that the external ⋖ and ⋗ “look matched” is coincidental as it can be easily
verified by repeating the previous procedure with the string n+ n× n+ n+ n). Again,
we replace the pattern N ×N , with the dummy nonterminal N ; notice that there is no
doubt about associating the two N to the × rather than to one of the adjacent + symbols:
if we replaced, say, just the × with an N we would obtain the string N +NNN +N
which cannot be derived by an O-grammar. By recomputing the precedence relations we
obtain the string #⋖N +N ⋗+N ⋗#. Finally, by applying twice the replacing of
N +N by N we obtain #N#.

The result of the whole bottom-up reduction procedure is synthetically represented
by the syntax tree of Fig. 2 (right) which shows the precedence of the multiplication
operation over the additive one in traditional arithmetics. It also suggests a natural
association to the left of both operations: if we reverted the order of the rhs of the rules
rewriting E and T , the structure of the tree would have suggested associativity to the
right of both operations which would not have altered the semantics of the two operations
which can indifferently be associated to the left and to the right; not so is we dealt with,
say, subtraction or division which instead impose association to the left.

6 M. Chiari, D. Mandrioli, M. Pradella

Notice that the tree of Fig. 2 has been obtained —uniquely and deterministically—
by using exclusively the OPM, not the grammar GAE although the string n+n×n+n ∈
L(GAE)

4.
Obviously, all sentences of L(GAE) can be given a syntax tree by OPM(GAE), but

there are also strings in Σ∗ that can be parsed according to the same OPM but are not in
L(GAE). E.g., the string + + + is parsed according to the OPM(GAE) as a ST that
associates the + characters to the left. Notice also that, in general, not every string in
Σ∗ is assigned a syntax tree by an OPM; e.g., in the case of OPM(GAE) the parsing
procedure applied to nn is immediately blocked since there is no precedence relation
between n and itself.

Definition 4 (OP-alphabet and Maxlanguage). A string in Σ∗ is compatible with an
OPM M iff the procedure described in Example 3 terminates by producing the pattern
#N#. The set of all strings compatible with an OPM M is called the maxlanguage or
the universe of M and is simply denoted as L(M).

Let M be a conflict-free OPM over Σ# × Σ#. We use the same identifier M to
denote the —partial— function M that assigns to strings in Σ∗ their unique ST as
informally illustrated in Example 3.

The pair (Σ,M) where M is a conflict-free OPM over Σ# ×Σ#, is called an OP-
alphabet. We introduce the concept of OP-alphabet as a pair to emphasize that it defines
a universe of strings on the alphabet Σ —not necessarily covering the whole Σ∗— and
implicitly assigns them a structure univocally determined by the OPM, or, equivalently,
by the function M . The class of (Σ,M)-compatible OPGs and OPLs are respectively:
GM = {G | G is an OPG and OPM(G) ⊆ M}, LM = {L(G) | G ∈ GM}.

Various formal properties of OPGs and OPLs are documented in the literature, e.g.,
in [8,7,16]. The next proposition recalls those that are relevant for this article.

Proposition 5 (Algebraic properties of OPGs and OPLs). If an OPM M is total,
then the corresponding homonymous function is total as well, i.e., L(M) = Σ∗.

Let (Σ,M) be an OP-alphabet where M is =̇-acyclic. The class GM contains
an OPG, called the maxgrammar of M , denoted by Gmax,M , which generates the
maxlanguage L(M). For all grammars G ∈ GM , L(G) ⊆ L(M).

The closure properties of the family LM of (Σ,M)-compatible OPLs defined by a
total OPM are the following:

– LM is closed under union, intersection and set-difference, therefore also under
complement (if a maxgrammar of M exists).

– LM is closed under concatenation; if M is =̇-acyclic, LM is closed under ∗.

In terms of expressive power, OPLs are strictly in-between Visibly Pushdown Lan-
guages [1] and deterministic context-free languages.

4 The above procedure that led to the syntax tree of Fig. 2 could be easily adapted to become
an algorithm that produces a new syntax tree whose internal nodes are labeled by GAE’s
nonterminals. Such an algorithm could be made deterministic by transforming GAE into a
structurally equivalent BD grammar sharing the same OPM [2,12].

Cyclic Operator Precedence Grammars for Improved Parallel Parsing 7

Remark. Thanks to the fact that a conflict-free OPM assigns to each string at most one
ST —and exactly one if the OPM is complete— the above closure properties of OPLs
w.r.t. Boolean operations automatically extend to sets of their STs. The same does not
apply to the case of concatenation which in general may produce significant reshaping of
the original STs [7]. Furthermore, any complete, conflict-free, =̇-acyclic OPM defines a
universe of STs whose frontiers are Σ∗.

The notion of chain introduced next is an alternative way to represent STs where
internal nodes are irrelevant and “anonymized”.

Definition 6 (Chains). Let (Σ,M) be an OP-alphabet. A simple chain is a word
a0a1a2 . . . anan+1, written as a0 [a1a2 . . . an]

an+1 , such that: a0, an+1 ∈ Σ ∪ {#},
ai ∈ Σ for every i : 1 ≤ i ≤ n, Ma0an+1 ̸= ∅, and a0⋖a1

.
= a2 . . . an−1

.
= an⋗an+1.

