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Abstract

We present Trio2Promela, a tool for model checking met-
ric temporal logic specifications written in the TRIO lan-
guage. Our approach is based on the translation of for-
mulae into Promela programs for the model checker Spin,
guided by equivalence between temporal logic and alter-
nating Büchi automata. Trio2Promela may be used also to
check satisfiability of temporal logic specifications (a dis-
tinguishing difference with other model checking tools).

1. Introduction

TRIO is a first order, linear-time temporal logic with
both future and past operators and a quantitative metric on
time, which has been extensively applied to the specifica-
tion, validation and verification of critical, real-time sys-
tems [7]. Over the years a variety of methods and tools
have been defined to support typical validation and verifica-
tion activities in TRIO, as described in [6] and [2].

In the present paper we report on a new approach to
verification, by means of a fully automatic tool: it con-
sists of defining a decidable fragment of the logic that
includes a suitable subset of its original operators, upon
which applying methods and algorithms for deciding sat-
isfiability. The tool, called Trio2Promela, is built on
top of a well-known model checker such as Spin [4]
to perform proof of properties and simulation. The ap-
proach and background theory upon which Trio2Promela
is constructed was originally presented in [8, 9]; the
tool, together with examples and results of several exper-
iments, is available at http://www.elet.polimi.
it/upload/sanpietr/Trio2Promela.zip.

Trio2Promela supports property proof by model check-
ing and satisfiability checking of generic TRIO formulae.
Hence, Trio2Promela can be used to accomplish a tradi-

tional approach to model-checking, by translating the prop-
erty to be checked from TRIO into Promela, and by com-
bining the resulting code with a pure-Promela model to
perform verification. Satisfiability checking may also be
used to perform property verification in TRIO, by check-
ing the validity of a TRIO formula of the kind specifica-
tion→property, where the premise specification describes
the features that are assumed to hold for (any possible im-
plementation of) the analyzed system, and property is an-
other formula describing the conjecture that we want to
prove to be implied by the premise. Therefore, in this ap-
proach what we call specification has a role similar to the
one played by the so-called model in the usual model check-
ing scenery (e.g., a Promela program in Spin) while what
we call property in the above implication is usually called
specification (or, sometimes, user requirement) and takes
the form of a formula in temporal logic (e.g., an LTL for-
mula in Spin).

2. Trio2Promela

Trio2Promela translates a TRIO specification, i.e., a
complex TRIO formula, into Promela code. The transla-
tion is based on a correspondence between TRIO and Al-
ternating Modulo Counting Automata (AMCA) described
in [8]. The main idea is based on the well-known corre-
spondence between Linear Temporal Logic and Alternating
Automata (see for instance [5]), together with counters, as-
sociated with states of the AMCA, that are used to express
TRIO’s metric temporal operators in a natural and concise
manner.

An AMCA is directly translated into a Promela pro-
gram: every state of the automaton will correspond to a
single type of process (i.e., a Promela proctype), to be
instantiated when needed. An or-combination of states
s1∨ s2 in the transition function corresponds to a nondeter-
ministic choice (if ::s1; ::s2; fi), while an and-
combination s1∧ s2 corresponds to the starting of two new



Promela process instances, having type s1 and s2, respec-
tively. Hence, the produced code consists of a network of
processes, each corresponding to a temporal subformula of
the original specification. Each Promela process receives
as input a chronological sequence of values for the alpha-
bet of the associated TRIO formula, and then it returns its
computed truth value to the network. When the process rep-
resenting the whole TRIO formula being analyzed returns
False, every process in the network is stopped, and the anal-
ysis terminates.

As TRIO past operators are concerned, we take advan-
tage of the fact that time is unlimited only towards the fu-
ture (there is a start time instant) to treat past operators dif-
ferently, using a technique illustrated in our paper [9] that
stores a bounded amount of information derived from the
past portion of the sequence of input values.

3. Assessment

Detailed experimental results on the application of
Trio2Promela to various case studies are reported in [1];
some will be illustrated also in the tool demonstration.
Our approach can be naturally compared with recent works
(such as those on LTL2BA [3] and Wring [10]) that aim at
the translation of LTL properties into Büchi automata and
then Promela programs). In all examples that those tools
can manage (successfully completing the translation into a
Büchi automaton) our tool also translates the corresponding
TRIO formula, and carries out the verification with a per-
formance that is comparable or superior. Hence, current ex-
perimental evidence shows that Trio2Promela can be used
also for LTL model checking.

However, our approach differs substantially from others
(such as LTL2BA and Wring): these translate LTL formu-
lae (which in the first place are less compact than TRIO
formulae, as they cannot include integer values represent-
ing time constants, and therefore must use long chains of
nested Next operators), into Spin never claims or Büchi au-
tomata whose size can grow to become unmanageable even
for relatively simple specifications. When the desired prop-
erty is fairly complex or contains several bounded tempo-
ral statements, which is typical of real-time systems, the
traditional approach of generating a so-called never claim
for Spin becomes unfeasible. For instance, the LTL ver-
sion of the statement “every occurrence of event A must
be followed within 20 time units by an occurrence of
event B”, which in TRIO can be modeled as simply as
AlwF (A → WithinF (B, 20)) cannot be translated by
LTL2BA or Wring (the system was stopped after waiting for
24 hours), even if it actually corresponds (if one time unit
is taken to correspond to one transition) to a Büchi automa-
ton with only 21 states. Trio2Promela is able to translate
the above statement into a short Promela program almost

instantaneously.
The size of the resulting Promela code is always linear

in the size of the AMCA, and therefore also in the size of
the original TRIO specification (which may be substantially
smaller than an equivalent LTL formula). This is obtained
by avoiding, at least at translation time, the state explosion
problem, thanks to the fact that we generate a Promela pro-
gram that will simulate (at verification time) the alternat-
ing automaton. The alternation removal is then left to the
model checker, allowing the verification of many temporal
logic formulae which could not be translated into Promela
by means of other techniques. Instead, if the alternation
is removed during the translation phase, as all other tech-
niques we know of do, then there are many cases where a
translator cannot even build the resulting automaton (where
all states are explicitly enumerated). This typically happens
when specifications are very large, or use metric temporal
operators, or mix past and future temporal operators.
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