
POLITECNICO DI MILANO

DOTTORATO DI RICERCA IN INGEGNERIA INFORMATICA E AUTOMATICA

Methods and Tools for the Design
and Analysis of Distributed

Supervision and Control Systems

a Ph.D. Dissertation by:
Matteo Pradella

Advisor:
Prof. Dino Mandrioli

Supervisor of the Ph.D. Program:
Prof. Carlo Ghezzi

XIII ciclo

POLITECNICO DI MILANO

DOTTORATO DI RICERCA IN INGEGNERIA INFORMATICA E AUTOMATICA

Metodologie e Strumenti per la
Progettazione ed Analisi di Sistemi

di Supervisione e Controllo
Distruibuiti

Tesi di Dottorato di:
Matteo Pradella

Tutore e Relatore:
Prof. Dino Mandrioli

Coordinatore del Dottorato:
Prof. Carlo Ghezzi

XIII ciclo

Copyright c
�

2000 by Matteo Pradella

to my family

Sommario

Gli ultimi anni hanno visto una rapida ascesa del concetto di distribuzione
nell’ambito delle tecnologie dell’informazione. Senza dubbio uno degli ap-
procci più promettenti per lo sviluppo di sistemi distribuiti risiede in CORBA
(Common Object Request Broker Architecture) dell’OMG (Object Management
Group) [38, 37].

L’OMG ha definito una completa architettura (OMG/OMA, [51]) per ges-
tire sia gli aspetti generali, sia le richieste specifiche di alcuni tipici domini
applicativi (es. il settore bancario, le telecomunicazioni ed i sistemi di supervi-
sione e controllo), grazie alla definizione di librerie d’alto livello (o framework)
[8].

Lo sviluppo di applicazioni informatiche è tipicamente composto da tre
fasi principali: specifica ed analisi dei requisiti, progettazione dell’architettura, im-
plementazione. L’utilizzo di specifiche formali e di efficaci metodologie di pro-
getto mirate all’architettura può naturalmente far ottenere grandi benefici,
sia in termini della validazione dei requisiti dell’utente, sia per la verifica
dell’implementazione del sistema.

Le correnti e più diffuse metodologie e notazioni orientate agli oggetti (OO),
per es. [5, 6, 52], non gestiscono specificatamente i problemi di analisi e pro-
gettazione in ambito CORBA. Inoltre la mancanza di efficaci fondamenta ma-
tematiche non permette una descrizione formale dei requisiti, anche se alcuni
recenti lavori si stanno muovendo verso l’accoppiamento con linguaggi for-
mali di specifica [27].

Da questo punto di vista l’attuale stato dell’arte è da ritenersi insoddis-
facente, visto che l’identificazione dei requisiti è certamente una delle fasi più
critiche dello sviluppo d’un sistema software. Errori ed ambiguità a questo
livello generano incrementi di costi significativi in ogni fase successiva; op-
pure, cosa ben peggiore, portano alla progettazione di sistemi errati, che pos-
sono causare danni alle persone o all’ambiente. L’uso di metodi formali nel
caso specifico dei sistemi di supervisione e controllo (SCS) è dunque naturale e
particolarmente efficace, date le stringenti richieste di affidabilità e requisiti di
tempo reale.

I SCS vengono tradizionalmente implementati come sistemi chiusi e basati
su tecnologie proprietarie (sia hardware che software), dunque sono solita-
mente non portabili e non possono essere facilmente modificati o integrati in
sistemi più complessi o recenti. Conseguentemente, l’aggiunta di nuove fun-
zionalità ad un SCS esistente porta in genere alla costruzione d’un sistema
totalmente nuovo. Per esempio un tipico sistema di gestione dell’energia è
composto da svariate applicazioni indipendenti, dotate dei propri sensori, ela-
boratori, basi di dati e software specifico, anche se da un punto di vista con-
cettuale elaborano e/o gestiscono lo stesso tipo di informazione. Data la forte
somiglianza architettonica e funzionale, svariati componenti sono duplicati (es.
esistono componenti d’acquisizione dei dati in ognuna di queste applicazioni).

ii

Una possibile soluzione per superare la situazione attuale si trova nell’uso
dell’interfaccia di alto livello fornita da CORBA, vista come base di definizione
d’un ambiente aperto in cui differenti applicazioni coesistono e condividono
informazione. Da questo punto di vista, CORBA può rappresentare una effi-
cace “colonna vertebrale” sulla quale costruire l’architettura dei nuovi SCS e
più naturalmente gestire la loro evoluzione. Per sua struttura questo tipo di
approccio permette anche di inglobare facilmente i sistemi proprietari del pas-
sato, costosi e difficilmente rimpiazzabili. È quindi possibile estendere un SCS
con l’aggiunta di nuovi componenti non appena vengono sviluppati, con una
conseguente riduzione sia del tempo che del costo di sviluppo. Per esempio,
gli allarmi possono essere registrati dal sottosistema di gestione degli allarmi,
per poi venire consultati dal sottosistema diagnostico attraverso una base di
dati globale.

L’OMG, grazie alla recente introduzione delle nuove specifiche del sistema
di messaggi e di tempo reale per CORBA (Real-time CORBA) [39], sta iniziando
a proporre valide soluzioni ad argomenti che sono da considerarsi critici per i
SCS, come l’affidabilità, la qualità di servizio ed il tempo reale.

Bisogna comunque notare come il completo ottenimento del risultato pro-
posto richieda la presenza d’una efficace metodologia per superare il ben am-
pio fossato, che si trova tra i requisiti di sistema e la completa implementazione
nei termini dell’architettura CORBA proposta.

Il presente lavoro si rivolge direttamente a quest’ultimo problema, median-
te l’introduzione d’un approccio metodologico per la progettazione di sistemi
distribuiti in un ambiente CORBA, basato sulla iniziale formulazione dei requi-
siti per mezzo di TRIO [23, 35]. TRIO è un linguaggio logico del primo ordine e
temporale, che nel passato s’è dimostrato di notevole efficacia nell’ambito della
specifica di sistemi critici, del tipo dei SCS [10].

L’approccio qui presentato consiste nella migrazione dalla rappresen-
tazione TRIO dei requisiti, verso una nuova formulazione contenente le carat-
teristiche di alto livello dell’architettura di sistema. Questa trasformazione
viene supportata da una particolare estensione linguistica di TRIO, chiamata
TC (da TRIO/CORBA), basata sull’introduzione in TRIO dei fondamentali
concetti CORBA.

In breve, la metodologia TC consta di cinque fasi fondamentali:

1. identificazione dei flussi di dati tra le classi della specifica TRIO;

2. identificazione delle operazioni a partire dai flussi di dati;

3. identificazione delle interfacce e degli oggetti applicativi “alla CORBA”;

4. identificazione della semantica di operazioni ed attributi;

5. identificazione dei servizi CORBA da utilizzare.

La metodologia viene dunque illustrata mediante l’applicazione ad un caso
di studio reale: un sistema di gestione e manutenzione di apparecchiature
sviluppato dall’ENEL [42].

iii

Sebbene l’esempio-pilota si riferisca ad un SCS, in particolare un sistema di
gestione dell’energia, i risultati sono abbastanza generali da poter essere uti-
lizzati praticamente in qualunque dominio applicativo. Conseguentemente il
lavoro non si concentra sui requisiti critici dell’applicazione, bensı̀ sul linguag-
gio e sulla metodologia usati per la definizione dell’architettura.

Da un punto di vista più prettamente pratico, la tesi presenta un com-
pleto ambiente di sviluppo per la creazione ed analisi automatica di speci-
fiche TRIO/TC. I cosiddetti strumenti TRIO “tradizionali” sono stati a questo
proposito modificati ed estesi considerevolmente per includere le seguenti
caratteristiche:

� un sistema di editing (chiamato TGE - TRIO Graphic Editor) completa-
mente ristrutturato ed esteso con un completo supporto sia del linguag-
gio che della metodologia TC;

� una profonda rivisitazione della originale semantica su dominio tempo-
rale finito di TRIO, cioè il nucleo costituente degli strumenti semantici,
basata sull’analisi dei tipici problemi riscontrati in casi di studio reali;

� l’implementazione della nuova semantica negli strumenti semantici
(TCG/HC - Test Case Generator/History Checker), per la validazione e la
generazione (semi)-automatica di casi di test a partire dalla specifica.

Acknowledgments

My first expression of gratitude is for Dino Mandrioli, my advisor, tutor, relator, and
magister officiorum.

I really have to thank other non empty sets of people (strictly without any order
whatsoever):

- TC =
�
Alberto Coen-Porisini, Matteo Rossi � , i.e. the other “triocorbists”, for all

their essential work, help, and advices.

- TRIO =
�
Pierluigi San Pietro, Angelo Morzenti, Angelo Gargantini � , this is

like the previous set, but within a “pure-TRIO” environment.

- PhD =
�
Carlo Ghezzi, Stefano Crespi Reghizzi, Marco Colombetti � , for their

invaluable help within the Ph.D. program, and nice music (Carlo).

- CLX =
�
Luciano Baresi, Antorio Carzaniga, Gianpaolo Cugola, Giovanni

“Giuvàn” Denaro, Vincenzo “Vinxe” Martena, Ouejdane Mejri, Mattia
Monga, Alex “three-minutes” Orso, Matteo Valsasna � , i.e. past and present
members of the infamous but pleasant office 160, especially for their patience,
problem-solving, and general appearance.

- Gib =
�
Stefano “Maestrooo” Gaburri, Gian Pietro “GP” Picco, Fabio Violante,

Stefano Ferrari � , i.e. other DEI-based people, for their pleasant interactions,
both virtual and live.

- NRL =
�
Connie Heitmeyer, Myla Archer, Russ Beall, Ramesh Bharadwaj, Jim

Kirby, Liz Leonard � , i.e. some NRL-based people, for all their help, lunch time
chatting, hints, and indirect English teaching.

- Blob =
�
Aimara, Claudia, Melissa, Carrie, Francesca, Beppe, Funza, Paolo,

Nicola, Diego, Massimo, Bondo, Michel, . . . � , this is a big set of friends, sup-
porters, and generally pleasant people I wish to thank for providing me with a
nicely interactive environment, and good food.

Notably, the previous sets should display many intersections, here wantonly re-
solved to avoid repetitions.

A special thank to Matteo “dirty-work” Rossi, my official spokesman and delivery
boy during the NRL exile.

Last but one, but not least, thanks to all my sponsors, strictly in order of impor-
tance: My family, MURST, US Navy.

Last and least, a salute to my obsolete and somehow unreliable computer systems:
Junk =

�
Mr. Mac, ZX80, Bzot, Light � .

Contents

1 Introduction 1

2 Supervision and Control Systems 5

3 CORBA and the OpenDREAMS Platform 11

3.1 The Common Object Request Broker Architecture 11

3.1.1 The Interface Definition Language 12

3.1.2 The CORBA computing model 12

3.1.3 The Object Management Architecture 14

3.1.4 CORBA as a Platform for Building S&C Applications:
Qualities and Shortcomings 15

3.2 The OpenDREAMS Platform . 17

3.2.1 The Replication Service 18

3.2.2 The Event Management Module 20

3.2.3 The Base Process Value Module 21

3.2.4 The Situation Processing Module 21

3.2.5 The Anomalies Detection Module 24

4 From TRIO to TC 27

4.1 TRIO . 27

4.1.1 Basics . 27

4.1.2 Two Examples . 28

4.2 TRIO in-the-large . 30

4.2.1 Basic Syntax . 31

4.2.2 Graphic Notation . 32

4.2.3 Events and States . 33

i

ii CONTENTS

4.3 TRIO meets CORBA . 34

4.3.1 Application Object . 36

4.3.2 Interface . 36

4.3.3 TRIO . 37

4.3.4 Environment . 37

5 The TC Methodology 39

5.1 A Running Example . 40

5.2 Starting Point: the TRIO Specification 43

5.2.1 Preliminary Phase: Recognition of Architecture-
Impacting Characteristics 44

5.3 Five Steps towards the Design . 45

5.3.1 Step 1: Data Flows . 45

5.3.2 Step 2: Clients and Servers 50

5.3.3 Step 3: Interfaces and Application Objects 51

5.3.4 Step 4: Semantics of Operations and Attributes 61

5.3.5 Step 5: Services and Frameworks 62

5.4 Axiomatic Labor Limæ . 67

5.4.1 TC Classes’ Signatures . 68

5.4.2 TC Classes’ Axioms . 76

6 Automatic Analysis of TRIO Specifications 81

6.1 Specification Languages and Automatic Analysis 81

6.2 TRIO’s Formal Semantics: Problems and Solutions 84

6.2.1 MPS Formal Definition . 86

6.2.2 Problems of MPS . 86

6.3 The Formalization of the Revised Semantics 91

6.4 Some Theoretical Properties . 92

6.5 Impact on the TRIO Tools . 97

7 The TRIO Tool Suite 99

7.1 Overview . 99

7.2 The TRIO Graphic Editor . 100

7.3 The TRIO Semantic Tools . 103

7.3.1 Validating the specification 104

CONTENTS iii

7.3.2 Test Cases Generation . 106

7.4 Platforms and Versions . 108

8 Conclusions 109

A TC Reference Manual 111

A.1 TC Syntax . 111

A.1.1 Methodology . 111

A.1.2 Language . 113

A.2 TC Meta-Classes . 117

A.2.1 Interface Classes . 117

A.2.2 TRIO Classes . 118

A.2.3 Application Object Classes 118

A.2.4 Environment Classes . 120

A.3 IDL-Specific Elements . 122

A.3.1 Compound items . 122

A.3.2 Exceptions . 128

A.3.3 Operations . 129

A.3.4 Attributes . 133

A.3.5 Connections . 134

A.3.6 Degree of concurrence of Application Object classes . . . 136

B The IMS TRIO Specification 137

B.1 General-purpose classes . 137

B.2 Component classes . 138

B.2.1 Class IMSClass . 138

B.2.2 Class GPDBClass . 143

B.2.3 Class MeasuringChannel 145

B.2.4 Class MeasChanAlarmMgr 146

B.2.5 Class AlarmChan . 148

B.2.6 Class HMIClass . 149

B.2.7 Class CS . 151

B.3 The overall system: Class IMSApplication 152

C The IMS TC Specification 155

iv CONTENTS

C.1 TC Methodology Steps . 155

C.1.1 Step 1 . 155

C.1.2 Step 2 . 156

C.1.3 Step 3 . 157

C.2 TC Specification . 160

C.2.1 Interface Class definitions 160

C.2.2 TRIO Class definitions . 162

C.2.3 Application Object Class definitions 164

C.2.4 Environment class definitions: class IMSApplication . . 183

List of Figures

1.1 Development Process with TRIO/TC 3

2.1 SCS Reference Model . 6

2.2 SCS Detailed Model . 8

3.1 Request-dispatching through an ORB 13

3.2 The Object Management Architecture (OMA) 14

3.3 Group communication . 19

3.4 Structure of OGS . 20

3.5 Interactions between suppliers, consumers and notification
channels . 21

3.6 Example of lattice modeling the state propagation scheme . . . 22

3.7 Association of objects with interfaces of SPM 23

3.8 Setting the active status of a Status object 25

3.9 Setting the active status of an Alarm object 25

4.1 A history for the transmission line example, representing a finite
behavior . 29

4.2 A periodic (infinite) behavior for the transmission line example,
where an in occurs forever exactly every 5 time instants, starting
from instant 1 . 29

4.3 A history for the timed lamp example 30

4.4 An overview of TRIO graphic symbols 33

4.5 The relationships among TC meta-classes 35

4.6 TC graphic notation . 35

5.1 The Maintenance System . 40

5.2 The MS Specification . 42

v

vi LIST OF FIGURES

5.3 Example of Framework-oriented TRIO Specification 43

5.4 Example of Non-framework-oriented TRIO Specification 44

5.5 Dispatching of the Alarms . 44

5.6 The “architecture-impacting aware” Specification 46

5.7 The IMS Diagram after the Step 1 of the Methodology 48

5.8 Example of connected TRIO items with different names 48

5.9 TRIO diagram with items shared by more than two classes . . . 49

5.10 Data flow involving more than two classes 49

5.11 IMS Diagram after Substep 2.2 52

5.12 Split . 53

5.13 Merge of the destinations of a Multicast 54

5.14 IMS Diagram after Substep 3.1 55

5.15 IMS Diagram after Substep 3.2 59

5.16 Compatibility among Multicasts 60

5.17 IMS Diagram after Substep 3.3 61

5.18 Interface Assignment after a Merge 62

5.19 IMS Diagram after Step 4 . 63

5.20 IMS Diagram after Step 5 . 65

5.21 The final IMS Diagram . 69

6.1 The finite restriction of the history of Figure 4.2 to the domain 1..20 84

6.2 A restriction of the history of Figure 4.3 to 1..15 87

6.3 A behavior for the timed lamp, where ��� , ��� and ��� are false . 87

6.4 An incorrect behavior of the timed lamp: There is a timeout but
two instants before the lamp was off 88

6.5 An incorrect behavior of the timed lamp: There is a �	��
������� and
the lamp stays on . 89

7.1 The TRIO Environment . 100

7.2 The TRIO specification . 101

7.3 The Architectural Graphic Representation 102

7.4 The History Checker . 105

7.5 The Test Case Generator . 107

A.1 . 119

LIST OF FIGURES vii

A.2 . 119

A.3 . 121

viii LIST OF FIGURES

Chapter 1

Introduction

The past few years have marked a steady affirmation of distribution as a main
issue in the Information Technology domain. Surely, one of the most promis-
ing approaches to the development of distributed systems is represented by
the Object Management Group (OMG) Common Object Request Broker Archi-
tecture (CORBA) [38, 37].