A composed chain is a word a0x0a1x1a2 . . . anxnan+1, with xi ∈ Σ∗, where
a0 [a1a2 . . . an]

an+1 is a simple chain, and either xi = ε or ai [xi]
ai+1 is a chain (simple

or composed), for every i : 0 ≤ i ≤ n. Such a composed chain will be written as
a0 [x0a1x1a2 . . . anxn]

an+1 .
The body of a chain a[x]b, simple or composed, is the word x. Given a chain a[x]b the

depth d(x) of its body x is defined recursively: d(x) = 1 if the chain is simple, whereas
d(x0a1x1 . . . anxn) = 1 +maxi d(xi). The depth of a chain is the depth of its body.

For instance, the ST of Fig. 2 (right) is biunivocally represented by the composed
chain #[x0 + x1]

#, where, in turn x0 is the body of the composed chain #[y0 + y1]
+, y0

is the body of the simple chain #[n]+, y1 is the body of the composed chain +[z0 × z1]
+,

etc. The depth of the main chain is 3.
As well as an OPG selects a set of STs within the universe defined by its OPM, an

operator precedence automaton (OPA) selects a set of chains within the universe defined
by an OP-alphabet.

Definition 7 (Operator precedence automaton (OPA)). A nondeterministic OPA is
given by a tuple: A = ⟨Σ,M,Q, I, F, δ⟩ where: (Σ,M) is an operator precedence
alphabet, Q is a set of states (disjoint from Σ), I ⊆ Q is a set of initial states, F ⊆ Q is
a set of final states, δ, the transition function, is a triple of functions δshift : Q×Σ →
℘(Q), δpush : Q×Σ → ℘(Q), δpop : Q×Q → ℘(Q).

We represent a nondeterministic OPA by a graph with Q as the set of vertices and
Σ ∪ Q as the set of edge labelings. We write p

a−→ q iff q ∈ δpush(p, a), p
a
99K q iff

q ∈ δshift(p, a), and q
p

=⇒ r iff r ∈ δpop(q, p).
To define the semantics of the automaton, we introduce some notations. We use

letters p, q, pi, qi, . . . to denote states in Q. Let Γ be Σ × Q and let Γ ′ be Γ ∪ {⊥};
we denote symbols in Γ ′ as [a, q] or ⊥. We set symbol([a, q]) = a, symbol(⊥) = #,
and state([a, q]) = q. Given a string Π = ⊥π1π2 . . . πn, with πi ∈ Γ , n ≥ 0, we set
symbol(Π) = symbol(πn), including the particular case symbol(⊥) = #.

A configuration of an OPA is a triple C = ⟨Π, q, w⟩, where Π ∈ ⊥Γ ∗, q ∈ Q
and w ∈ Σ∗#. The first component represents the contents of the stack, the second
component represents the current state of the automaton, while the third component is
the part of input still to be read.

8 M. Chiari, D. Mandrioli, M. Pradella

A computation or run of the automaton is a finite sequence of moves or transitions
C1 ⊢ C2; there are three kinds of moves, depending on the precedence relation between
the symbol on top of the stack and the next symbol to read:

push move: if symbol(Π)⋖ a then ⟨Π, p, ax⟩ ⊢ ⟨Π[a, p], q, x⟩, with q ∈ δpush(p, a);

shift move: if a .
= b then ⟨Π[a, p], q, bx⟩ ⊢ ⟨Π[b, p], r, x⟩, with r ∈ δshift(q, b);

pop move: if a⋗ b then ⟨Π[a, p], q, bx⟩ ⊢ ⟨Π, r, bx⟩, with r ∈ δpop(q, p).
Shift and pop moves are never performed when the stack contains only ⊥.
Push and shift moves update the current state of the automaton according to the

transition functions δpush and δshift, respectively: push moves put a new element on the
top of the stack consisting of the input symbol together with the current state of the
automaton, whereas shift moves update the top element of the stack by changing its
input symbol only. The pop move removes the symbol on the top of the stack, and the
state of the automaton is updated by δpop on the basis of the pair of states consisting of
the current state of the automaton and the state of the removed stack symbol; notice that
in this move the input symbol is used only to establish the ⋗ relation and it remains
available for the following move.

A configuration ⟨⊥, qI , x#⟩ is initial if qI ∈ I; a configuration ⟨⊥, qF , #⟩ is
accepting if qF ∈ F . The language accepted by the automaton is:
L(A) =

{
x | ⟨⊥, qI , x#⟩ ⊢∗ ⟨⊥, qF , #⟩, qI ∈ I, qF ∈ F

}
.

Example 8. The OPA depicted in Fig. 3 (top, left) based on the OPM at the (top, right)
accepts the language of arithmetic expressions enriched w.r.t L(GAE) in that it introduces
the use of explicit parentheses to alter the natural precedence of arithmetic operations.
The same figure (bottom) also shows an accepting computation on input n+n× Ln+nM.