The OMG has also defined a complete architecture (OMG/OMA, [51]) ad-
dressing both general issues and particular needs of specific application do-
mains (e.g., Banking, Telecom, Supervision and Control Systems) by defining
high level libraries or frameworks [8]. However, the OMG and CORBA mainly
address the technological aspects of distributed computing without too much
emphasis on the development process.

Application development is composed of three major phases: Requirement
analysis and specification, architectural design, implementation. Great benefits (in
terms of validation of the user requirements and verification of the imple-
mented system) can be obtained if the specification is expressed in a rigor-
ous (possibly formal) way, and if the application designer is supported by a
methodology (and related tools) for deriving the architecture of the applica-
tion from the specification.

Popular object oriented (OO) methodologies and notations such as [5, 6,
52] do not specifically address the issues of OO analysis and OO design over
CORBA. Moreover, they do not allow a formal description of requirements
since they lack a rigorous underlying mathematical model, even though some
work has been carried out lately to couple these methodologies with formal
specification languages [27].

This state of the art is extremely unfortunate since the identification of re-
quirements is the most critical phase in system development. Errors and ambi-
guities at this level often yield significant cost increases in the successive design
phases or, even worse, the design of incorrect systems that could severely dam-
age people or the environment. In particular, the use of formal methods in the

1

2 CHAPTER 1. INTRODUCTION

context of Supervision and Control Systems (SCS) is natural and particularly
effective, since such systems typically impose high-reliability and real-time re-
quirements.

SCS are traditionally implemented as closed systems based on proprietary
hardware and software, thus they are usually not portable and can not be ex-
tended or integrated into more complex systems. As a result, adding new func-
tionalities to an existing SCS often leads to building new independent systems.
For instance, an Energy Management System is typically composed of several
independent applications each of them having their own sensors, hardware
processors, databases and specialized software, even though conceptually they
share the same information. Since the functional architecture of all these appli-
cations is very similar, several components are duplicated (e.g., there is a data
acquisition component for each application).

One possible solution in order to overcome this situation is to use the high
level abstract interface provided by CORBA to define an open environment
in which different applications can coexist and share information. CORBA
could represent an effective backbone for shaping the new SCS’ architecture,
along with natural evolution issues, and for easily connecting existing legacy
systems and modules, usually by providing a CORBA-IDL based “wrap” for
accessing their characteristics. In this way it would be possible to extend a SCS
by adding new components whenever they are developed, thus reducing de-
velopment time and cost. For instance, alarms could be recorded by the alarm
managing subsystems and accessed through a global database by the diagnos-
tic subsystem.

OMG, with the recently adopted Messaging and Real-Time CORBA speci-
fications [39], is starting to address some of the issues that are critical for SCS,
such as reliability, quality of service, and real-time.

To fully achieve the proposed goal, however, another crucial issue must be
addressed, that is, a big gap must be filled by design to move from system re-
quirements to a complete implementation in terms of the CORBA architecture.

This thesis addresses this issue by presenting an approach to the design of
distributed systems in a CORBA environment, based on an initial formaliza-
tion of the requirements given in terms of TRIO [23, 35]. TRIO is a first order
temporal logic which has shown to be very effective for specifying critical sys-
tems such as SCS [10].

The presented approach consists in moving from the TRIO representation
of the requirements to a new formalization representing the high level archi-
tectural design in which the technological target - CORBA - is taken into ac-
count. This transformation is supported by a language, whose name is TC
(TRIO/CORBA), obtained by introducing in TRIO the basic concepts innate
to CORBA (see Figure 1.1). The integration of a formal approach during the
specification phase with CORBA concepts, at the design level, is expected to
enhance the development process.

Even though the example presented in this work refers to a SCS, namely an

3

Requirement analysis and specification

Architectural design

Implementation

TRIO

TC

TC methodology

Figure 1.1: Development Process with TRIO/TC

Energy Management System, the results are general enough to be applied in
almost any domain. As a consequence this work does not focus on the critical
requirements of the application but rather on the design language and method-
ology used to design such a system.

From a more practical point of view, the present work addresses the issue
of providing an effective CASE tool set for specification editing and automatic
analysis. The “traditional” TRIO tools were therefore augmented with new
characteristics:

� A totally redesigned editor, with improved editing capability for a full
support of TC;

� A full revision of TRIO’s original finite domain semantics, to offer a bet-
ter and more intuitive approach to the execution of TRIO specification,
typically for validation and automatic test case generation.

Main Contributions

This thesis presents results obtained in the context of both the long term re-
search on the TRIO language for real-time systems at Politecnico di Milano,
and the European project OpenDREAMS-II. Within such a stimulating cradle,
the author’s contributions can be briefly summarized as the following:

� Definition of the TC language and methodology;

� Definition of the new finite-domain semantics for TRIO;

� Enhancement of the traditional TRIO tool set with: TC support, new se-
mantics, interoperability between editor and semantic tools, and com-
mon platform integration.

4 CHAPTER 1. INTRODUCTION

Outline

This thesis is organized as follows:

� Chapter 2 provides an overview of the characteristics and problems re-
lated to the Supervision and Control Systems’ field.

� Chapter 3 introduces some CORBA and OpenDREAMS basic concepts
and then discusses CORBA/OpenDREAMS as a platform for SCS.

� Chapter 4 briefly introduces the used formalisms, namely TRIO and TC.

� Chapter 5 presents the TC methodology by means of an example in which
TC is used to design an actual Supervision and Control System.

� Chapter 6 discusses typical approaches for analyzing temporal logic
specifications, and then focuses on a particular TRIO-tailored approach
based on finite domain semantics, the one implemented in the tool suite.

� Chapter 7 analyzes and describes the structure and main features of the
TRIO tool suite.

� Conclusions and a perspective of the future work are presented in Chap-
ter 8.

� Appendix A contains the TC manual, i.e. a more detailed description of
the TC language.

� In Appendixes B and C are the running example’s complete TRIO and
TC specifications, respectively.

Chapter 2

Supervision and Control
Systems

A Supervision and Control System (SCS) is a mission-critical application,
which retrieves data from / performs actions on the environment in which
it operates. After having analyzed a wide range of SCSs, the ESPRIT project
OpenDREAMS (see [40] and Chapter 3) identified a common structure, which
describes in a generic way the different objects (in the broadest sense of the
term) that compose an SCS. This reference model for SCS is shown in Figure
2.1.

The model includes the subsystems listed below.

� Data Acquisition and Communication System (DACS): it connects the
application to its external environment, supplying it with various com-
munication services (session, mail, file transfer, real time communication,
etc.). This subsystem is in charge of acquiring data from sensors (e.g.
radars), localization systems (e.g. GPS), or from other supervision and
control (S&C) centers. Data can be transmitted through various types
of physical links and using communication protocols very specific to the
S&C domain. Since DACS manages data transmission through the com-
munication network, S&C applications need not take care of its details.

� Data Numerical Processing (DNP) system: it processes (usually through
statistical algorithms for filtering and modeling) the raw data coming
from the external environment, and identifies objects or events of interest
in the current situation. Examples of functions used by this subsystem
are data fusion from sensors and pattern recognition from satellite video
images.

� Information Server (IS): it provides the S&C application with persistent
data, which is used by the operator to obtain a complete picture of the

5

6 CHAPTER 2. SUPERVISION AND CONTROL SYSTEMS

DATA NUMERICAL
PROCESSING

SUPPORT
SERVICES

SYSTEM

ENVIRONMENT
PRODUCTION

S&C applications: Power plants supervision, SMGCS, Road traffic S&C ...

INFORMATION SERVERS

External systems: alarms, sensors, other systems, effectors, vehicles, ...

DATA ACQUISITION AND COMMUNICATION SYSTEM

DISTRIBUTION MANAGEMENT SERVICES

INFORMATION PROCESSING SERVICES

INFORMATION BASIC SERVICES

Figure 2.1: SCS Reference Model

7

situation and to plan actions. These data can be technical documenta-
tion, or come from unformatted sources. ISs store different types of data:
generic alphanumeric data, geo-referenced data, images, messages, large
texts, etc.

� Distribution Management System (DMS): it provides basic services for
the distribution of data and processes over different computers in a trans-
parent way for the application. This subsystem offers functions like in-
terprocess communication, transaction services, concurrency and event
services, etc.; furthermore, it contains an object-oriented kernel, which
federates data of different types (alphanumeric, geographical, etc.) in a
single object-oriented model.

� Information Basic Services (IBS): they offer basic functions for the pre-
sentation, retrieval and manipulation of information (for example, query
tools and graphic functions to display and enter data). These functions
allow an operator to get a picture of the current state of the system which
is being monitored, and also to modify it.

� Information Processing Services (IPS): these services provide functions
which assist the decision process of an operator when (s)he faces combi-
natorial problem solving. Technologies like Constraint Satisfaction Pro-
gramming for scheduling of actions or Logic Reasoning for diagnosis of
threats are part of this layer.

� System Support Services (SSS): thanks to the functions offered by this
subsystem, administrators can monitor the execution of the S&C applica-
tion and modify its setup (for example to change the configuration of the
network or of some database, or for security management purposes).

� Production Environment (PE): it is composed of software engineering
tools dedicated to the development of S&C applications. These tools
support analysis, design and coding of S&C applications and are able
to automatically generate code to be integrated into the final system.

Fig. 2.2 shows a more detailed reference model, which points out the func-
tions that compose the different subsystems previously described (see [40] for
an explanation of the detailed reference model).

OpenDREAMS identified also a set of generic requirements common to all
SCSs [40]. These requirements are briefly recalled below.

� System modularity: if S&C applications are not designed according to a
sound modularity principle, they tend to be structured in big processes,
which grow more and more as the functionalities of the system increase;
as a result, they are resource-consuming and hard to maintain, modify
and reconfigure. Instead, an effective platform for the development of
SCSs must favor designing applications with a fine grain modular struc-
ture; in fact, this allows replacement of single components, easy modifica-
tion of parts of the system, and load sharing over a network of machines.

8 CHAPTER 2. SUPERVISION AND CONTROL SYSTEMS

Persistency
ServiceTransaction

Management
Concurrency
Management

S&C applications: Power plants supervision, SMGCS, Road traffic S&C ...

External systems: alarms, sensors, other systems, effectors, vehicles, ...

Generator
Report

Service
Presentation

Service
Image

Services
Cartography

Data Link
Dedicated

Transmission
Radio

Services
Session

Protocols
Network Mgt

Services
Mail File Transfer

Services

IPS

IBS

DMS

Carthography
Info. System

IS DNP

DACS PESAS

Builder
Object Model

Management
Configuration

Dev. Method
System

Persistency
Service

Object
Distribution

Naming
Service

Event
Service

Replication
Management

File
System

O/R
DBMS

Image
Server

Data
Fusion

Pattern
Recognition

Query
Service

Planning

Scheduling Management
Resource Situation

Evaluation

Diag. Engine

Simulation
Report
Builder

Local
Network

Management

Interface
Builder

Cartography
Dev. Tools

Symbology
Tools

Multimedia
Tools

Test
Tools

Programming
Tools

Service
Security

Database
Administration

System
Management

Configuration
Management
(at run time)

Data

Recording

Figure 2.2: SCS Detailed Model

9

� Inter-application standard communications: modular applications need
efficient, standard inter-process communication mechanisms. Traditional
technologies (e.g. sockets, shared memory, RPC, etc.) force the develop-
ers of distributed applications to code in a program the details of the
communication mechanisms (which, in addition, can vary depending on
the operating system on which the program runs). Instead, a platform
managing inter-process communication in a transparent (and uniform)
way would considerably simplify coding distributed applications.

� System openness and predisposition to evolution: SCSs should be able
to integrate both new functions (i.e. they should be open) and new imple-
mentations of existing functions (i.e. they should be evolutive), without
having to entirely re-build the system.

� Support for hardware heterogeneity and multiple languages: very of-
ten, parts of the same SCS run on different types of hardware (UNIX
workstations, PCs and mainframes), which can be combined together in
various ways. Similarly, different software components of the same SCS
can be written using different programming languages (C/C++, Ada,
FORTRAN, etc.). In consequence of this, an S&C platform must allow the
integration of heterogeneous hardware architectures, and also the coop-
eration of software components implemented in different programming
languages.

� Integration of legacy applications: SCSs are seldom built from scratch,
they rather need to integrate existing components (e.g. databases, spe-
cific processing modules, etc.) which are too expensive to redevelop. As
a result, an effective S&C platform must provide a valid mechanism to
wrap the aforementioned components, in order to be able to use their
services without having to modify their implementation.

� Distribution support services: to develop a distributed system in an ef-
ficient way, not only standard inter-process communication mechanisms
are required, but also some higher-level services, which relieve applica-
tion developers from dealing with the distribution aspects. These ser-
vices manage the location of the software components of an application,
the notification of the events occurring in the system, the location of per-
sistent data, etc, and must be provided by any reliable S&C platform.

� Fault tolerance and real-time: SCSs are usually mission-critical systems
(some of them run 24 hours a day), therefore an SCS (or, at least, part of
it) must be highly available and fault-tolerant. In addition, every SCS in-
teracts with its external environment in order to monitor and/or control
it; in consequence of this, SCSs have not only functional, but also tem-
poral requirements 1 (i.e. they must respect precise temporal constraints,

1Real-time requirements can be of two types: hard and soft. Hard real-time requirements must
be met with absolute precision, whereas soft ones do not need to be respected perfectly; as far as
soft real-time requirements are concerned, a reasonable confidence that in most cases they are met
is enough.

10 CHAPTER 2. SUPERVISION AND CONTROL SYSTEMS

whose order of magnitude can vary from few milliseconds to some min-
utes).

In the next chapters we will see how a CORBA-based platform (i.e. a
CORBA platform extended to take into account some SCSs’ peculiarities) can
be used to meet the requirements typical of SCSs.

Chapter 3

CORBA and the
OpenDREAMS Platform

In this chapter we will introduce the main concepts and definitions about
the Common Object Request Broker Architecture (CORBA) and the Open-
DREAMS (OD) CORBA-based platform, that will be extensively used in the
following chapters.

3.1 The Common Object Request Broker Architec-
ture

The Common Object Request Broker Architecture (CORBA) [38] defined by
the Object Management Group (OMG) is an object-based, software platform
which allows applications to communicate with one another, regardless of the
hardware they are running on, of the language they are written in, and of their
location over the network. The core of the architecture is the Object Request
Broker (ORB), a sort of “software bus”, which is in charge of collecting requests
and replies from applications and dispatching them to the right counterpart.
CORBA is built around the classical software concept of object. An object is ”an
identifiable, encapsulated entity that provides one or more services that can
be requested by a client” [38], where a client according to OMG’s definition, is
”any entity capable of requesting a service” [38]. From the previous definitions
we see that the main characteristic of objects is that they provide services; fur-
thermore, they are encapsulated: Every object has a public interface, defined in
an apposite language, the Interface Definition Language (IDL, ISO/IEC stan-
dard number 14750). Every object is uniquely identified by a reference; a client
can issue requests only to objects of which it has the reference.

11

12 CHAPTER 3. CORBA AND THE OPENDREAMS PLATFORM

3.1.1 The Interface Definition Language

A CORBA object offers services to its clients through its IDL interface. Through
IDL, it is possible to declare the data and methods that can be invoked on an
object. Furthermore, for every operation exported by an object, IDL allows to
define its parameters (ingoing and outgoing), the returned value and the user-
exceptions it raises. A simple example of IDL interface is the following:

interface DataConverter {
exception bad_date_format;

typedef string Tdate;

unsigned short compute_age
(in Tdate date_of_birth) raises
(bad_date_format);

}

OMG standardized mappings between IDL types and method declara-
tions and types and function declarations of some major programming lan-
guages. Mappings are currently available for C, C++, Java, Lisp, Ada, COBOL,
Smalltalk, Python and IDLscript. However, a mapping need not be standard-
ized by OMG to be useful: Non-standard mappings for other languages (such
as Eiffel and Visual Basic) are widely used.

IDL interfaces isolate the clients from the implementation of the objects; in
fact, a client is not aware of how the data and methods exported by an object
are implemented, nor of the programming language which the object written
in; it is only aware of the object’s IDL interface.

3.1.2 The CORBA computing model

When a client invokes an operation on an object, the request does not directly
pass from the former entity to the latter one; instead, as represented in Figure
3.1, it is processed by the ORB, which takes care of the distribution and commu-
nication aspects (i.e locating the recipient CORBA object over the network and
shipping it the request) transparently from the client. Actually, a client always
uses the same mechanism to invoke a method on any target object, indepen-
dently of the fact that this is local or remote. The aforementioned mechanism
depends on the programming language the client is written in (e.g. procedure
call for clients written in C). This is achieved through an intermediate layer be-
tween the client and the ORB (this layer has been named ’IDL’ in Figure 3.1):
using the mappings mentioned in the previous section, an OMG IDL compiler
generates a set of language-dependent stubs (on the client side) and skeletons
(on the object side), which provide the necessary operations through which
the information concerning a request is first marshaled (on the client side) and
then unmarshaled (on the object side).

3.1. THE COMMON OBJECT REQUEST BROKER ARCHITECTURE 13

Client Object Impl.

ORB

IDLIDL

Figure 3.1: Request-dispatching through an ORB

There are two ways in which a client can build the invocation of a method
on an object: statically and dynamically. A method can be statically invoked
only if the client knows its signature (i.e. its IDL declaration) at compile-time;
static requests are issued through the above-mentioned stub, which is built at
compile-time. On the other hand, if the client wants to use a method, whose
signature is unknown at compile-time, it can assemble the corresponding re-
quest dynamically at run-time, through a set of ORB operations which have
been defined especially for this purpose. These operations are contained in the
standard Dynamic Invocation Interface (DII, fully described in [38]).

A remark: The present work is based on CORBA 2.2, the reference platform
for the OpenDREAMS project. There are some new characteristics in the 2.4
version of the CORBA specification [39] (October 2000). However the main
concepts introduced here and analyzed in the rest of the present work remain
completely valid, and can be easily augmented with the newly introduced fea-
tures. For instance, in CORBA 2.2 static invocations could only be synchronous
(i.e. the client is blocked while waiting for an answer from the object); on the
other hand, the DII allowed an operation to be called asynchronously (using
the deferred-synchronous semantics1), but only with a considerable computing
overhead, since, in this case, the request must be built and retrieved through a
series of operation invocations on the DII. Version 2.4 of CORBA remedies this
shortcoming, by defining two static asynchronous invocation semantics (call-
back and polling) in the new Messaging Specification. Another important issue
covered by the new Messaging Specification is quality of service.

1In the deferred-synchronous semantics, after the request is sent (through an apposite operation
of the DII), the client continues its normal processing; then, it can later retrieve (through another
operation of the DII) the result of the operation.

14 CHAPTER 3. CORBA AND THE OPENDREAMS PLATFORM

Figure 3.2: The Object Management Architecture (OMA)

3.1.3 The Object Management Architecture

The Object Management Architecture (OMA, whose structure is shown in Fig-
ure 3.2) provides a general framework for the development of modular appli-
cations based on plug-and-play, component software; the OMA is founded on
the CORBA architecture and its concept of interoperability between objects.

The idea that underlies the OMA is that basic functionalities (for example a
security management service, or a man-machine interface) should be provided
through standard interfaces: in this case, if third-party software offering ser-
vices through standard interfaces is available, applications can be built upon it
and need not implement themselves the functionalities it provides (thus mak-
ing development of complex applications easier). Furthermore, if standard in-
terfaces are used, different implementations of the same service become in-
terchangeable (i.e. if an application makes use of some standard service and
the implementation of this service is changed with another one, for example
because the latter offers better performances, the application should not be af-
fected by the change).

The OMA includes four types of components: application objects, CORBA
services, vertical CORBA facilities (also known as CORBA domains) and hor-
izontal CORBA facilities. Among these, application objects are the only ele-
ments which are not standardized by the OMG; in fact, they are developed by
software integrators, and exploit the functionalities offered by the other com-
ponents of the OMA, in order to fulfill the requirements expressed by the cus-
tomers of the application.

CORBAservices offer basic functionalities needed by almost every object.
CORBAfacilities build upon them to provide higher-level services. CORBAser-
vices are the part of the OMA that was standardized first [37], and reliable
implementations are available for most of them. The following are typical ex-
amples of CORBAservices:

3.1. THE COMMON OBJECT REQUEST BROKER ARCHITECTURE 15

� Naming Service, used to access object references across the network;

� Event Service, through which objects can be notified about the occurrence
of certain events or state changes;

� Object Transaction Service, through which objects participating in a trans-
action can keep an overall consistent state;

� Object Security Service, useful for the management of secure accesses to
objects;

� Persistent Object Service, through which the state of an object that must
show persistent behavior can be stored in/retrieved from a persistent
storage.

CORBAfacilities provide application with intermediate-level services.
While Horizontal CORBAfacilities offer functionalities that can be useful for a
great variety of applications (for example Task Management or Man-Machine
Interface), every CORBAdomain (i.e. every Vertical CORBAfacility) provides
services that are specific to a certain domain of application (an example of
CORBAdomain for SCSs could be, for example, an Alarm Management Ser-
vice; however, such a service has not been standardized, yet). A few COR-
BAdomains have already been standardized, but many are currently being
taken under consideration for standardization by the OMG [53].

3.1.4 CORBA as a Platform for Building S&C Applications:
Qualities and Shortcomings

CORBA (and the OMA, which is built on it) has undoubtedly many interesting
qualities that make it a solid platform for developing S&C applications. In fact,
if we consider the requirements of SCSs described in Chapter 2, most of them
can be fulfilled simply by exploiting the peculiar characteristics of CORBA:

� The CORBA architecture, based on the concept of distributed objects, is
best suited for structuring applications as collections of separated (pos-
sibly small) isolated entities (the objects and their clients), thus favoring
system modularity;

� Inter-application standard communications are guaranteed by the combina-
tion of the ORB with the IDL stubs and skeletons, which hide from the
clients all the details concerning the communication with the objects;

� Thanks to the plug-and-play concept enforced by the OMA and the in-
terchangeability of implementations of objects which share the same IDL
interface, systems based on CORBA are open and evolutive [14].

� Support for multiple languages is guaranteed by the CORBA computing
model, which relies on the idea that IDL interfaces are compiled in

16 CHAPTER 3. CORBA AND THE OPENDREAMS PLATFORM

language-dependent stubs and skeletons (which, in combination with the
ORB, allow entities written in different languages to communicate with
one another); support for heterogeneous hardware is achieved thanks to the
OMG Internet Inter-ORB Protocol (IIOP, see also [38]), a TCP/IP-based
protocol (standardized by OMG) through which different ORBs can com-
municate with one another (in particular when a client connected to an
ORB issues a request to an object connected to some other ORB);

� Integration of legacy applications is easily achieved by wrapping them in
IDL interfaces and plugging them on an ORB;

� Distribution support services required by S&C applications are provided by
CORBAservices and CORBAfacilities;

Now the very important issue of real-time is starting to gain weight in the
process of CORBA specification and standardization. The recently published
CORBA 2.4 has a complete chapter devoted to real-time issues (see [39], Chap-
ter 24). It is worth to note that OpenDREAMS-II produced the formal speci-
fication and validation of the main features of the real-time ORB at the time
proposed for standardization (the main results are collected in [29]).

As far as fault tolerance and high-availability are concerned, the original
CORBA specification does not tackle the issue of replicated objects, which is
of crucial importance for SCSs (which are usually mission-critical systems).

Finally, OMG specified the Unified Modeling Language (UML, [6]) with
the purpose to provide a standard tool to design and model applications, thus
supporting the early phases of application development process. UML defines
a purely graphical notation and a set of diagram types, which give different
views (both static and dynamic) on an application: Use-case diagrams, class
diagrams, behavior diagrams (state charts, activity diagrams, interaction dia-
grams) and implementation diagrams (component diagrams, deployment dia-
grams). Nevertheless, UML does not allow formalizing precisely the temporal
requirements of an application: Even though it allows expressing temporal
constraints [19], it lacks the rigor that is needed to found their formal veri-
fication. As a result, guarantees of the correct functioning of the system are
difficult to obtain.

In conclusion, CORBA provides a very good basis for developing dis-
tributed, modular applications (as SCSs are), but it lacks some of the critical
features which characterize the S&C domain. The OpenDREAMS platform,
which we will introduce in the next section, is built upon CORBA, and reme-
dies to CORBA’s shortcomings by adding a number of ad-hoc services, and by
supporting a design methodology based on the TRIO temporal logic.

3.2. THE OPENDREAMS PLATFORM 17

3.2 The OpenDREAMS Platform

The OpenDREAMS (OD) platform builds upon CORBA to provide S&C ap-
plication developers with additional features (mainly in the form of ser-
vices and frameworks) usually needed in the S&C domain. ESPRIT project
OpenDREAMS-I (which ended in September 1996) defined the platform, but
did not go further than producing specification documents. ESPRIT project
OpenDREAMS-II (OD-II, ESPRIT project n. 25262), which ended in July 2000,
not only added new features to the OD platform, but also provided an imple-
mentation of that platform.

With respect to a standard CORBA platform, the OD one offers S&C appli-
cation developers the following additional services:

� A replication service, which allows objects that play critical roles in the
application to be highly available and fault-tolerant;

� A set of frameworks2, through which S&C application developers can ad-
dress issues typical of SCSs (e.g. alarm management, system access con-
trol, data validation) in a predefined way.

These services are offered through fixed IDL interfaces, so that applications
can make use of them through the standard CORBA mechanisms. Further-
more, OD extends the IDL interfaces of CORBA’s Object Transaction Service,
to include the possibility of committing a transaction using a non-blocking,
one-phase protocol (see also [45]).

It must be remarked that the goal of the OD-II project is not only to define
and implement the OD platform, but also to formalize and validate its com-
ponents. As far as platform formal definition is concerned, for example, the
replication service and the Object Transaction Service have already been for-
mally specified in TRIO ([43]). Platform formalization and validation is the
basis for application validation: When a designer formalizes the behavior of
the application (for example through T/C) (s)he usually makes some assump-
tions on the behavior of the platform upon which the application is built; the
application is then validated under the hypothesis that the underlying plat-
form functions in the desired way. Platform formal definition allows proving
these hypothesis.

In the rest of this section we will briefly analyze the replication service and
those OD S&C-specific frameworks which are of interest in the discussion that
will follow about the T/C language and methodology.

2By the word framework, OD-II means, in accordance with the OMA terminology, “a collection
of cooperating objects that provide an integrated solution, within an application or technology
domain, which is intended for customization by the developers or users” [36]; these cooperating
objects can be categorized, with respect to the OMA (see Figure 3.2), in different ways (application
objects, service objects, domain objects), so that a framework is a transversal entity with respect to
the OMA reference model decomposition.

18 CHAPTER 3. CORBA AND THE OPENDREAMS PLATFORM

3.2.1 The Replication Service

Objects are replicated mainly for two purposes:

� Fault tolerance (if there are � equivalent replicas of the same object, the
services they provide are still available if no more than ��� � replicas
fail);

� high availability (requests to a replicated object can be handled in parallel
by the different replicas).

OD replication service achieves these two goals through the group commu-
nication paradigm (for this reason, it was named Object Group Service, OGS). Ac-
cording to this paradigm, objects are organized in groups, which they can leave
or join dynamically (dynamic group membership). When a message is delivered
to the object of a group, it is also multicast (group multicast), by means of a
group multicast primitive, to all other objects of the group. OGS uses as group
multicast primitive the total order multicast, that ensures that all requests sent to
a group will be received by its member objects in the same order. Clients know
about the group through an abstract identifier (generally a symbolic name) that
they use to reference the group and to communicate with it.

Since the objects that belong to the same group usually share a common
state, when an object joins a group it receives the current state of the group
through a state transfer mechanism. Furthermore, the members of a group are
notified when another object joins or leaves (possibly because of a crash) the
group, so that every member knows the composition of the group.

Figure 3.3 shows the effect of issuing two requests m1 and m2 to a group G
of objects. If the total order multicast is used as group multicast primitive (as
in the case of OGS), messages m1 and m2 will be received by all the members
of group G in the same order (i.e. either m1 is received before m2, or m2 is
received before m1 by all members).

Similarly to the CORBA Event Service [37], OGS supports both typed and
untyped communication styles. Untyped communication is achieved through
a standard operation multicast, that represents any requests sent by a client to
a replicated object by means of a parameter of type any. When a client has
to issue a request to a replicated object, it invokes the multicast operation on
an apposite object (see below), and instanciates the any parameter with the
appropriate data (whose format must be agreed with the server). Untyped
communication style implies that the client is aware of the fact that the target
object is replicated.

Clients can also directly invoke operations of the server specific interface
(typed communication); typed communication needs that all objects of a group
support the same IDL interface. In the case of typed communication, when a
client invokes an operation on a group, OGS intercepts the call, and dispatches
the request to all the objects of the group. Typed communication provides
group transparency to clients.

3.2. THE OPENDREAMS PLATFORM 19

Figure 3.3: Group communication

OGS defines some IDL interfaces, which allow managing groups of objects
and invoking operations on them. The most important interfaces are listed
below (see [44] for the complete definition of all the interfaces of OGS).

� GroupAccessor: this interface defines the multicast operation, through
which clients can issue untyped requests. Furthermore, it defines a cast
operation, which allows clients to get the reference of an object support-
ing the same interface of the members of a group; this reference is used
for transparent group invocation in the typed version of OGS.

� GroupAdministrator: this interface, which inherits from GroupAcces-
sor, allows objects to join/leave a group through operations join group
and leave group.

� Groupable: this interface must be supported by all replicated objects,
since it is allows them to receive the current state of a group when they
join it (and the new composition of the group they already belong to,
when another object joins it). Furthermore, interface Groupable inherits
from another interface of OGS, named Invocable; this defines operation
deliver, through which OGS dispatches untyped requests to the members
of a group.

Figure 3.4 depicts how clients, replicated objects and OGC interact through
the foregoing interfaces. An arrow with a vertical bar is used to indicate that
the target object supports the interface whose name is written next to the ar-
row, and that the source entity invokes operations defined by the interface. As
the figure shows, clients of OGS interacts with the service through interface

20 CHAPTER 3. CORBA AND THE OPENDREAMS PLATFORM

Figure 3.4: Structure of OGS

GroupAccessor, while replicated objects use interface GroupAdministrator, in-
stead. Finally, OGS uses interface Groupable to communicate with replicated
objects.

3.2.2 The Event Management Module

The OD Event Management Module (EMM) [46], like the CORBA Event Ser-
vice [37], can be used to asynchronously transmit information between objects.
As far as EMM is concerned, objects are separated in two categories: suppliers
of events and consumers of events. An event can be transmitted from a sup-
plier to a consumer through a notification channel; notification channels can be
connected to multiple suppliers and consumers (see Figure 3.5).