Definition 9. Let A be an OPA. A support for a simple chain a0 [a1a2 . . . an]
an+1 is any

path in A of the form q0
a1−→ q1 99K . . . 99K qn−1

an
99K qn

q0
=⇒ qn+1.

Notice that the label of the last (and only) pop is exactly q0, i.e. the first state of the path;
this support is built due to the relations a0 ⋖ a1 and an ⋗ an+1.
A support for the composed chain a0 [x0a1x1a2 . . . anxn]

an+1 is any path in A of the

form q0
x0⇝ q′0

a1−→ q1
x1⇝ q′1

a2
99K . . .

an
99K qn

xn⇝ q′n
q′0=⇒ qn+1, where for every

i, 0 ≤ i ≤ n: if xi ̸= ε, then qi
xi⇝ q′i is a support for the (simple or composed) chain

ai [xi]
ai+1 ; if xi = ε, then q′i = qi. Notice that the label of the last pop is exactly q′0. The

support of a chain with body x will be denoted by q0
x
⇝ qn+1.

The context a, b of a chain a[x]b is used by the automaton to build its support only
because a⋖ x and x⋗ b; thus, the chain’s body contains all information needed by the
automaton to build the subtree whose frontier is that string, once it is understood that its
first move is a push and its last one is pop. This is a distinguishing feature of OPLs, not
shared by other deterministic languages: we call it their locality principle, which has
been exploited to build parallel and/or incremental OP parsers [4].

Cyclic Operator Precedence Grammars for Improved Parallel Parsing 9

q0 q1

q2 q3

n

L

q0, q1+,×

n
L

q0, q1, q2, q3+,×

M

+ × L M n #

+ ⋗ ⋖ ⋖ ⋗ ⋖ ⋗
× ⋗ ⋗ ⋖ ⋗ ⋖ ⋗
L ⋖ ⋖ ⋖ .

= ⋖
M ⋗ ⋗ ⋗ ⋗
n ⋗ ⋗ ⋗ ⋗
⋖ ⋖ ⋖ ⋖

stack state current input
⊥ q0 n + n × Ln + nM#
⊥[n, q0] q1 +n × Ln + nM#
⊥ q1 +n × Ln + nM#
⊥[+, q1] q0 n × Ln + nM#
⊥[+, q1][n, q0] q1 ×Ln + nM#
⊥[+, q1] q1 ×Ln + nM#
⊥[+, q1][×, q1] q0 Ln + nM#
⊥[+, q1][×, q1][L, q0] q2 n + nM#
⊥[+, q1][×, q1][L, q0][n, q2] q3 +nM#
⊥[+, q1][×, q1][L, q0] q3 +nM#
⊥[+, q1][×, q1][L, q0][+, q3] q2 nM#
⊥[+, q1][×, q1][L, q0][+, q3][n, q2] q3 M#
⊥[+, q1][×, q1][L, q0][+, q3] q3 M#
⊥[+, q1][×, q1][L, q0] q3 M#
⊥[+, q1][×, q1][M, q0] q3 #
⊥[+, q1][×, q1] q3 #
⊥[+, q1] q3 #
⊥ q3 #

Fig. 3. An OPA (top, left), its OPM (top, right) and an example of computation for the language
of Example 8 (bottom). Arrows −→ , 99K and =⇒ denote push, shift and pop transitions,
respectively. To avoid confusion with the overloaded parenthesis symbols, the parentheses used as
terminal symbols are denoted as L and M.

3 Cyclic Operator Precedence Grammars (C-OPGs)

Proposition 5 shows that some, but not all, of the algebraic properties of OPLs depend
critically on the =̇-acyclicity hypothesis. This is due to the fact that without such a
hypothesis the rhs of an OPG have an unbounded length but cannot be infinite: e.g., no
OPG can generate the language {a, b}∗ if a .

= b and b
.
= a. In most cases cycles of this

type can be “broken” as it has been done up to now, e.g., to avoid the +
.
= + relation

in arithmetic expressions by associating the operator indifferently to the right or to left.
From a theoretical point of view, the =̇-acyclicity hypothesis affects the expressive power
of OPGs; thus, the OPL familily as generated by OPGs is strictly included within the
languages accepted by OPAs.5 We assumed so far the =̇-acyclicity hypothesis to keep
the notation as simple as possible so that the two formalisms are equivalent.

Recently, however, it has been observed [14] that such a restriction may hamper
the benefits achievable by the parallel compilation techniques that exploit the local

5 The language {an(bc)n} ∪ {bn(ca)n} ∪ {cn(ab)n} ∪ (abc)+ cannot be generated by an OPG
because the a

.
= b

.
= c

.
= a relations are necessary [9], but it is accepted by OPAs.

10 M. Chiari, D. Mandrioli, M. Pradella

GC-AE :

S = {P, T,M,N, F,D,E}
P → (T+)+T
T → (F×)+F | M −N | D/E
M → M −N | (F×)+F | D/E
N → (F×)+F | D/E
F → D/E
D → D/E
{P, T,M,N, F,D,E} → L{P, T,M,N, F,D,E}M | n

+ − × / L M n #

+
.
= ⋖ ⋖ ⋖ ⋖ ⋗ ⋖ ⋗

− ⋗ ⋗ ⋖ ⋖ ⋖ ⋗ ⋖ ⋗
× ⋗ ⋗ .