Unlike the CORBA Event Service, events can be transmitted only using ap-
posite operations and structures (a mechanisms that can be considered to relate
to untyped communication style); furthermore, EMM only supports the push
model to communicate events to consumers3 .

With respect to the CORBA Event Service, on the other hand, EMM adds
the possibility to specify the desired quality of service as far as the delivery of an
event is concerned. EMM defines four qualities of service: Acknowledgment (the
supplier wants to be notified when an event is delivered to a consumer), log-
ging (the transmitted event has to be stored in some persistent storage), expiry
(events that, after a certain duration specified by the supplier, are still undeliv-
ered, are removed from the notification channel), priority (events are delivered
according to a specific priority and not to the usual FIFO order).

Finally, EMM allows event filtering: A consumer can ask the notification
channel to receive only some events of interest by associating an apposite fil-
ter object with the channel. Consumers that require events to be filtered must
support the EMM Filter interface: Through it, consumers can specify which

3Roughly said, in the push model the supplier invokes an operation on the consumer to pass it
an event; instead, in the pull model, which is supported (along with the push model) by the CORBA
Event Service, the consumer polls the supplier to check for the presence of events.

3.2. THE OPENDREAMS PLATFORM 21

Figure 3.5: Interactions between suppliers, consumers and notification chan-
nels

events they want to be notified by adding and removing constraints. Before
transmitting an event to a consumer that asked for event filtering, the notifi-
cation channel checks, through operation match of interface Filter, if the event
is compatible with the consumer, and transmits it only in case of successful
check.

3.2.3 The Base Process Value Module

The Base Process Value (BPV) module provides applications with basic objects
used to store and manipulate values (usually measures coming from the con-
trolled process) and some related information (time stamp, validity, etc.). This
module defines a basic interface BPVproperties, and some derived interfaces
(odInt, odFloat, odBoolean, odString). BPVproperties includes five attributes,
which represent the type of information that is common to all kinds of val-
ues: Name, meaning, time stamp and validity of the value, plus the quality
of the time stamp. Interfaces odInt, odFloat, odBoolean and odString inherit
from BPVproperties and define an additional attribute named value; the type
of this attribute varies from a derived interface to another (for example, in in-
terface odBoolean value is of type boolean, while in interface odFloat it is of
type float). The complete definition of the BPV module can be found in [46].

3.2.4 The Situation Processing Module

The Situation Processing Module (SPM) provides a way to easily build a repre-
sentation of the situation of a system which is being supervised, and to main-
tain it coherent with the reality it represents.

22 CHAPTER 3. CORBA AND THE OPENDREAMS PLATFORM

Figure 3.6: Example of lattice modeling the state propagation scheme

Usually, the overall state of a system is composed of several object states:
Some of these directly represent the state of some parts of the system (basic ob-
jects), while others rely on these basic objects to build complex states (compound
objects). Compound objects can use information coming not only from basic ob-
jects, but also from other (lower-level) compound objects to build their state.
As a result, the situation of a system can be modeled by means of a lattice (i.e.
an acyclic oriented graph) of objects, whose leaves are the basic objects. The
overall state of the system (the root of the lattice) can be obtained by comput-
ing the state of the basic objects (the leaves) first, and then propagating these
results along the branches of the graph, as Figure 3.6 shows.

SPM is split into two packages:

� The ’basic level’ package, which provides the mechanisms to describe the
lattice of objects and to propagate the information from the leaves of the
graph to its root;

� The ’advanced level’ package, which allows propagating the state of an
object with finer granularity with respect to the ’basic level’ package4.

In the rest of this section we will focus on the ’basic level’ package (see [41]
for the complete definition of both packages).

At its basic level, SPM defines three interfaces (SituationObject, PrimaryOb-
ject and SecondaryObject), through which the structure of the lattice can be
described.

4Notice that the state of any object (basic or compound) is usually represented through a set of
attributes: while the ’basic level’ package allows only to propagate the state of an object as a whole,
the ’advanced level’ one allows propagating also the single attributes that can possibly compose
it.

3.2. THE OPENDREAMS PLATFORM 23

Figure 3.7: Association of objects with interfaces of SPM

� SituationObject: this interface is the root for both primary and secondary
objects; it offers a set of attributes to describe the state of the object (at-
tribute value) and some relevant information about it (for example when
it was modified).

� PrimaryObject: this interface, which inherits from SituationObject, is
supported by all objects (basic and compound) whose state must be prop-
agated to some other (compound) object. An object that supports this in-
terface is responsible for propagating its state changes to the secondary
objects (i.e. objects supporting interface SecondaryObject) that are con-
nected to it.

� SecondaryObject: this interface (which also inherits from SituationOb-
ject) is supported by all (compound) objects whose state depends on the
state of some other object (which supports interface PrimaryObject). Sec-
ondaryObject defines the operations (consider value, consider object)
that primary objects use to propagate their state to connected secondary
objects.

Figure 3.7 shows the interface(s) of the ’basic level’ package of SPM sup-
ported by each object of the example depicted in Figure 3.6. Notice that ba-
sic objects support only interface PrimaryObject, while the root supports only
interface SecondaryObject. On the other hand, all objects of the intermedi-
ate layers between the root and the leaves support both PrimaryObject and
SecondaryObject interfaces. Primary objects invoke operations consider value
and/or consider object on secondary objects to propagate possible changes in
their state.

Interface PrimaryObject defines also the operations through which the lat-
tice, representing the state-propagation dependencies between objects, is built
(see [41] for further details).

24 CHAPTER 3. CORBA AND THE OPENDREAMS PLATFORM

3.2.5 The Anomalies Detection Module

The Anomalies Detection Module (ADM) provides mechanisms to raise and
manage alarms when anomalies are detected in the supervised system.

Some objects could have, in addition to a quantitative state (which could
require that the object inherits from the SituationObject interface), a qualita-
tive state, which represents the operational situation of the system (i.e. if it is
functioning correctly or not). Through this qualitative state anomalies can be
detected and signaled to the competent objects (for example a human-machine
interface).

The main interfaces defined by ADM are listed below (see [41] for the defi-
nition of all the interfaces of ADM).

� State: this interface is inherited by all objects which have a qualitative
state.

� Status: this is the root interface that represents all the potential quali-
tative states (normal and abnormal) of an object that supports interface
State.

� Alarm: this interface inherits from Status, and represents abnormal states
that can be associated with a State object.

A State object is associated with a set of Status (possibly Alarm) objects,
which represent all the states (normal and abnormal) in which the State ob-
ject can be. The association of State and Status objects is achieved through
operations add status and remove status of interface State. The active status
(possibly an alarm) of a State object is unique, and is represented by attribute
current status.

Attribute active (of type boolean) of Status objects indicates if the status is
active in the associated State object or not.

When attribute current status of interface State is set to be some Status
object, attribute active of the latter entity is set to true (while attribute active
of the old status is set to false). Changing the active attribute of a pure Status
object has no other consequence. Instead, when attribute active of an Alarm
object is changed (either to true or to false), this entity sends an AlarmEvent
event (a special type of event of EMM, dedicated to alarm management) to all
interested consumers.

Figure 3.8 shows the effects of setting a pure Status object ’newStatus’ as
the status of a State object ’aState’ (set current status is an operation of inter-
face State; remark that in Figure 3.8 the old status is a pure Status object, too).
Figure 3.9, instead, shows what happens if both the new and the old statuses
are Alarm objects. Notice how, while in the case of Figure 3.8 no AlarmEvent
is notified, since neither the old, nor the new status are alarms, in the case de-
picted in Figure 3.9 AlarmEvent events are notified both when the old status
’oldAlarm’ is deactivated and when the new one (’newAlarm’) is activated.

3.2. THE OPENDREAMS PLATFORM 25

set_current_status
active = false

active = true

aState oldStatus newStatus

Figure 3.8: Setting the active status of a Status object

set_current_status
active = false

active = true

aState oldAlarm newAlarm

if enabled

if enabled

AlarmEvent

AlarmEvent

Figure 3.9: Setting the active status of an Alarm object

26 CHAPTER 3. CORBA AND THE OPENDREAMS PLATFORM

Alarm interface defines operation acknowledge, through which the con-
sumers of AlarmEvent events can acknowledge the alarm after the event is
notified.

Chapter 4

From TRIO to TC

In this chapter we will consider the main characteristics of the specification -
and later architecture definition - language used: TRIO. We start by describing
the basic logic features of the language; then, its object-oriented extensions,
to come to the TRIO/CORBA (or TC) language, a TRIO extension suitable for
describing CORBA-based system architecture. Other more technical real-time
characteristics and decidability issues will be presented in Chapter 6.

4.1 TRIO

TRIO is a first order temporal logic that supports a linear notion of time [23]:
The Time Domain T is a numeric set equipped with a total order relation and
the usual arithmetic relations and operators. The time domain represents the
set of instants where a TRIO formula may be evaluated.

4.1.1 Basics

TRIO formulae are constructed in the classical inductive way, starting from
terms and atomic formulae. Besides the usual propositional operators and the
quantifiers (reported in Table 4.1), one may compose TRIO formulae by using
a single basic modal operator, called

� ��� � , that relates the current time, which
is left implicit in the formula, to another time instant: the formula

� ��� ������� �
	 ,
where � is a formula and � a term indicating a time distance, states that � holds
at a time instant at � time units from the current instant.

For the sake of convenience, TRIO items (variables, predicates, and func-
tions) are divided into time-independent (TI) ones, i.e., those whose value does
not change during system evolution (e.g., the physical size of a reservoir) and
time-dependent (TD) ones, i.e., those whose value may change during system
evolution (e.g., the water level inside a reservoir).

27

28 CHAPTER 4. FROM TRIO TO TC

Logic symbol ASCII version�
&�
|� ->� <-� <->

� ˜�
all�
ex

� =	� <>

Table 4.1: Some of TRIO propositional operators, quantifiers and relations

TRIO formulae are evaluated on a history, that is a sequence of events. A
model or behavior of a formula � is a history
 such that � evaluates to ����� �
on
 .

Several derived temporal operators can be defined from the basic
� ��� � oper-

ator through propositional composition and first order quantification on vari-
ables representing a time distance. A sample list of such operators is given in
Table 4.21.

The traditional operators of linear temporal logic can be easily obtained as
TRIO derived operators. For instance, ��
 � corresponds to the Eventually (or�) operator of temporal logic. Moreover, it can be easily shown that the oper-
ators of several versions of temporal logic (e.g., interval logic) can be defined
as TRIO derived operators. This argues in favour of TRIO’s generality since
many different logic formalisms can be described as particular cases of TRIO.

4.1.2 Two Examples

In what follows we provide two simple examples of a TRIO specification. Even
though they are very simple they will be used in Chapter 6 to highlight the
problems related to the current definition of TRIO’s finite domain semantics.
In these examples we consider � ��� (or integer in the specification).

A transmission line

Consider a simple transmission line, that receives messages at one end and
delivers them at the opposite end with a fixed delay (e.g., 5 seconds). The
arrival of a message is represented by the time dependent predicate � � , while

1It should be noted that there exist versions of the temporal operators with explicitly in-
cluded/excluded bounds - indicated with subscripts � / � , respectively. For instance, the definition
of ����������� � �"!$#���% is &(')�"*,+-'/.0�2143,�5���6�"!$#6' %�% .

4.1. TRIO 29

Operator TRIO Definition
 ��
 ��� 	 ��� � ��� ������� � 	
����� ��� 	 � ��
 � � � 	

 ��
 � ��� 	 ��� � ���	� � � ��� ������� � 	
	
 ��
�
 ��� 	 ��� � ����� � � ��� ������� � � 	
	
����� � ��� 	 � ��
 � � � � 	
������
 ��� 	 � ��
�
 � � � 	�� � �
� ����� �
	 ��� � ���	��� � � � ��� ������� � 	
	�� � � � � ����� �
	 ��� � ���	��� � � � ��� ������� � � 	
	� ����
 � � � ����� �
	 � �� � �
� � � ��� �
	� ����
 � ��
 ����� �
	 � �� � � � � � � ��� �
	�
� �	���
������� 	 ��� � ����� � �� � �
� ����� � 	 � � ��� ����� � � 	
	

 � ��� � ������� 	 ��� � ���	� � �� � � � � ����� � 	 � � ��� ����� � � � 	
	��� ��� � �!� ��� 	 ��� � ���	� � �� � � � � ����� � 	
	 ; � ��� ������� � � 	 if � is not dense
� �!�#" � ��� 	 ��� � ����� � �� � � � � ����� � 	
	 ; � ��� ������� � 	 if � is not dense$ �!� ��
� � ��� 	 � � ��� ��� � �!� � � � 	

Table 4.2: Derived Temporal Operators

in in in

1 5 10 15

out out out

20

...no eventno event ...

Figure 4.1: A history for the transmission line example, representing a finite
behavior

its delivery is represented by predicate ����� . The following formula expresses
that every received message is delivered after exactly 5 seconds from its arrival.

TL: ����� � � � � � ��� ��� ����� �&% 	
	 .

The use of the equivalence operator ’ � ’ ensures that no received message gets
lost and no spurious message (i.e., an output without an input) is emitted.
Figures 4.1 and 4.2 show examples of histories on which formula �

is verified.

in in
out

in

1 5 10 15

out out

20

in
out
in

...no eventperiodicity ...

Figure 4.2: A periodic (infinite) behavior for the transmission line example,
where an in occurs forever exactly every 5 time instants, starting
from instant 1

30 CHAPTER 4. FROM TRIO TO TC

1 5 10 15

...no eventno event ...

push
timeout

on on on
push

on on

push

onon

Figure 4.3: A history for the timed lamp example

A lamp with a timer

Let us consider a lamp with a timer and a switch. When the lamp is off, pushing
the button of the switch turns the lamp on. When the lamp is on, pushing the
button turns the lamp off; moreover if the button is not pushed the lamp is
turned off anyway by a timer after 4 time units. In the specification, the state
of the lamp is modelled by the time dependent predicate � � , which is true
iff the lamp is on; the event of pushing the button is modelled by the time
dependent predicate

� � �
 . Finally, another time dependent predicate �	��
������� ,
models the timer of the lamp. The specification of this system is the formula
����� � ��� � ��� � ��� 	 , where ��� , ��� and ��� are the following formulae:

A1: �	��
������� � �� � � � � � � � �&% 	 .
A2:

$ �!� ��
� � � � � 	 � � � �
 � � ��� ��� � � � � � � 	 .
A3:

$ �!� ��
� � � � � � 	 � � � � �
 � � ��� ��� � � � � � 	 � �	��
�������
	 .

��� defines the timeout: the light has been on during the last 4 time units2.

��� states that the lamp becomes on iff the button is pushed and the light
was off.

��� states that the lamp becomes off iff either there is a timeout or the button
is pushed while the light was on.

Let us consider the behavior shown in Figure 4.3 (where every predicate is
false unless explicitly indicated): the button is pushed a first time at instant 3,
and thus the light is on from instants 3 to 6, since the �	��
������� occurs at instant
7. The light stays off until the next

� � �
 (instant 10), remains on from 10 to 12,
when another

� � �
 occurs (instant 13), which finally turns the light off.

4.2 TRIO in-the-large

TRIO has proven to be a useful specification tool, but its use for the specifi-
cation of large and complex systems has shown its major flaw: As originally
defined, the language does not support directly and effectively the activity of
structuring a large and complex specification into a set of smaller modules,

2The definition of �������5� ' does not consider the current time instant, hence �������5� ' �����2# � % re-
quires ��� to be true in the previous four time instants.

4.2. TRIO IN-THE-LARGE 31

each one corresponding to a well identified, autonomous subpart of the sys-
tem. This led to the developing of extensions able to cope the specification
“in-the-large” issue [35, 12]. The main idea behind these extensions is the in-
troduction of concepts typical from object-oriented methodologies.

TRIO is now a class-oriented language: it introduces the class as its basic
modeling unit. A class defines a set, which contains all the entities that satisfy
its axioms. An instance of the class is one of the elements of this set. Classes
can be either simple or structured the latter term denoting classes obtained by
composing simpler ones. A class is defined through a set of axioms premised
by a declaration of all items that are referred therein. Some of such items are
exported, that is they may be referenced from outside the class.

4.2.1 Basic Syntax

Consider the following example, taken from the IMS specification3. Let us con-
sider it just from a syntactic point of view:

Class MeasChanAlarmMgr
inherit IDTypes, VarTypes

visible alarm_notify, alarm_ack,
GPDB_change_AM_status, IMS_change_AM_status

temporal domain real

TI Items
predicate is_alarm(AM_status_name);

event Items
alarm_notify (natural, alarm_name,

Talarm_status, temporal_tag, ack_rule);
alarm_ack (natural, alarm_name);
GPDB_change_AM_status (natural, AM_status_name);
IMS_change_AM_status (natural, AM_status_name);

state Items
status (AMstatus_name);
alarm_ack_rule (alarm_name, ack_rule);
alarm_enabled (alarm_name);

axioms
/* ... axiom definitions */

end MeasChanAlarmMgr

This is a typical TRIO class definition: Its name is MeasChanAlarmMgr and
3IMS is exhaustively presented in the next chapter and its complete definition is reported in

Appendix B.

32 CHAPTER 4. FROM TRIO TO TC

it inherits from the two classes IDTypes and VarTypes. After that there is a list
of the visible (exported) logic items; the temporal domain definition (real, i.e.

�
in this case); the Time Independent logic items; event and state items, whose

semantics is presented later in this section; the last part contains the axioms’
defintions.

Consider now the following class definition:

Class IMSApplication

temporal domain real

modules
MeasChanAlarmMgrs : array [TmeasuringChannelID]

of MeasChanAlarmMgr;
/* ... other modules’ definitions ... */

connections
(connect MeasChanAlarmMgrs, IMS)
(connect MeasChanAlarmMgrs, GPDB)
/* ... */

end IMSApplication

Class IMSApplication contains an array of modules, all instances of class
MeasChanAlarmMgr. Moreover it contains connections. A connection typically
has the following syntax:

(connect classA.itemX, classB.itemY);
(connect classC, classD);

The first connection denotes the identity between items belonging to differ-
ent classes; the second type of connection states the identity between homony-
mous elements of different classes. In our example, e.g. the first connection
states that the items defined in MeasChanAlarmMgrs are equal those defined
in IMS (whose class definition is not reported here) with the same name.

4.2.2 Graphic Notation

TRIO is also endowed with a graphic representation in terms of boxes, lines,
and connections to depict class instances and their components, information
exchange, and logical equivalence among (parts of) objects.

For example, in Figure 4.4 plain lines represent logical items
(is alarm), lines with an ending dot are events (alarm notify, alarm ack,
GPDB change AM status, IMS change AM status) and bold lines represent
states (status, alarm ack rule, alarm enabled).

The plain box represents an object of class IMSApplication (the name of the
object is always in the upper left part of the box), while the stacked box is used

4.2. TRIO IN-THE-LARGE 33

MeasChanAlarmMgrs

status

is_alarm

alarm_enabled

alarm_ack_rule

IMSApplication

GPDB_change_AM_status

alarm_ack

IMS_change_AM_status

alarm_notify

Figure 4.4: An overview of TRIO graphic symbols

for an array of objects of class MeasChanAlarmMgrs. Moreover this array is a
module of IMSApplication, because is represented inside it. Lines going outside
a box represent visible items.

4.2.3 Events and States

Other useful TRIO characteristics are the so-called ontological constructs, which
support the natural tendency to describe systems in a more operational way.
Events and states are somehow the most extensively used of these constructs,
therefore their definitions are reported here.

An event is a point-based predicate that is supposed to model instantaneous
conditions such as a change of state or the occurrence of an external stimulus.

event items
an_event;

The standard semantics associated to this definition is obtained by implic-
itly adding the following axiom:

�
� ��� � � � � ��� ��� � �!� � � � � ��� � � �
	 � � �!�#" � � � � � ��� � � �
	
	

A state is a interval-based predicate representing a property of a system.
A state may have a duration over a time interval; changes of state may be
associated with suitable pre-defined events and conditions.

34 CHAPTER 4. FROM TRIO TO TC

state items
a_state;

Its standard semantics is given by the following two axioms:

� � � � � � � � ��� ��� � �!� � � � � � � � 	 � � �!�#" � � � � � � � � 	
	
� � � � � � � � � ��� ��� � �!� � � � � � � � � 	 � � �!�#" � � � � � � � � � 	
	

4.3 TRIO meets CORBA

The TRIO/CORBA (TC) language enriches TRIO with the typical elements of
CORBA that allow one to refine a TRIO functional specification by introducing
architectural elements. TC has the formal rigor of TRIO, but is suitable for
describing the high level design of an application. Thus, it allows designers
to define the behavior of the objects composing an architecture and the way
in which they interact. This section sketches the main features of TC, while a
complete description of the TC language can be found in Appendix A.

TC introduces all CORBA basic concepts such as operations, attributes, ex-
ceptions, interfaces, application objects, while complex concepts (services, frame-
works) are built from such basic elements. These concepts are formalized by
means of TRIO axioms whose aim is to describe the low-level aspects defining
the behavior of any CORBA-based system. As a consequence, the designer can
focus on (higher-level) user-defined requirements.

In order to formalize such concepts TC defines four different meta-classes,
some of which aim at capturing the intrinsic semantics of CORBA basic con-
cepts. The meta-classes are: TRIO, Application Object, Interface, and Environ-
ment. Interface and Application Object meta-classes model IDL interfaces and
CORBA application objects respectively; TRIO meta-class models the usual
TRIO classes; finally Environment meta-class is used to structure the descrip-
tion of an architecture in terms of the above mentioned meta-classes. The fol-
lowing convention is adopted: Application Object denotes the name of the cor-
responding TC meta-class while Application Object Class C4 denotes a class
named C instance of the meta-class Application Object. For the sake of read-
ability, whenever no ambiguity can arise we refer to an Application Object
Class C as Application Object C. Figure 4.5 shows the relationships allowed
among instances of the meta-classes in terms of inheritance and inclusion.

In what follows a short discussion of the main features of the different TC
meta-classes is provided.

4The reader should not be confused by the term Application Object Class. In fact the term
Application Object comes from CORBA jargon where a run-time view is adopted, and denotes
the objects accessible from the ORB. This paper, instead, discusses design issues and thus refers to
classes rather than objects. As a consequence an Application Object Class is a class whose instances
are application objects in CORBA sense.

4.3. TRIO MEETS CORBA 35

Environment

TRIOApplication Object

Interface
can inherit from

can contain

Figure 4.5: The relationships among TC meta-classes

status

is_alarm

alarm_enabled

alarm_ack_rule

MCAlarmGenerators

ODAlarmModule::State

IMSApplication

set_current_status

raise_alarm

Figure 4.6: TC graphic notation

36 CHAPTER 4. FROM TRIO TO TC

4.3.1 Application Object

All classes that are instances of the meta-class Application Object share a set
of properties (expressed by means of axioms) whose aim is to formalize the
features of CORBA application objects.

For example, all instances of Application Object have an item � � that is
used to uniquely identify every instance of an Application Object class

TI items
value _id : OID

OID is a TC basic type representing the set of all possible identifiers that
can be assigned to an instance of an Application Object class.

As a second example let us consider operations. In TC the i-th invocation
of an operation " � � ��� ����� � ��� 	 is represented by the TRIO event " � � ��	 � � � � � � � ,
while the event " � � ��	 � � � �	��� � denotes the termination of the i-th invocation of
operation " � and " � � ��	 � ��� � �
	 � 	 � , denotes the value of the parameter���

. Since an operation returns only if it was previously invoked, the following
axiom is defined for Application Object5:

" � � ��	 � � � �	��� � � ��
�
 � " � � ��	 � � � � � � � 	
Notice that each Application Object class can introduce a set of items and

axioms to define the specific semantics of the CORBA application objects that
one wants to model.

An example of a graphic representation of an Application Object class is
provided in Figure 4.6. MCAlarmGenerators is an Application Object class, be-
cause provides one operation, set current status, by means of the standard OD
interface ODAlarmModule::State, and uses the operation raise alarm, provided
by some other Application Object class, not shown in the figure.

4.3.2 Interface

CORBA application objects implement IDL interfaces and thus, all operations
and attributes exported by an object are defined in its interface. As a conse-
quence, all CORBA application objects implementing the same IDL interface
export the same operations/attributes.

In TC, IDL interfaces are modeled by the meta-class Interface. Thus, a
CORBA application object implementing a CORBA IDL interface is modeled
by an Application Object class inheriting from an Interface class modeling the
latter. In this way different Application Object classes might be designed to
provide different semantics to the same Interface class, according to the defini-
tion of CORBA IDL interface.

5Free occurrences of variables are implicitly assumed to be universally quantified.

4.3. TRIO MEETS CORBA 37

An Interface class IF contains only the signature of the opera-
tions/attributes declared therein, i.e. no axioms are defined. Their semantics
is defined in the Application Object class inheriting from IF. Finally, all opera-
tions/attributes of an Interface class are visible to outer classes.

Notice that Application Object classes are not required to inherit from an
Interface class while every CORBA application object must implement an IDL
interface. The main consequence of this being that Application Objects classes
can be used to model either CORBA application objects or plain objects inter-
acting with a CORBA application object. Thus, according to CORBA jargon
an Application Object class can model either server objects or client objects.
The main reason for this is that both servers and clients have the same under-
lying semantics differing only for the way in which invocations may occur at
run-time (servers are invoked while clients do invoke).

A graphic representation of an Interface class is provided in Figure 4.6:
ODAlarmModule::State is a standard OD interface. TC Iterfaces are depicted
as boxes lying on the border of the application objects that implement them.

4.3.3 TRIO

TRIO classes are used to model entities that do not correspond to CORBA ap-
plication objects nor to CORBA clients. For example, a TRIO class could be
used to model some physical device such a sensor not connected to an ORB,
or possibly a human operator. The syntax and the properties of TRIO classes
correspond to those of typical TRIO classes. Thus, TRIO classes can contain,
and/or inherit from other TRIO classes, while they can neither contain nor in-
herit from any instance of other TC meta-classes.

4.3.4 Environment

An Environment class is very similar to a TRIO class, except for the fact that
it can include classes of any type. In Figure 4.6, IMSApplication is an Environ-
ment class. Environment classes are meant to describe how the other classes
composing a system interact. For instance, requirements involving operations
belonging to different Application Object classes are stated by means of axioms
in an Environment class.

In the next chapter we will see a more specific description of the TC con-
cepts through the presentation of the TC methodology.

38 CHAPTER 4. FROM TRIO TO TC

Chapter 5

The TC Methodology

This chapter presents the TC methodology for transforming a TRIO specifica-
tion into TC, thus gaining the architectural CORBA-based design of the appli-
cation. This methodology was initially stated in [47]; a slightly improved and
modified version was presented in [15].

The following five steps represent the core of the methodology:

� Step 1: identification of data flows between the specification classes.
� Step 2: identification of client-server relationships between classes.
� Step 3: identification of interfaces and application objects.
� Step 4: identification of the semantics of operations and attributes.
� Step 5: identification of services and frameworks.

At the end of Step 5 we obtain a detailed description of the architecture of
the application and of the structure of the TC classes. Using these two descrip-
tions, we can derive the actual TC specification.

The steps are presented as if they were meant to be executed sequentially.
However, it is useful to know that they are not completely independent and
that, in practice, mutual feedbacks among the various phases are unavoidable
according to the philosophy of the spiral approach [4].

The different phases of the TC methodology are presented through a run-
ning example, an application used as test case for the OD platform during the
OD-II project. This application is a maintenance system for the instrumentation
of a power plant - called IMS - and is described by ENEL, the Italian Agency
of Energy, in [42]. A different, non-critical application of the TC methodology
can be found in [34].

This chapter is organized as follows: Section 5.1 introduces the ENEL test
case; Section 5.2 briefly discusses how the fact of knowing the goal of the trans-
formation process may impact on the way the original TRIO specification is

39

40 CHAPTER 5. THE TC METHODOLOGY

Devices

Field-bus communication

Human communication

Alarm Manager IMS

Control System

Global Plant DB

HMI

ORB-based communication

Figure 5.1: The Maintenance System

written; Section 5.3 describes the steps of the methodology; Section 5.4 presents
briefly how the TC specification of the test case application was obtained from
the outcome of the transformations performed using the methodology steps.

Appendices B and C contain respectively the complete TRIO and TC speci-
fications of the IMS application.

5.1 A Running Example

The Instrumentation and Maintenance System (IMS) is a subsystem in charge
of monitoring the state of the devices (transducers, actuators) that compose a
plant, and notify the operator about possible malfunctions.

Figure 5.1 shows the main structure of the system. The core of the system is
the Instrumentation Maintenance System (IMS), which is in charge of collecting
and validating data (i.e., measures) coming from the field devices. Devices can
be single, or grouped together in a channel to give redundant measurements of
the same quantity. By measuring channel we mean either a single device or a
channel. IMS deals mainly with measuring channels.

Whenever the validation process detects an anomaly in the behavior of such
devices, the IMS sends an alarm to the Alarm Manager, which in turn notifies a
human operator by means of a Human-Machine Interface (HMI).

The IMS does not communicate directly with the field devices: all the data

5.1. A RUNNING EXAMPLE 41

collected by these devices are stored in a database named Global Plant DataBase
(GPDB), using a field-bus1. Thus, the IMS queries the GPDB to obtain the de-
sired data. Using the same communication mechanism the IMS can also send
commands to these devices or can make a device perform a self-test to verify
its correct functioning. However, before sending a command, the IMS must
get from the Control System the rights to access such device. After having com-
pleted the desired operations, the IMS notifies the Control System, which in
turn releases the device.

Let us now consider the TRIO specification of the system, represented
in Figure 5.2. The GPDB retrieves data from the devices, then (items mea-
sure, status and detailed status), and sends them to the IMS (measure info,
chan status, chan detailed status, plus calib info, which represents the cali-
bration parameters of a device). Measurement data are exchanged between
the IMS and the GPDB either when the IMS asks a device to perform a test
(test request and test end), or when the IMS cyclically acquires data from the
devices (cyclic acq), or when the GPDB notifies the IMS about the abnormal
variation of a measured quantity (on variation acq). Furthermore, the IMS can
send commands (through the GPDB) to the devices (command send).

To send commands (including test commands) to the devices, the IMS must
have the access rights on them; the IMS can obtain the access rights through a
request (access request) to the Control System (CS); the CS can either grant
the IMS the rights (access granted) or refuse them (access denied); if the IMS
does not receive any answer from the CS within a minute from the request, it
aborts the access rights’ request (access abort). When it needs not managing
the devices any more, the IMS returns the access rights to the CS (access yield).

After having received measurement data from a measuring channel, the
IMS validates them and checks the status of the measuring channel; if the
measuring channel is malfunctioning, an alarm is raised. Alarms are not noti-
fied to the operator directly by the IMS, but through some objects represented
by array MeasChanAlarmMgrs. Each element of array MeasChanAlarmM-
grs corresponds to a measuring channel; MeasChanAlarmMgrs interact with
the IMS to keep track of the status of the measuring channels. After having
validated the data received from a measuring channel, the IMS notifies the
corresponding MeasChanAlarmMgr about the state of the measuring channel
(IMS change AM status). If the device is malfunctioning, MeasChanAlarm-
Mgr notifies it (alarm notify) to the Human Machine Interface (HMI); to model
the delay between the moment when an alarm is raised and the moment
when it is received by the HMI, a communication channel (AlarmChannel) has
been introduced. If the type of alarm requires it, the HMI acknowledge the
reception of the alarm (alarm ack). In case the monitored measuring chan-
nel is intelligent and performs some self-check, the GPDB can also notify
(GPDB AM status change) MeasChanAlarmMgrs about a state change (pos-
sibly a malfunctioning).

1A field-bus is a typical SCS digital channel used to connect sensors and other equipments to
computers [22].