= ⋖ ⋖ ⋗ ⋖ ⋗
/ ⋗ ⋗ ⋗ ⋗ ⋖ ⋗ ⋖ ⋗
L ⋖ ⋖ ⋖ ⋖ ⋖ .

= ⋖
M ⋗ ⋗ ⋗ ⋗ ⋗ ⋗
n ⋗ ⋗ ⋗ ⋗ ⋗ ⋗
⋖ ⋖ ⋖ ⋖ ⋖ ⋖

P

T

M

M

n

− N

n

− N

F

n

× F

n

+ T

n

+ T

F

n

× F

D

n

/ E

n

× F

n

+ T

D

L P

T

n

+ T

n

M

/ E

n

+ T

n

+ T

n

Fig. 4. A C-OPG (top left), its OPM (top right), and a ST generated by them. The notation
{P, T,M,F,D,E} → L{P, T,M,N, F,D,E}M means that anyone of the nonterminals at the
left can be rewritten as a pair of parentheses enclosing anyone of the same nonterminals.

parsability property of OPLs [3]. Thus, it is time to introduce the necessary extension
of OPGs so that the =̇-acyclicity hypothesis can be avoided and they become fully
equivalent to other formalisms to define OPLs.

Definition 10 (Cyclic Operator Precedence Grammar (C-OPG)). A +-O-expression
on V ∗ is an expression obtained from the elements of V by iterative application of
concatenation and the + operator 6, provided that any substring thereof has no two
adjacent nonterminals; for convenience, and w.l.o.g., we assume that all subexpressions
that are argument of the + operator are terminated by a terminal character.

A Cyclic O-grammar (C-OG) is an O-grammar whose production rhs are +-O-
expressions. For a rule A → α of a C-OG, the ==⇒

G
(immediate derivation) relation

is defined as βAγ ==⇒ βζγ iff ζ is a string belonging to the language defined by the
+-O-expression α, L(α). The .

= relation is redefined as a
.
= b iff ∃A → α ∧ ∃ζ =

ηaCbθ | (C ∈ VN ∪ {ε} ∧ ζ ∈ L(α)). The other relations remain defined as for
non-cyclic O-grammars. A C-OG is a C-OPG iff its OPM is conflict-free.

As a consequence of the definition of the immediate derivation relation for C-OPGs the
STs derived therefrom can be unranked, i.e., their internal nodes may have an unbounded
number of children.

6 For our purposes + is more convenient than ∗ without affecting the generality.

Cyclic Operator Precedence Grammars for Improved Parallel Parsing 11

. . .

. A

.
β

α

. . .

. B

. . .

A

.

β

α

Fig. 5. When parsing α, the prefix previously under construction is β.

Example 11. The C-OPG shown in Fig. 4 with its OPM generates a fairly complete
language of parenthesized arithmetic expressions involving the four basic operations: as
usual the multiplicative operations take precedence over the additive ones; subtraction
takes precedence over sum and division over multiplication. The key novelty w.r.t. the
traditional way of formalizing arithmetic expressions by means of OPGs are the +

.
= +

and × .
= × OP relations; on the contrary we kept the structure that associates subtraction

and division to the left, so that the grammar’s STs —an example thereof is given at the
bottom of Fig. 4— now fully reflect the semantics of arithmetic operations.

By looking at the ST of Fig. 4 and comparing it with the original Fig. 1, one can
better envision why the introduction of cyclic .

= can support more effective parallel
parsing algorithms for OPLs. Parallel parsing for OPLs is rooted in the local parsability
property of this family: thanks to this property any fragment of input string enclosed
within a pair of corresponding ⋖ and ⋗ OP relations can be processed in parallel with
other similar fragments. However, if, say, the + operator is associated to the left (or right)
as in the case of the upper ST of Fig. 1 the parsing of a sequence of + must necessarily
proceed sequentially from left to right. Conversely, if the ST has a structure like that
of the lower tree of Fig. 1 the sequence of + —whether intermixed or not with other
subtrees— can be arbitrarily split into several branches which can be parsed in parallel
and, after that, can be joined into a unique subtree as imposed by the .

= OP relation
between the corresponding extreme terminals of contiguous branches.

3.1 Equivalence between C-OPGs and OPAs

The equivalence is obtained by adapting the analogous proof given in [15] where the
additional hypothesis of M being =̇-acyclic was exploited. First, we describe a procedure
to build an OPA equivalent to a C-OPG. Then, we provide the converse construction.

Theorem 12 (From C-OPGs to OPAs). Let (Σ,M) be an OP-alphabet. For any C-
OPG defined thereon an equivalent OPA can be effectively built.

A nondeterministic OPA7 A = ⟨Σ,M,Q, I, F, δ⟩ from a given C-OPG G with the
same precedence matrix M as G is built in such a way that a successful computation

7 Any nondeterministic OPA can be transformed into a deterministic one at the cost of quadratic
exponential increase in the size of the state space [15].

12 M. Chiari, D. Mandrioli, M. Pradella

thereof corresponds to building bottom-up a syntax tree of G: the automaton performs a
push transition when it reads the first terminal of a new rhs; it performs a shift transition
when it reads a terminal symbol inside a rhs, i.e. a leaf with some left sibling leaf. It
performs a pop transition when it completes the recognition of a rhs, then it guesses
(nondeterministically) the nonterminal at the lhs. Each state contains two pieces of
information: the first component is the prefix of the rhs under construction, whereas the
second component is used to recover the rhs previously under construction whenever all
rhs nested below have been completed (see Fig. 5).

Let P̂ be the set of rhs γ where all + and related parentheses have been erased. Let
P̃ be the set of strings γ̃ ∈ V + belonging to the language of some rhs γ of P that is
inductively defined as follows: if (η)+ is a subexpression of γ such that η is a single
string ∈ V + then η̃ = {η, ηη}; if η = α1(β1)

+α2(β2)
+ . . . αn where αi ∈ V ∗, then

η̃ = {η1, η1η1} where η1 = α1β̃1α2β̃2 . . . αn.
E.g., let η be (Ba(bc)+)+; then η̂ = {Babc} and η̃ = {Babc,Babcbc,BabcBabc,
BabcbcBabc,BabcBabcbc,BabcbcBabcbc}.

Let P = {α ∈ V ∗Σ | ∃A → η ∈ P ∧ ∃β(αβ ∈ η̃)} be the set of prefixes, ending
with a terminal symbol, of strings ∈ P̃ ; define Q = {ε} ∪ P ∪N , Q = Q× ({ε} ∪ P),
I = {⟨ε, ε⟩}, and F = S×{ε}∪{⟨ε, ε⟩ if ε ∈ L(G)}. Note that |Q| = 1+ |P|+ |N | is
O(mh) where m is the maximum length of the rhs in P , and h is the maximum nesting
level of + operators in rhs; therefore |Q| is O(m2h).

The transition functions are defined by the following formulas, for a ∈ Σ and
α, α1, α2 ∈ Q, β, β1, β2 ∈ {ε} ∪ P, and where for any expression ξ, ξ̄ is obtained from
ξ by erasing parentheses and + operators:

– δshift(⟨α, β⟩, a) ∋

if α ̸∈ N :

 if
(
∃A → γ | γ = η(ζ)+θ∧
αa = η̄ζ̄ ζ̄ ∧ αaθ̄ ∈ L(γ) ∩ P̃

)
then ⟨η̄ζ̄, β⟩ else ⟨αa, β⟩

if α ∈ N :

 if
(
∃A → γ | γ = η(ζ)+θ∧
βαa = η̄ζ̄ ζ̄ ∧ βαaθ̄ ∈ L(γ) ∩ P̃

)
then ⟨η̄ζ̄, β⟩ else ⟨βαa, β⟩

– δpush(⟨α, β⟩, a) ∋
{
⟨a, α⟩ if α ̸∈ N
⟨αa, β⟩ if α ∈ N

– δpop(⟨α1, β1⟩, ⟨α2, β2⟩) ∋ ⟨A, γ⟩

∀A :

{
if α1 /∈ N : A → α ∈ P ∧ α1 ∈ L(α) ∩ P̂

if α1 ∈ N : A → δ ∈ P ∧ β1α1 ∈ L(δ) ∩ P̂
and γ =

{
α2 if α2 /∈ N
β2 if α2 ∈ N.

The states reached by push and shift transitions have the first component in P. If
state ⟨α, β⟩ is reached after a push transition, then α is the prefix of the rhs (deprived of
the + operators) that is currently under construction and β is the prefix previously under
construction; in this case α is either a terminal or a nonterminal followed by a terminal.

If the state is reached after a shift transition, and the α component of the previous
state was not a single nonterminal, then the new α is the concatenation of the first
component of the previous state with the read character. If, instead, the α component of
the previous state was a single nonterminal —which was produced by a pop transition—
then the new α also includes the previous β and β is not changed from the previous state.
However, if the new α becomes such that a suffix thereof is a double occurrence of a