42 CHAPTER 5. THE TC METHODOLOGY

IMSApplication

ControlSystem

IMS GPDB

MeasuringChannels

MeasChanAlarmMgrs

AlarmChannel

HMI

chan_status

chan_detailed_status

measure_info

calib_info

dev_calib

MC_measure

dev_component

measure_of_test

test_request

test_end

command_send

cyclic_acq

on_variation_acq

validating

access_avail

access_request

access_granted

access_denied

abort_request

access_yield

IMS_change_AM_status

alarm_ack_rule

alarm_enabled

is_alarm

status

alarm_notify

alarm_ack

GPDB_change_AM_status

alarm_deliver

to_be_acknowledged

measure

status

detailed_status

is_component

Figure 5.2: The MS Specification

5.2. STARTING POINT: THE TRIO SPECIFICATION 43

Figure 5.3: Example of Framework-oriented TRIO Specification

As far as performances are concerned, during cyclic data acquisition the
IMS must poll fifty data in three seconds; furthermore, when it becomes active,
an alarm must be notified to the operator within one second. As a matter of
fact, the interpretation that has been given to the latter constraint is the follow-
ing: when an alarm is sent to the HMI, it must be received within one second
from the shipment.

5.2 Starting Point: the TRIO Specification

The TC methodology has been designed to introduce typical CORBA elements
in a TRIO specification in a stepwise fashion. Nevertheless, a TRIO specifica-
tion that is written keeping in mind the ultimate target of the design process
(i.e. an application based on the OD platform) will naturally ease the task of
deriving the OD architecture. In particular, the designer should be aware from
the beginning of the OD frameworks that (s)he might use. In fact, some frame-
works have a great impact on the architecture of the application and, if the
designer does not take them into account from the start, (s)he might encounter
the need of a nontrivial reshaping of the original TRIO specification.

For example, the IMS generates alarms for the HMI, so we might want to
use ADM (presented in Chapter 3). In ADM, alarms are associated with the
state transitions of an object, which inherits from interface State.

In the IMS example, the state transitions that generate alarms are those of
the measuring channels, rather than those of the IMS application (even though
usually it is the IMS which determines when a measuring channel goes in a
new state). As a consequence, a scheme, like the one in Figure 5.3 (which is
the reproduction of a part of the diagram of Figure 5.2), where there are many
objects in charge of raising alarms, is better suited for the introduction of ADM
than the scheme in Figure 5.4, where there is a centralized alarm manager in
charge of raising alarms.

Since we are planning to use ADM, we are aware of the fact that alarms
are dispatched using OD EMM (see Chapter 3). EMM is not to be considered

44 CHAPTER 5. THE TC METHODOLOGY

Figure 5.4: Example of Non-framework-oriented TRIO Specification

Figure 5.5: Dispatching of the Alarms

architecture-impacting, even if it introduces some objects (like the notification
channels, for example). In fact, these objects are directly offered by the frame-
work, and need not be implemented by the application. Nevertheless, there
is a constraint on the maximum delay (one second) with which the notifica-
tion of the alarm reaches the HMI. As a result, we decided to model explicitly
the dispatching of an alarm through the notification channel, and insert an in-
termediate class, which lies between the alarm generators and the HMI. The
resulting piece of diagram is reported in Figure 5.5.

5.2.1 Preliminary Phase: Recognition of Architecture-
Impacting Characteristics

Architecture-impacting frameworks are such, because they embrace various
application objects which must be programmed by the application developer;
these application objects usually have to inherit well-defined interfaces, which,
in general, are not the same for all objects. As a consequence, it is useful to
mark these “sources” of architecure-shaping concepts.

5.3. FIVE STEPS TOWARDS THE DESIGN 45

The graphic notation used to group together these classes is the same one
through which packages are denoted in UML (the package is named after the
framework it represents). However, encircling classes with such package does
not enforce specific properties on them, even if these classes are very likely to
inherit some interface defined by the framework. The main purpose of this
notation is purely to highlight these parts. For example, in the IMS case, as
explained in section 6.3, we want to use ADM, so we draw a package around
the classes it embraces (see Figure 5.6).

Highlighting architecture-impacting frameworks may greatly help the de-
signer taking the appropriate decisions during the steps of the methodology.
For example, knowing that a portion of the application makes use of some
architecture-impacting framework, the application designer could be lead to
assign client-server relationships according to the pattern that best fits the
structure of the framework.

5.3 Five Steps towards the Design

5.3.1 Step 1: Data Flows

This step aims at identifying explicit information exchanges among the classes
identified in the specification. These exchanges are called data flows and are
a first step to move from the concept of shared logical items (predicates, func-
tions, etc) - typical of TRIO classes - towards the concept of exported operations
- typical of CORBA.

A data flow can be viewed as a complex merge of TRIO items. These items,
according to a criterion that is almost impossible to define formally, can be seen
as part of either an operation, or an attribute.

It must be noted that it is possible to have logical items not easily fitting to
any data flow. These should be maintained in their original form.

Application Object classes originate from the classes that are touched by at
least one data flow. In fact, it is possible that not all classes of a TRIO class
diagram represent application objects: some of them might represent physical
devices (for example, sensors), that could possibly interact with application
objects, but not by means of operations and attributes. On the other hand, data
flows are meant to be transformed in operations and attributes, so, in case of
classes that represent things other than application objects, there is no need to
identify them.

After having recognized data flows, the number of lines between TRIO
classes decreases; the direction of the data flow is marked on the resulting lines
(however, this does not imply any client-server relationships between classes,
yet). Quite naturally, flows can be unidirectional or bidirectional.

Every data flow must be associated with a name, which is written above the
corresponding line of the diagram; duplicated names are allowed only between

46 CHAPTER 5. THE TC METHODOLOGY

IMSApplication

ControlSystem

IMS GPDB

MeasuringChannels

MeasChanAlarmMgrs

AlarmChannel

HMI

chan_status

chan_detailed_status

measure_info

calib_info

dev_calib

MC_measure

dev_component

measure_of_test

test_request

test_end

command_send

cyclic_acq

on_variation_acq

validating

access_avail

access_request

access_granted

access_denied

abort_request

access_yield

alarm_ack_rule

alarm_enabled

is_alarm

status

alarm_notify

GPDB_change_AM_status

alarm_deliver

to_be_acknowledged

measure

status

detailed_status

is_component

IMS_change_AM_status

alarm_ack

Anomalies Detection Module

Figure 5.6: The “architecture-impacting aware” Specification

5.3. FIVE STEPS TOWARDS THE DESIGN 47

different pairs of classes.

An item that links two TRIO classes can appear in more than one flow. This
is typical, e.g., of predicates representing error conditions.

Let us consider the IMS example: The result of the first step is shown in
Figure 5.7. Notice how, while all the TRIO items that link classes IMS and
ControlSystem are transformed in data flows, some of the items between IMS
and GPDB do not belong to any flow; furthermore, classes GPDB and Measur-
ingChannels are not connected by any data flows (the three states status mea-
sure and detailed status do not become an operation, nor an attribute, GPDB
and MeasuringChannels because do not use the ORB to exchange information
- but the field-bus).

As Figure 5.7 shows, arrows must be drawn in the middle of the line rep-
resenting the data flow, not at its ends (arrows at the end of a line imply a
client-server relationship between classes, considered in Step 2).

In addition to the new class diagram, a textual description of how the items
are grouped into data flows must be written. This description is a collection of
declarations of connections, whose complete syntax is shown in Appendix A.
For example, the declaration of the connection between classes IMS and GPDB
is the following:

Connection between IMS and GPDB
Dataflows

request_test (from test_request,
to test_end,
to chan_status,
to chan_detailed_status,
to measure_info);

command_send (from command_send);
cyclic_acq (from cyclic_acq,

to chan_status,
to chan_detailed_status,
to measure_info);

on_variation_acq (to on_variation_acq,
to chan_status,
to chan_detailed_status,
to measure_info,
to calib_info);

Shared Items
dev_calib, MC_measure, dev_component, measure_of_test

end

When describing the direction of the information associated with the items
composing a data flow, from and to refer to the first class in the Connection
between clause: in the foregoing example, from means from IMS to GPDB, and
to from GPDB to IMS. Section Shared Items is used to declare which items are
not involved in any data flows. Notice how in the connection between IMS and
GPDB some items (e.g. chan status) belong to more than one data flow.

48 CHAPTER 5. THE TC METHODOLOGY

IMSApplication

ControlSystem

IMS GPDB

MeasuringChannels

MeasChanAlarmMgrs

AlarmChannel

HMI

dev_calib

MC_measure

dev_component

measure_of_test

validating

access_avail

alarm_ack_rule

alarm_enabled

is_alarm

status

alarm_notify

GPDB_change_AM_status

alarm_deliver

to_be_acknowledged

measure

status

detailed_status

is_component

IMS_change_AM_status

alarm_ack

request_access

abort_request

access_yield

request_test

cyclic_acq

command_send

on_variation_acq

Step 1

Anomalies Detection Module

Figure 5.7: The IMS Diagram after the Step 1 of the Methodology

Figure 5.8: Example of connected TRIO items with different names

5.3. FIVE STEPS TOWARDS THE DESIGN 49

Figure 5.9: TRIO diagram with items shared by more than two classes

Figure 5.10: Data flow involving more than two classes

The names of the TRIO items in a data flow declaration can be either sim-
ple, or completed with the name of the class to which they belong, using dot
notation. The full name must be used in case the item is called differently in
the two classes that it connects. For example, if item command send had dif-
ferent names in classes IMS and GPDB (as illustrated in Figure 5.8), then the
declaration of the corresponding data flow should be modified as follows:

Connection between IMS and GPDB
Dataflows

command_send (from IMS.command_send);
/* ... unchanged ... */
end

Since it is possible in TRIO that more than two items (belonging to different
classes) are connected together, then it is also possible that data flows and con-
nections concern more that two classes. Imagine, for example, that an alarm is
delivered to both the HMI and some other class in charge of statistic analysis
of alarms (as illustrated in Figure 5.9). The corresponding data flow touches all
three classes, as shown in Figure 5.10.

In this case, the source of the flow must be unique. The description of the
multiple connection of Figure 5.10 is the following:

Connection between MeasChanAlarmMgrs and StatAnalyzer, HMI
Dataflows

alarm_notify (from alarm_notify);
end

50 CHAPTER 5. THE TC METHODOLOGY

The source of a multiple connection (MeasChanAlarmMgrs in the previ-
ous example) must be declared before destination classes in the Connection
between clause. Only the items that connect exactly the same classes can be
grouped together in a data flow, so the items alarm notify and alarm ack of
Figure 5.9 cannot belong to the same data flow.

During the next steps, data flows connecting more than two classes become
multicasts.

5.3.2 Step 2: Clients and Servers

In the present step, every data flow must be categorized as operation, attribute,
or multicast. E.g., for each operation one has to choose which class exports it
(server) and which classes invoke it (clients); moreover for each attribute one
has to choose which class declares it and which classes access it.

Substep 2.1: Operations, Attributes and Multicasts

Every data flow must be characterized either as an operation or as an attribute,
or as a multicast; graphically, operations and multicasts are represented by thin
lines, while attributes are bold lines.

Data flows involving more that two classes are by definition multicasts.
Since the concept of multicast is not included in IDL, but is implemented using
services, a multicast have to be identified with some service during Step 5.

At the end of this substep the flow diagram describes which flows are op-
erations, which ones are attributes and which ones are multicasts.

In our IMS example, all data flows are identified as operations.

Substep 2.2: Identification of Client-Server Relationships

During this substep the designer must decide, for every operation/attribute,
which class is the client and which one is the server. Quite naturally, for mul-
ticast the client and server roles have already been chosen in Step 1: there is
only one client, which is the source of the data flow underlying the multicast,
and there are more than one servers, which are the destinations of the data
flow. Graphically, for every line representing a data flow in the flow diagram,
an arrow is drawn on the end that touches the client class; in addition, a black
square is drawn on the server ends of every multicast.

At this point, it is possible - and often convenient - to rename the data flows.
When a flow is renamed, its textual description must be completed with some
information about the renaming; for example, if we rename dataflow com-
mand send between IMS and GPDB in command, we must write:

Connection between IMS and GPDB

5.3. FIVE STEPS TOWARDS THE DESIGN 51

Dataflows
command (from command_send) was command_send;

/* ... */
end

Notice that in the textual description there is no distinction between oper-
ations, attributes and multicasts, yet: at this stage this information is still only
at graphical level.

All elements (operations, attributes, multicasts) exported by a class (i.e. all
elements for which the class is the server) must have different names; in-
stead, two (or more) imported elements (those for which the class is the client)
can share the same name. An imported element and an exported one can be
homonymous.

The result of the transformations performed during step 2.2 on the IMS ex-
ample is shown in Figure 5.11. Notice how some data flows have been renamed
to seize better their nature. For example, data flow cyclic acq between IMS
and GPDB is now an operation, exported by GPDB, called get measure; fur-
thermore, data flows alarm notify (between MeasChanAlarmMgrs and Alarm-
Channel) and alarm deliver (between AlarmChannel and HMI) now share the
same name, raise alarm, since their nature is in fact the same (AlarmChan-
nel dispatches alarms to HMI using the same mechanism through which
MeasChanAlarmMgrs send alarms to AlarmChannel itself). As a result, the
declaration of the corresponding connections is modified as follows:

Connection between IMS and GPDB
Dataflows

get_measure (from cyclic_acq,
to chan_status,
to chan_detailed_status,
to measure_info) was cyclic_acq;

/* ... */
end

Connection between MeasChanAlarmMgrs and AlarmChannel
Dataflows

raise_alarm (from alarm_notify) was alarm_notify;
end

Connection between AlarmChannel and HMI
Dataflows

raise_alarm (from alarm_deliver) was alarm_deliver;
end

5.3.3 Step 3: Interfaces and Application Objects

This step aims at identifying all CORBA application objects that will be imple-
mented in the system, i.e. objects direcly accessing the ORB. The identification

52 CHAPTER 5. THE TC METHODOLOGY

IMS GPDB

MeasuringChannels

MeasChanAlarmMgrs

ControlSystem request_access

abort_request_access

access_yield

measure

status

detailed_status

command

get_measure

variation

test

validating

access_avail

dev_component

dev_calib

MC_measure

measure_of_test

status

alarm_enabled

is_alarm

alarm_ack_rule

Step 2.2

alarm_ack_rule

HMI

AlarmChannel

raise_alarm

raise_alarm

acknowledge

GPDB_change_AM_status

to_be_acknowledeged

is_component

IMSApplication

IMS_change_AM_status

Anomalies Detection Module

Figure 5.11: IMS Diagram after Substep 2.2

5.3. FIVE STEPS TOWARDS THE DESIGN 53

Figure 5.12: Split

of such objects (and their interfaces) is based on the operations/attributes intro-
duced during the previous step. It is composed of three substeps: 1) Identifica-
tion of application objects; 2) Recognition of semantically identical operations,
attributes or multicasts; 3) Identification of interfaces.

Substep 3.1: Identification of Application Objects

During this substep, the TRIO classes which represent CORBA application ob-
jects are identified. A TRIO class represents an application object if and only if
it is touched by at least one data flow2. If necessary, TRIO classes can be split or
grouped together to form Application Object classes. Since these operations (es-
pecially the split) are performed through data flows, only the classes touched
by at least a data flow can be edited.

The Split operation

The split operation consists on partitioning some of the defined classes. Split is
based on attributes, operations and multicasts previously defined: They must
be assigned to exactly one of the new classes generated from the split (it cannot
be duplicated).

In addition to operations, attributes and multicasts, even the remaining
TRIO items should be partitioned among the new classes.

When a TRIO class is split, its axioms must be distributed among the new
classes originated from it. Distribution is made in accordance with how op-
erations, attributes, multicasts and other TRIO items are assigned to the new
classes: every new class gets all axioms that involve the TRIO items which
were assigned to it (for example because they are part of operations, attributes
or multicasts).

It is possible that when trying to assign an axiom of the original class to
one of the classes generated after the split, none of the them can contain it,
since it rules over items that are assigned to different classes; in this case the
axiom must be brought in an outer class, as illustrated in Figure 5.12. These
“bridge” axioms represent interactions between application objects, which are
not carried out through the ORB, but by means of some other technique.

2remind that in TC Application Object classes can represent object clients, too.

54 CHAPTER 5. THE TC METHODOLOGY

Figure 5.13: Merge of the destinations of a Multicast

The Group operation

Dual of the previous, the group operation consists on merging classes. When
some classes are grouped into a new class, quite naturally the latter gets all
operations, attributes etc. of the classes it is composed of; in addition, it also
gets all axioms of the original classes. Moreover, if there are bridge axioms (i.e.
axioms that rule on items that belong to the classes to be merged, but which
for some reason do not belong to any of them), they are also moved to the new
class. In fact, the existence of bridge axioms is often a good clue for a merge.