Cyclic Operator Precedence Grammars for Improved Parallel Parsing 13

stack state current input
⊥ ⟨ε, ε⟩ n + n + n/n/n + n + n#
⊥[n, ⟨ε, ε⟩] ⟨n, ε⟩ +n + n/n/n + n + n#
⊥ ⟨T, ε⟩ +n + n/n/n + n + n#
⊥[+, ⟨T, ε⟩] ⟨T+, ε⟩ n + n/n/n + n + n#
⊥[+, ⟨T, ε⟩][n, ⟨T+, ε⟩] ⟨n, T+⟩ +n/n/n + n + n#
⊥[+, ⟨T, ε⟩] ⟨T, T+⟩ +n/n/n + n + n#
⊥[+, ⟨T, ε⟩] ⟨T+,T+⟩ n/n/n + n + n#
⊥[+, ⟨T, ε⟩][n, ⟨T+, T+⟩] ⟨n, T+⟩ /n/n + n + n#
⊥[+, ⟨T, ε⟩] ⟨D,T+⟩ /n/n + n + n#
⊥[+, ⟨T, ε⟩][/, ⟨D,T+⟩] ⟨D/, T+⟩ n/n + n + n#
⊥[+, ⟨T, ε⟩][/, ⟨D,T+⟩][n, ⟨/,D⟩] ⟨n,D/⟩ /n + n + n#
⊥[+, ⟨T, ε⟩][/, ⟨D,T+⟩] ⟨E,D/⟩ /n + n + n#
⊥[+, ⟨T, ε⟩] ⟨D,T+⟩ /n + n + n#
⊥[+, ⟨T, ε⟩][/, ⟨D,T+⟩] ⟨D/, T+⟩ n + n + n#
⊥[+, ⟨T, ε⟩][/, ⟨D,T+⟩][n, ⟨D/, T+⟩] ⟨n,D/⟩ +n + n#
⊥[+, ⟨T, ε⟩][/, ⟨D,T+⟩] ⟨E,D/⟩ +n + n#
⊥[+, ⟨T, ε⟩] ⟨T, T+⟩ +n + n#
⊥[+, ⟨T, ε⟩] ⟨T+,T+⟩ n + n#
⊥[+, ⟨T, ε⟩][n, ⟨T+, T+⟩] ⟨n, T+⟩ +n#
⊥[+, ⟨T, ε⟩] ⟨T, T+⟩ +n#
⊥[+, ⟨T, ε⟩] ⟨T+,T+⟩ n#
⊥[+, ⟨T, ε⟩][n, ⟨T+, T+⟩] ⟨n, T+⟩ #
⊥[+, ⟨T, ε⟩] ⟨T, T+⟩ #
⊥ ⟨P, ε⟩ #

Fig. 6. A run of the OPA built from the C-OPG of Fig. 4 accepting the sentence n+ n+ n/n/n+
n+n. The states truncated by erasing a repeated suffix ζ occurring under the scope of a + operator
are emphasized in boldface.

string ζ ∈ L((ζ)+) —hence α ∈ P— then the second occurrence of ζ is cut from the
new α, which therefore becomes a prefix of an element of P̂ .

The states reached by a pop transition have the first component in N : if ⟨A, γ⟩ is such
a state, then A is the corresponding lhs, and γ is the prefix previously under construction.

For instance, imagine that a C-OPG contains the rules A → (Ba(bc)+)+a and
B → h and that the corresponding OPA A parses the string habcbchabca: after scanning
the prefix habcb A has reduced h to B and has Babcb as the first component of its state;
after reading the new c it recognizes that the suffix of the first state component would
become a second instance of bc belonging to (bc)+; thus, it goes back to Babc. Then, it
proceeds with a new reduction of h to B and, when reading with a shift the second a
appends Ba to its current β which was produced by the previous pop so that the new α
becomes BabcBa; after shifting b it reads c and realizes that its new α would become
BabcBabc, i.e., an element of (Ba(bc)+)+ and therefore “cuts” it to the single instance
thereof, i.e., Babc. Finally, after having shifted the last a it is ready for the last pop.

The result of δshift and δpush is a singleton, whereas δpop may produce several states,
in case of repeated rhs. Thus, if G is BD, the corresponding A is deterministic.

Example 13. Fig. 6 displays a run of the OPA obtained from the C-OPG of Fig. 4
accepting the sentence n+ n+ n/n/n+ n+ n.

The construction of a C-OPG equivalent to a given OPA is far simpler than the
converse one, thanks to the explicit structure associated to words by the precedence

14 M. Chiari, D. Mandrioli, M. Pradella

matrix. The key difference w.r.t. the analogous construction given in [15] is that even
simple chains can have unbounded length because the .

= relation may be circular.
In analogy with the definition of P̃ , we define essential supports as those supports

where possible cyclic behaviors of the OPA along a sequence of terminals —whether
with interposing nonterminals or not— occur exactly twice.

Definition 14. An essential support of a simple chain a0 [a1a2 . . . an]
an+1 is any path

in A of the form q0
a1−→ q1 99K . . . 99K qn−1

an
99K qn

q0
=⇒ qn+1, where any cycle

qiai1...aikqi is repeated exactly twice. Composed chains are treated similarly.

E.g., with reference to the OPA built from the C-OPG of Fig. 4 an essential support

of the chain #[n+ n+ n+ n+ n]# is: ⟨ε, ε⟩ n
⇝ ⟨T, ε⟩ +−→ ⟨T+, ε⟩ n

⇝ ⟨T, T+⟩ +
99K

⟨T+, T+⟩ n
⇝ ⟨T, T+⟩ +

99K ⟨T+, T+⟩ n
⇝ ⟨T, T+⟩ ⟨T,ε⟩

=⇒ ⟨P, ε⟩.

Lemma 15. The essential supports of simple chains of any OPA have an effectively
computable bounded length.

Theorem 16 (From OPAs to C-OPGs). Let (Σ,M) be an OP-alphabet. For any OPA
defined thereon an equivalent C-OPG can be effectively built.

Proof. Given an OPA A = ⟨Σ,M,Q, I, F, δ⟩, we build an equivalent C-OPG G having
OPM M . The equivalence between A and G is then rather obvious.

G’s nonterminals are the 4-tuples (a, q, p, b) ∈ Σ ×Q×Q×Σ, written as ⟨ap, qb⟩.
G’s rules are built as follows:

For every essential support of a simple chain, P contains ⟨a0q0, qn+1
an+1⟩ →

a1a2 . . . an, where every double sequence ai1...aikai1...aik is recursively replaced by
(ai1...aik)

+ by proceeding from the innermost cycles to the outermost ones. Furthermore,
if a0 = an+1 = #, q0 is initial, and qn+1 is final, then ⟨#q0, qn+1

#⟩ is in S.
For every essential support of a composed chain a0 [x0a1x1a2 . . . anxn]

an+1 , P con-
tains the rule ⟨a0q0, qn+1

an+1⟩ → Λ0a1Λ1a2 . . . anΛn, where, for every i = 0, 1, . . . , n,
Λi = ⟨aiqi, q

′
i
ai+1⟩ if xi ̸= ε and Λi = ε otherwise, and double cyclic sequences αiαi

are replaced by (αi)
+ in the same way as for simple chains. If a0 = an+1 = #, q0 is

initial, and qn+1 is final, then ⟨#q0, qn+1
#⟩ is in S; if ε is accepted by A, A → ε is in

P , A being a new axiom not otherwise occurring in any other rule.
Notice that the above construction is effective thanks to Lemma 15 and to the fact

that subchains of composed chains are replaced by nonterminals Λi.

4 Equivalences and Closure Properties

Previous literature proved the equivalence of defining OPLs through OPGs, OPAs, MSO
logic, OPEs and OPSC. The reciprocal inclusions between MSO and OPA, between
OPA and the finite equivalence classes of OPL syntactic congruence, and the inclusion
of MSO in OPE have been proved without the hypothesis of non-circularity of the
.
= relation; the reciprocal inclusions between C-OPG and OPA have been restated in
Section 3; it remains the inclusion of OPE in OPG which was proved in [17] under the
restrictive hypothesis. The proof used the claim that deriving an OPG from an OPE may

Cyclic Operator Precedence Grammars for Improved Parallel Parsing 15

exploit the closure properties of OPLs, in particular, w.r.t. ∗; such a closure, however,
was proved in [7] by using OPGs, again, under the restrictive hypothesis.

In OPEs the ∗ operator is applied to subexpressions independently on the OP relations
between their last and first terminal character. Thus, it is first convenient to rewrite the
OPE in a normal form using the + operator instead of the ∗ one to avoid having to
deal explicitly with the case of the ε string. Then, subexpressions of type (α)+ where
the last terminal of α is not in relation .

= with the first one are replaced by the same
procedure defined in [7] to prove effectively the closure w.r.t. the ∗ operator. The new
rules will produce a right or left-linear subtree of the occurrences of α depending on the
OP relation between the two extreme terminals of α and will avoid the use of the ∗ and
+ operators which are not permitted in the original OPGs.

The remaining substrings including the + operator are the new rhs of the C-OPG.
The other technicalities of the construction of an OPG equivalent to an OPE are identical
to those given in [17] and are not repeated here.

All major closure properties of OPLs have been originally proved by referring to
their generating OPGs and some of them, in particular the closure w.r.t. ∗, required the
.
=-acyclicity hypothesis. Thus, it is necessary to prove them again. However, since some
of those proofs are technically rather involved, here we simply observe that it is easier
to restate the same properties by exploiting OPAs which are now fully equivalent to
C-OPGs. Thanks to the determinization of nondeterministic OPAs, closure w.r.t. boolean
operations is “for free”. Closure w.r.t. concatenation can be seen as a corollary of the
closure proved in [15] of the concatenation between an OPL whose strings have finite
length and an ω-OPL, i.e., a language of infinite strings. The construction is based on
a nondeterministic guess of the position where a string of the first language could end
—and a nontrivial technique to decide whether it could be accepted even in the absence
of the # delimiter—. Then, the closure w.r.t. ∗ is obtained simply by allowing the OPA
to repeat such a guess any number of times until the real # is found.

5 Conclusion

We have filled up a longstanding “hole” in the theory of OPLs under the pressure of
recent applications in the field of parallel compilation that showed how such a hole could
hamper the benefits of parallelism [14]. The new formalism of C-OPGs, fully equivalent
to OPAs, MSO-logic, and OPEs, can be exploited for the parallel compilation techniques
of [14] or to improve the efficiency of techniques based on the less powerful OPGs [3].

Other algebraic and logic properties of OPLs, e.g., aperiodicity, star-freeness, first-
order definability [18,17] can be re-investigated in the light of this generalization.

Acknowledgement. This work was partially funded by the EU Commission in the
Horizon Europe programme under grant No. 101107303 (MSCA-PF CORPORA).