When the two classes contain items that share the same name, two differ-
ent behaviors could be followed. If the two items are identical (i.e. they also
share the same signature), then they are simply merged in the same item (the
designer should keep in mind that this could be source of inconsistencies be-
tween axioms coming from the different classes). On the other hand, if they
do not share the same signature, they have to be renamed (this can be simply
automated using for instance the name of the original classes).

Very natrually, the designer can use the group operation to avoid multi-
casts. In fact, if after a merge the total number of servers of a multicast shrinks
to one, then it becomes an operation. This is shown in Figure 5.13.

Declaration of the Application Object classes

After the rearrangement of the TRIO classes, all the classes touched by at least
one data flow represent a CORBA application object (i.e. are Application Object
classes). Since not necessarily all classes of the original TRIO diagram become
Application Object classes (some of them might represent physical devices, as
previously mentioned in Step 1), for each Application Object class, a textual
description of the elements (operations, attributes, multicasts and other TRIO
items) that belong to it must be written.

In our IMS example, we split array MeasChanAlarmMgrs in MCAlarmGen-
erators and AlarmObjs to take into account the fact that the acknowledgement
of an alarm is received by an object, which is not the same one that generates
it (following ADM definition). The new diagram after the split is illustrated in
Figure 5.14.

5.3. FIVE STEPS TOWARDS THE DESIGN 55

IMS GPDB

MeasuringChannels

MCAlarmGenerators

AlarmObjs

ControlSystem request_access

abort_request_access

access_yield

acknowledge

measure

status

detailed_status

command

get_measure

variation

test

validating

access_avail

dev_component

dev_calib

MC_measure

measure_of_test

GPDB_change_AM_status

status

alarm_enabled

is_alarm

alarm_ack_rule

Step 3.1

IMS_change_AM_status

HMI

AlarmChannel

raise_alarm

raise_alarm

to_be_acknowledeged

is_component

Anomalies Detection Module

IMSApplication

Figure 5.14: IMS Diagram after Substep 3.1

56 CHAPTER 5. THE TC METHODOLOGY

In our case the classes touched by data flows are all but MeasuringChan-
nels. The textual description of Application Object classes IMS, MCAlarmGen-
erators and AlarmObjects is the following:

ApplicationObjectClass IMS
TRIO items
validating, access_avail, dev_component,
measure_of_test, dev_calib, MC_measure

operations
test, command, get_measure, variation, IMS_change_AM_status,
request_access, abort_request_access, access_yield

end IMS

ApplicationObjectClass MCAlarmGenerators
derives from MeasChanAlarmMgrs
TRIO items
status, is_alarm, alarm_enabled, alarm_ack_rule

operations
raise_alarm, IMS_change_AM_status, GPDB_change_AM_status

end MCAlarmGenerators

ApplicationObjectClass AlarmObjs
derives from MeasChanAlarmMgrs
operations
acknowledge

end AlarmObjs

Often can be useful to rename some class to stress the fact that it now rep-
resents an application object. For example, is possible to rename class HMI to
HMIObj by using the following declaration:

ApplicationObjectClass IMSObj
was IMS

/* ... */
end IMSObj

It is possible that an Application Object class includes homonymous oper-
ations/attributes/multicasts. For example, in Application Object class Alarm-
Channel operation raise alarm appears twice. Independently of the fact that
the semantics of these homonymous elements is the same or not (both cases
may arise), we are confronted with the problem of uniquely identifying them
in Application Object classes. First of all, as previously mentioned, two ele-
ments exported by a class cannot share the same name. As a result, in a set
of homonymous elements there is at most one which is exported. To uniquely
identify homonymous elements, then, we prefix the name of the imported ones
with the name of the Application Object class from which they are imported; the
exported element, instead, is not prefixed. In consequence of this, the declara-
tion of Application Object class AlarmChannel is the following:

5.3. FIVE STEPS TOWARDS THE DESIGN 57

ApplicationObjectClass AlarmChannel
operations

raise_alarm, HMI.raise_alarm
end AlarmChannel

To complete this substep, the declaration of connections between TRIO
classes and the TRIO specification of the whole application must be modified.
As far as connections are concerned, MeasChanAlarmMgrs is simply replaced
by either MCAlarmGenerators or AlarmObjs, as shown below.

Connection between IMS and MCAlarmGenerators
Dataflows

IMS_change_AM_status (from IMS_change_AM_status);
end

Connection between GPDB and MCAlarmGenerators
Dataflows

GPDB_change_AM_status (from IMS_change_AM_status);
end

Connection between MCAlarmGenerators and AlarmChannel
Dataflows

raise_alarm (from alarm_notify) was alarm_notify;
end

Connection between AlarmObjs and HMI
Dataflows

acknowledge (to alarm_ack) was alarm_ack;
end

It is worth to note that, after this substep, the structure of the application
fits better to the structure of ADM, even if it is not exactly the same. Actually,
in ADM the object originating the alarm (i.e. the one that supports interface
State) is not the same one that raises it, since the latter action is performed by
an object which supports interface Alarm. Furthermore, the acknowledgement
is received by the object that raises it, that is, object Alarm. In our scheme,
alarm originators (i.e. classes MCAlarmGenerators) are also those which raise
the alarm, but the acknowledgment is received by classes AlarmObjs. Never-
theless, a deeper inspection shows that the differences between ADM mecha-
nisms and the mechanisms of this specification are quite limited. In fact, even
in the TRIO specification alarms are generated by state changes, because they
are originated by a change in state MCAlarmGenerators.status. As a result, the
TC specification, obtained at the end of the transformation, fits well enough the
ADM structure. At the same time it avoids all the low-level passages through
which an alarm is raised, after a state change in a object supporting interface
State.

58 CHAPTER 5. THE TC METHODOLOGY

Substep 3.2: Recognition of Identity among Operations, Attributes and Mul-
ticasts

During this step, if two (or more) operations or attributes exported by a server
object are recognized to have the same signature (i.e., if the underlying data
flows are composed of identical items) and semantics (defined by the axioms
ruling over the same items), then they can be merged. Similarly, if two (or
more) operations or attributes used by a client object are recognized to have
the same signature and semantics, they can be merged in the same element.

In the case of IMS, we recognize that operations IMS change AM status
and GPDB change AM status are equivalent on servers MCAlarmGenerators;
in fact, they only appear in one axiom, reported below:

Definition_of_state’status’_1:
Becomes (status(sn)) <->

ex i (IMS_change_AM_status(i, sn) |
GPDB_change_AM_status(i, sn))

& ˜status(sn)

The items IMS change AM status and GPDB change AM status play the
same role, so we can merge them in operation set current status (the name
of the new operation corresponds to one of the methods of interface State of
ADM on purpose). The result is shown in Figure 5.15.

Notice that, after Substep 3.3, on server objects StatusObjs and AlarmObjs
attribute active have to be exported by the same interface.

It is also possible to merge multicasts together: To be merged, two multi-
casts must not only have the same syntax and semantics, but also share exactly
the same destinations. For example, in Figure 5.16 multicasts M1 and M2 can
be merged together, but not with multicast M3.

When two (or more) operations or attributes are merged together, the Ap-
plication Object classes definition must be modified accordingly. In the IMS
case, the new description of Application Object classes IMS, GPDB and MCAlar-
mGenerators is the following:

ApplicationObjectClass IMS
TRIO items
validating, access_avail, dev_component,
measure_of_test, dev_calib, MC_measure

operations
test, command, get_measure, variation,
set_currrent_status (was IMS_change_AM_status),
request_access, abort_request_access, access_yield

end IMS

ApplicationObjectClass GPDB
TRIO items
dev_component, measure_of_test, dev_calib,

5.3. FIVE STEPS TOWARDS THE DESIGN 59

IMS GPDB

MeasuringChannels

MCAlarmGenerators

ControlSystem request_access

abort_request_access

access_yield

set_current_status

measure

status

detailed_status

command

get_measure

variation

test

validating

access_avail

dev_component

dev_calib

MC_measure

measure_of_test

status

alarm_enabled

is_alarm

alarm_ack_rule

Step 3.2

AlarmObjs
acknowledge

HMI

AlarmChannel

raise_alarm

raise_alarm

to_be_acknowledeged

is_component

Anomalies Detection Module

IMSApplication

Figure 5.15: IMS Diagram after Substep 3.2

60 CHAPTER 5. THE TC METHODOLOGY

Figure 5.16: Compatibility among Multicasts

MC_measure, measure, status, detailed_status
operations
test, command, get_measure, variation,
set_currrent_status (was GPDB_change_AM_status)

end GPDB

ApplicationObjectClass MCAlarmGenerators
derives from MeasChanAlarmMgrs
TRIO items
status, is_alarm, alarm_enabled, alarm_ack_rule

operations
raise_alarm,
set_current_status (merge of IMS_change_AM_status,

GPDB_change_AM_status)
end MCAlarmGenerators

Notice that operations IMS change AM status and GPDB change AM -
status have been merged together (through the merge of clause) in Applica-
tion Object classes MCAlarmGenerators, while they have only been renamed
(through the was clause) in objects IMS and GPDB.

Notice also that this substep allows the simple renaming of an oper-
ation/attribute/multicast, without need of a merge. Simple renaming is
achieved through the was clause.

Substep 3.3: Identification of Interfaces

Every Application Object class that is a server must support at least an inter-
face (remark: inherited interfaces). Every operation, attribute and multicast
exported by a server must belong to one and only one interface of the Applica-
tion Object class. Only servers can support interfaces.

From the graphical point of view, an interface is represented by a rectangle
drawn across the border of the Application Object class supporting it.

Figure 5.17 shows the interfaces assigned to objects in the IMS case. No-
tice that some objects support standard interfaces (for example application
objects MCAlarmGenerators support interface ODAlarmModule::State); notice

5.3. FIVE STEPS TOWARDS THE DESIGN 61

IMS

HMI

GPDB

MeasuringChannels
MCAlarmGenerators

ControlSystem

AccessRightManager

DeviceManager

DataReceiver

ODAlarmModule::State

request_access

abort_request_access

access_yield

set_current_status

raise_alarm

measure

status

detailed_status

command

get_measure

variation

test

validating

access_avail

dev_component

dev_calib

MC_measure

measure_of_test

status

alarm_enabled

to_be_acknowledeged

is_alarm

alarm_ack_rule

Step 3.3

AlarmObjs

acknowledge
ODAlarmModule::Alarm

AlarmReceiverraise_alarm

AlarmChannel

AlarmReceiver

is_component

Anomalies Detection Module

IMSApplication

Figure 5.17: IMS Diagram after Substep 3.3

also that not all methods exported by these standard interfaces have been
drawn on the diagram, but only those that are actually used by other objects in
this application.

Interfaces that share the same name must be identical: If, on the diagram,
two homonymous interfaces export different sets of operations/attributes,
then the TC specification defines an Interface class which exports the union
of the two sets of elements.

In case of an element with multiple servers (i.e. in case of a multicast or of
two operations/attributes merged on the client side), the element must be ex-
ported through the same interface on all servers. For example, both StatusObjs
and AlarmObjs export attribute active through the same interface, as shown in
Figure 5.18.

5.3.4 Step 4: Semantics of Operations and Attributes

This step focuses on the CORBA semantics of operations and attributes. In
fact, CORBA operations are usually synchronous (by default), but they can also
be declared as asynchronous or oneway. TC allows one to add the stereotypes (in
a UML fashion) � noblock � and � oneway � on operations’ names to specify

62 CHAPTER 5. THE TC METHODOLOGY

Figure 5.18: Interface Assignment after a Merge

their CORBA semantics. In an analogous way, attributes can be declared read-
only through the � readonly � stereotype.

During this step, each operation must be declared as blocking (syn-
chronous) or non blocking; Furthermore, for each attribute it must be decided
if it is readonly or not. On the class diagram with interfaces, the stereotype

� noblock � must be written next to the name of each non blocking operation,
while nothing is written next to the name of synchronous operations, consid-
ered the default chice. Analogously, readonly attributes are highlighted by
means of a � readonly � stereotype written next to their names. An operation
can be non-blocking only if the underlying data flow is unidirectional and the
server corresponds to the destination of the flow (recall that oneway operations
in IDL cannot return values and exceptions).

In the IMS case, as shown in Figure 5.19, operation access yield between
IMS and ControlSystem is marked � noblock � . In fact, it derives from a uni-
directional data flow (access yield, see Figure 5.7), and the server (ControlSys-
tem) is also the destination of the flow. As a result, it meets all the requisites
for being � noblock � .

5.3.5 Step 5: Services and Frameworks

As last step, the CORBA/OD services and frameworks can be introduced in
the architecture. There are many CORBA services and OD frameworks (intro-
duced in Chapter 3), so we focus only on some of them in this section.

The way to represent services on the diagram is strongly dependent on
the type of service. Before analyzing more in detail the different services and
frameworks, it is worth to remind how at the end of this step every multi-
cast must be identified with a service or with a framework. CORBA does not
include multicasts among its basic elements, so they must be obtained with
services. There might be different services that are suited for implementing

5.3. FIVE STEPS TOWARDS THE DESIGN 63

IMS

HMI

GPDB

MeasuringChannels

ControlSystem

AccessRightManager

DeviceManager

DataReceiver

ODAlarmModule::State

AlarmReceiver

request_access

abort_request_access

access_yield «noblock»

set_current_status

measure

status

detailed_status

command

get_measure

variation

test

validating

access_avail

dev_component

dev_calib

MC_measure

measure_of_test

status

alarm_enabled

to_be_acknowledeged

is_alarm

alarm_ack_rule

Step 4

AlarmObjs

acknowledge
ODAlarmModule::Alarm

raise_alarm

raise_alarm

AlarmChannel

AlarmReceiver

is_component

Anomalies Detection Module

MCAlarmGenerators

IMSApplication

Figure 5.19: IMS Diagram after Step 4

a multicast: One natural choice is the Event Service, since the supplier of an
event notifies through an event channel all interested consumers about an oc-
curring event.

Overview of the services and frameworks

The transformations performed during this step are mainly of two types: In-
troduction of stereotypes and introduction of standard objects (i.e., objects
which support standard interfaces and whose behavior is defined by the
service/framework). Non-standard objects, which interact with other ob-
jects through non-predefined mechanisms, must be considered architecture-
impacting, so they must be considered in the specification from the beginning.

Standard objects added during this step can only be servers of operations
and attributes, they cannot be clients of any class.

To avoid having to add too many lines on a diagram, it is possible to rep-
resent that a client uses all operations/attributes exported by a standard object
simply by drawing a unique, unnamed line, oriented from the server (i.e. the
standard object) towards the client.

The services and frameworks that we consider in this section are: CORBA
Event Service, OD EMM (together with OD ADM, which uses EMM for what
concerns alarm dispatching), OD OGS, CORBA Persistency Service, CORBA
Object Transaction Service, OD BPV module.

64 CHAPTER 5. THE TC METHODOLOGY

OD ADM and SPM must be considered architecture-impacting, so if an ap-
plication uses them, at this stage of the methodology they should have already
been introduced.

During the rest of this section, we keep as reference the diagram illustrated
in Figure 5.20, which represents the IMS application after step 5.

Event Service

Some operations or multicasts might be recognized to be events. To be an
event, an operation must necessarily be undirectional (i.e., the underlying data
flow must be unidirectional). Since multicasts are by definition unidirectional
they can always be events.

To introduce events in the application, we can use either a standard CORBA
Event Service, or OD EMM. Since these two event managers have different
capabilities3, OD events and standard CORBA events are marked in a different
way: An operation that is a standard CORBA event is marked either with the
stereotype � event � , or with the stereotype � untyped event � , while an OD
event uses the stereotype � OD event � .

Since OD EMM does not support the pull passing model, only operations
for which the source of the underlying data flow is also the client of the oper-
ation can be labeled as � OD event � , because this situation is easily mapped
into a push model. A multicast, on the other hand, satisfies the foregoing con-
ditions by definition, so it can always be identified with an OD event.

The CORBA typed Event Service is implemented through interfaces (ad-
dressed as I and Pull � I � interfaces in OMG specification), defined by the de-
signer, which group together the operations that correspond to events. These
I and Pull � I � interfaces include only typed events. For this reason, when some
operations of a server are recognized to be � event � (i.e. typed), they must be
grouped in one or more (possibly new) interfaces that include only � event �
operations.