References

1. Alur, R., Madhusudan, P.: Adding nesting structure to words. J. ACM 56(3) (2009).
https://doi.org/10.1145/1516512.1516518

https://doi.org/10.1145/1516512.1516518

16 M. Chiari, D. Mandrioli, M. Pradella

2. Autebert, J., Berstel, J., Boasson, L.: Context-free languages and pushdown automata. In:
Handbook of Formal Languages (1), pp. 111–174 (1997). https://doi.org/10.1007/978-3-642-
59136-5 3

3. Barenghi, A., Crespi Reghizzi, S., Mandrioli, D., Panella, F., Pradella, M.: Par-
allel parsing made practical. Sci. Comput. Program. 112(3), 195–226 (2015).
https://doi.org/10.1016/j.scico.2015.09.002

4. Barenghi, A., Crespi Reghizzi, S., Mandrioli, D., Pradella, M.: Parallel pars-
ing of operator precedence grammars. Inf. Process. Lett. 113(7), 245–249 (2013).
https://doi.org/10.1016/j.ipl.2013.01.008

5. Chiari, M., Mandrioli, D., Pontiggia, F., Pradella, M.: A model checker for opera-
tor precedence languages. ACM Trans. Program. Lang. Syst. 45(3), 19:1–19:66 (2023).
https://doi.org/10.1145/3608443

6. Chiari, M., Mandrioli, D., Pradella, M.: Cyclic operator precedence grammars for parallel
parsing. CoRR abs/2309.04200 (2023), https://arxiv.org/abs/2309.04200

7. Crespi Reghizzi, S., Mandrioli, D.: Operator Precedence and the Visibly Pushdown Property.
J. Comput. Syst. Sci. 78(6), 1837–1867 (2012). https://doi.org/10.1016/j.jcss.2011.12.006

8. Crespi Reghizzi, S., Mandrioli, D., Martin, D.F.: Algebraic Properties of Operator Precedence
Languages. Information and Control 37(2), 115–133 (May 1978)

9. Crespi Reghizzi, S., Pradella, M.: Beyond operator-precedence grammars and
languages. Journal of Computer and System Sciences 113, 18–41 (2020).
https://doi.org/10.1016/j.jcss.2020.04.006

10. Floyd, R.W.: Syntactic Analysis and Operator Precedence. J. ACM 10(3), 316–333 (1963)
11. Grune, D., Jacobs, C.J.: Parsing techniques: a practical guide. Springer, New York (2008)
12. Harrison, M.A.: Introduction to Formal Language Theory. Addison Wesley (1978)
13. Henzinger, T.A., Kebis, P., Mazzocchi, N., Saraç, N.E.: Regular methods for operator prece-

dence languages. In: Etessami, K., Feige, U., Puppis, G. (eds.) 50th International Colloquium
on Automata, Languages, and Programming, ICALP 2023, July 10-14, 2023, Paderborn, Ger-
many. LIPIcs, vol. 261, pp. 129:1–129:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2023). https://doi.org/10.4230/LIPIcs.ICALP.2023.129

14. Li, L., Taura, K.: Associative operator precedence parsing: A method to increase data parsing
parallelism. In: Proceedings of the International Conference on High Performance Computing
in Asia-Pacific Region, HPC Asia 2023, Singapore, 27 February 2023 - 2 March 2023. pp.
75–87. ACM (2023). https://doi.org/10.1145/3578178.3578233, https://doi.org/10.
1145/3578178.3578233

15. Lonati, V., Mandrioli, D., Panella, F., Pradella, M.: Operator precedence languages: Their
automata-theoretic and logic characterization. SIAM J. Comput. 44(4), 1026–1088 (2015).
https://doi.org/10.1137/140978818

16. Mandrioli, D., Pradella, M.: Generalizing input-driven languages: Theoret-
ical and practical benefits. Computer Science Review 27, 61–87 (2018).
https://doi.org/10.1016/j.cosrev.2017.12.001

17. Mandrioli, D., Pradella, M., Crespi Reghizzi, S.: Aperiodicity, star-freeness, and first-order
definability of structured context-free languages. Logical Methods in Computer Science 19
(2023). https://doi.org/10.46298/lmcs-19(4:12)2023

18. McNaughton, R., Papert, S.: Counter-free Automata. MIT Press, Cambridge, USA (1971)
19. Salomaa, A.K.: Formal Languages. Academic Press, New York, NY (1973)

https://doi.org/10.1007/978-3-642-59136-5_3
https://doi.org/10.1007/978-3-642-59136-5_3
https://doi.org/10.1016/j.scico.2015.09.002
https://doi.org/10.1016/j.ipl.2013.01.008
https://doi.org/10.1145/3608443
https://arxiv.org/abs/2309.04200
https://doi.org/10.1016/j.jcss.2011.12.006
https://doi.org/10.1016/j.jcss.2020.04.006
https://doi.org/10.4230/LIPIcs.ICALP.2023.129
https://doi.org/10.1145/3578178.3578233
https://doi.org/10.1145/3578178.3578233
https://doi.org/10.1145/3578178.3578233
https://doi.org/10.1137/140978818
https://doi.org/10.1016/j.cosrev.2017.12.001
https://doi.org/10.46298/lmcs-19(4:12)2023

	Cyclic Operator Precedence Grammars for Improved Parallel Parsing