Alarms of ADM are dispatched to receivers through a specific OD event,
named AlarmEvent. In consequence of this, it is possible to mark an
operation or a multicast as � AlarmEvent � . Naturally, an operation la-
beled � AlarmEvent � must respect all the rules that operations labeled

� OD event � must also follow.

When a class of the specification acts as event channel (or notification
channel, in the case of OD) it can be marked as such. When an Appli-
cation Object class plays the role of a CORBA event channel, stereotype

� EventChannel � should be written next to the name of the class; similarly,
stereotype � ODNotificationChannel � should be written next to the name
of an Application Object class that acts as OD notification channel. A class
marked � EventChannel � can import/export only operations or multicasts
marked to be either � event � , or � untyped event � . Similarly, a class marked

3OD EMM does not support typed events, nor the pull passing model between the supplier and
the consumer of an event; on the other hand, it has filtering capabilities that the standard CORBA
Event Service does not have.

5.3. FIVE STEPS TOWARDS THE DESIGN 65

IMS

IMSApplication

GPDB

MeasuringChannels

ControlSystem

AccessRightManager

DeviceManager

DataReceiver

ODAlarmModule::State

request_access

abort_request_access

access_yield «noblock»

set_current_status

measure

status

detailed_status

command

get_measure

variation «event»

test

validating

access_avail

dev_component

dev_calib

MC_measure

measure_of_test

status

alarm_enabled

is_alarm

alarm_ack_rule

Step 5

AlarmObjs

acknowledge
ODAlarmModule::Alarm

BPVFloatObjs

BPVModule::odFloat

HMI

to_be_acknowledeged

HMI

AlarmReceiver

raise_alarm

«AlarmEvent»

raise_alarm «AlarmEvent»

AlarmChannel
«ODNotificationChannel»

AlarmReceiver

is_component

Anomalies Detection Module

MCAlarmGenerators

Figure 5.20: IMS Diagram after Step 5

66 CHAPTER 5. THE TC METHODOLOGY

� ODNotificationChannel � can import/export only operations or multicasts
marked to be either � OD event � , or � AlarmEvent � . For example, class
AlarmChannel of the IMS specification is labeled � ODNotificationChannel �
(see Figure 5.20), and it imports/exports only operations marked as

� AlarmEvent � .

Replication and Persistency Service

Using replication or persistency services is quite straightforward: The de-
signer has just to tag the corresponding classes with the � replicated � or the

� persistent � stereotypes, respectively.

Object Transaction Service

When the CORBA Object Transaction Service (OTS) is going to be included in
the architecture of the application, three types of elements must be considered:
Operations that need to be invoked within the context of a transaction, transac-
tional objects and recoverable objects4.

There are operations that can be invoked either within the context of a trans-
action or not (their behavior might possibly change in the two different cases)
and operations that absolutely need to be used only during a transaction (this
is a designer’s choice): to mark that an operation need be invoked within a
transaction (otherwise it will raise a TRANSACTION REQUIRED standard ex-
ception), the stereotype � transactional � must be written next to its name.

To mark that an application object is a transactional/recoverable object, the
stereotype � transactionalobject � / � recoverableobject � must be written in
proximity of its name, respectively. Since a recoverable object is by definition
a transactional object, too, the � recoverableobject � stereotype is inclusive of
the � transactionalobject � stereotype, so the latter need not be repeated for a
recoverable object. Moreover, a transactional operation can only be exported
by a transactional object (possibly, by a recoverable object).

If resource objects need to be explicited in the specification, they must be
introduced from the beginning as normal TRIO classes (supporting CosTrans-
actions::Resource interface during Substep 3.3), since they must be considered
as non-standard objects (in fact they are user-programmed objects, and their
interaction with the corresponding recoverable objects is not defined by the
service).

Base Process Value Module

OD BPV module defines objects which represent physical values with prop-
erties (validity index, temporal tag, etc.). These objects are user-programmed,
but, in a specification in which they only act as BPV-interface supporter, they
can be considered as being non-architecture-impacting.

As a matter of fact, IMS specification meets the previous requirement: IMS

4According to the definition given by OMG a transactional object is “an object whose behavior is
affected by being invoked within the scope of a transaction”; on the other hand, a recoverable object
is “an object whose data is affected by committing or rolling back a transaction”. Furthermore, “a
recoverable object is by definition a transactional object” [37].

5.4. AXIOMATIC LABOR LIMÆ 67

and GPDB exchange complex information about the values measured by the
devices (they not only manage values, but also validity indexes and tempo-
ral tags, as it can be inferred from the signature of predicate measure info).
One way to represent this information could be through an ad-hoc structure
type. However, these values are very well represented by BPV objects, too, so
we chose to use these, instead of defining an apposite data type. Now these
are true CORBA application objects, so they must be represented on the dia-
gram, since GPDB and IMS must interact with them. Actually, GPDB must set,
through the set X methods offered by interface ’BPVModule::BpvProperties’,
the proper values in every BPV object, before passing its reference to IMS; IMS
on the other hand retrieves, through the get X methods of the aforementioned
interface, the data stored in the BPV objects by GPDB.

As Figure 5.20 shows, during step 5 we introduced in the diagram a new ar-
ray of Application Object classes, which support interface BPVModule::odFloat
(notice that, instead of drawing a line for each operation/attribute used on
the odFloat classes, the abbreviated form of a unique, unnamed line has been
used). These classes need not be defined in the original TRIO specification,
since their only role is to support the odFloat standard interface, but must be
included in the TC specification.

5.4 Axiomatic Labor Limæ

Summarizing, after the previous five Steps, we obtain:

� A class diagram describing the architecture of the application in terms of
CORBA elements (reported in Figure 5.20);

� A textual description of connections and Application Object classes;

� A new TRIO specification, automatically derived from the original one to
reflect the transformations performed during the previous steps.

Starting from these outputs, we now have to “tune up”, by means of the
TC language, the elements (operations, Application Object classes, etc.) that
compose the new description of the application, their semantics and how they
interact together to give the desired results.

Deriving the TC specification from the outputs listed above is not a sequen-
tial process: It cannot be strictly subdivided in steps, and, while defining a
component of the specification, we might realize that another component, pre-
viously defined, needs to be changed. However, we can identify two main mo-
ments parts of the class modification process: 1) definition of the signatures; 2)
definition of the axioms.

Since the sequence of the detailed operations performed to derive a TC
specification is very application-dependent, instead of trying to classify them,
we introduce them through our example: the rest of this section shows briefly

68 CHAPTER 5. THE TC METHODOLOGY

how the TC specification of the IMS application was derived from the descrip-
tion obtained after Step 5. First, in section 5.4.1, we introduce the signatures of
the TC classes; then, section 5.4.2 present some TC axioms. When possible, we
compare the TC definitions with the corresponding TRIO ones.

5.4.1 TC Classes’ Signatures

The signatures of the TC classes should (but need not) be written respecting
the following - often convenient - order:

1. Interface classes’ signatures;

2. TRIO classes’ signatures;

3. Application Object classes’ signatures;

4. Environment classes’ signatures.

Interface Classes’ Signatures

Interface classes are created using the operations/attributes/multicasts and
the underlying data flows as basis. They are not derived from TRIO classes:
in fact, they define the IDL elements corresponding to the original TRIO items.
By construction (see Appendix A), we can derive automatically the IDL inter-
faces of our application.

Interface classes which correspond to standard IDL interfaces (e.g., like
ODAlarmModule::State) need not be declared, since they are predefined.

Let us now consider some examples.

Interface Class AccessRightManager
operations

request_access
returns : boolean; /* TRUE if access is granted */

abort_request_access;
access_yield : noblock;

end AccessRightManager

This interface is used by Application Object class IMS to interact with
class ControlSystem. The boolean value returned by operation request access
plays the role of TRIO access granted and access denied events: When ac-
cess granted is true, request access ends succesfully (i.e. without excep-
tions) and returns TRUE; on the other end, when access denied is true re-
quest access still ends successfully, but returns FALSE.

Interface Class DeviceManager
type

5.4. AXIOMATIC LABOR LIMÆ 69

IMS GPDB

MeasuringChannels

ControlSystem

AccessRightManager

DeviceManager

DataReceiver

ODAlarmModule::State

request_access

abort_request_access

access_yield «noblock»

set_current_status

measure

status

detailed_status

command

get_measure

variation «event»

test

validating

access_avail

MC_address

variation_instant

dev_component

dev_calib

is_channel

is_single_device

is_dev_part

is_component

is_measuring_chan

MC_measure

measure_of_test

status

alarm_enabled

is_alarm

alarm_ack_rule

alarmObj_name AlarmObjs

acknowledge
ODAlarmModule::Alarm

BPVFloatObjs

BPVModule::odFloat

HMI

to_be_acknowledeged

HMI

AlarmReceiver

raise_alarm

«AlarmEvent»

raise_alarm «AlarmEvent»

AlarmChannel
«ODNotificationChannel»

AlarmReceiver

is_component

Anomalies Detection Module

MCAlarmGenerators

IMSApplication

Figure 5.21: The final IMS Diagram

70 CHAPTER 5. THE TC METHODOLOGY

devID = string;
calID = string;
dev_status = enum dev_s

{ok, degraded1, degraded2, out_of_order};
operating_mode = enum o_m

{ControlRemote, ControlLocal, MaintenanceRemote,
MaintenanceLocal, Commissioning}

dev_brief_status = struct dev_brief_st
{status : dev_status;
oper_mode : operating_mode;
acc_perm : string;
}

dev_detailed_status = array [] of struct comp_status
{component : devID;

status : dev_status;
};

measureSeq = array [] of BPVModule::odFloat;
calibration = struct cal {calibID : calID;

date : string;
zero_error : float;
span_error : float;
linear_eq : string;

};
calibrationSeq = array [] of calibration;

operations
test

parameters
in device : devID;

testID : string;
out brief_status : dev_brief_status;

detailed_status : dev_detailed_status;
measures : measureSeq;

command
parameters
in device : devID;

commandID : string;
get_measure

parameters
in device : devID;
out brief_status : dev_brief_status;

detailed_status : dev_detailed_status;
measures : measureSeq;

end DeviceManager

This interface describes part of the connection between GPDB and IMS (the
rest of the connection is covered by interface DataReceiver). States chan status,
chan detailed status, measure info and calib info, in the TRIO specification,
represent the data exchanged on tests and measure acquisitions (as it can
be inferred from the flow descriptions of step 1). Because their flow goes
from the server to the client, they are translated in output parameters of type
struct or array of struct. The composition of these structures has been di-

5.4. AXIOMATIC LABOR LIMÆ 71

rectly inferred from the signature of the corresponding state. For example,
both the struct type dev detailed status and the corresponding TRIO state item
chan detailed status associate every component of a device with information
about its state. Instead of defining a similar ad-hoc structure for representing
the data associated with a measure (value, validity index, etc.), odFloat stan-
dard objects (from OD BPV module) have been used, as decided during step
5.

Interface Class DataReceiver
operations

variation
parameters
in device : DeviceManager::devID;

brief_status : DeviceManager::dev_brief_status;
detailed_status : DeviceManager::dev_detailed_status;
measures : DeviceManager::measureSeq;
calibrations : DeviceManager::calibrationSeq;

end DataReceiver

This interface describes the second part of the connection between IMS and
GPDB. Operation variation is much alike the operations defined in interface
DeviceManager: It uses the data types defined the latter class. Notice that,
during step 5, operation variation was recognized to be a typed event.

Interface Class AlarmReceiver
type

alarm_status = enum al_s {on, off};
operations

raise_alarm
parameters
in source : ODAlarmModule::Alarm;

alarmName : string;
alarmStatus : alarm_status;
timetag : string;
ack_rule : ODAlarmModule::AckRule;

end AlarmReceiver

This interface describes the connections between MCAlarmGenerators and
AlarmChannel, and also between AlarmChannel and HMI. The parameters of
operation raise alarm have been derived from the parameters of the item
(alarm notify. The signature of this item is similar to alarm deliver), that com-
poses the underlying data flow. Since the alarm might need to be acknowl-
edged, the reference of the Alarm objec must be included in the input parame-
ters.

Operation raise alarm is implemented through OD EMM, which does not
support typed events, so at implementation stage this interface should be re-
placed by the standard EMM Push interface. Nevertheless, at this stage, in-
terface AlarmReceiver is introduced to avoid entering the low-level details of

72 CHAPTER 5. THE TC METHODOLOGY

event passing (such as filling event-representing StructuredEvent structures,
etc.)

TRIO Classes’ Signatures

TC TRIO classes are usually maintain their original TRIO definition, with slight
modifications. In the IMS case, all modifications concern type changes needed
to better fit the definitions of Interface classes.

TRIO Class IDTypes
type

TdevID = string;
TmeasuringChanID = [1..D]

/* %%% Old TRIO version %%%
TchannelID = [1..C];
TsingleDevID = [C+1..D];
TcomponentDevID = [D+1..P];
TdevPartID = [P+1..N];
TmeasuringChanID = TchannelID Union TsingleDevID;
TdevID = TsingleDevID Union TcomponentDevID;
TcomponentID = TcomponentDevID Union TdevPartID;
TallDevID = TchannelID Union TsingleDevID Union

TcomponentDevID Union TdevPartID;
%%% ---------------- %%% */
TmeasureID = string;
TcalibID = string;

end IDTypes

Class IDTypes defines the logic types used by all other classes. In the orig-
inal TRIO specification, the different types of devices (measuring channels,
single devices, device components, etc.) were identified by a natural num-
ber, since this representation was better suited for TRIO constructs (for every
measuring channel, the identifier corresponded to the index of the channel in
array MeasuringChannels). However, interface class DeviceManager, for the
improving the resulting code quality, uses strings to identify devices (type de-
vID is a string). TRIO Class IDTypes reflects this change, and defines TdevID as
string, too. Type TmeasuringChanID remains a range over naturals because it
still represents the index of array MeasuringChannels. Notice that the binding
between a measuring channel identifier and its index in array MeasuringChan-
nels is not direct, any more, but is obtained through predicate MC address,
which has been added to Application Object class GPDB (see Figure 5.21 and
GPDBObj signature).

Application Object classes’ signatures

Let us consider some of the most significant Application Object classes.

5.4. AXIOMATIC LABOR LIMÆ 73

parallel Application Object Class GPDBObj
inherit IDTypes, VarTypes, DeviceManager

visible measure, status, detailed_status, dev_component,
measure_of_test, dev_calib, MC_measure, is_channel, is_single_device,
is_component, is_dev_part, is_measuring_chan, MC_address

temporal domain real

TI Items
predicate is_channel (TdevID);
predicate is_single_device (TdevID);
predicate is_dev_part (TdevID);
predicate is_component (TdevID);
predicate is_measuring_chan (TdevID);
predicate dev_component (TdevID, TdevID);
predicate measure_of_test (TdevID, test_command,

TmeasureID);
predicate dev_calib (TdevID, TcalibID);
predicate MC_measure (TdevID, TmeasureID);

/* %%% Old TRIO version %%%
predicate dev_component (TmeasuringChanID Union

TcomponentDevID, TcomponentID);
predicate measure_of_test (TmeasuringChanID,

test_command, TmeasureID);
predicate dev_calib (TdevID, TcalibID);
predicate MC_measure (TmeasuringChanID, TmeasureID);
%%% ---------------- %%% */
predicate MC_address (TdevID, TmeasuringChanID);

used interfaces
DataReceiver;
BPVModule::odFloat;

used operations
ODAlarmModule::State::set_current_status;

state Items
measure (TmeasuringChanID, TmeasureID, meas_value,

validity_index, temporal_tag);
status (TmeasuringChanID, Tdev_status, operating_mode,

access_permission);
detailed_status (TmeasuringChanID,

TcomponentID, Tdev_status);
event Items

variation_instant (natural);
/* axiom definitions... */
end GPDBObj

Application Object class GPDBObj is derived from TRIO class GPDBclass.
It inherits from Interface class DeviceManager and uses methods from inter-
faces DataReceiver, odFloat and State. Notice that all the items (cyclic acq’,
’on variation acq, chan status, etc.) which have been grouped in data flows
have disappeared, replaced by operations (both imported and exported).

74 CHAPTER 5. THE TC METHODOLOGY

This class introduces some new items, which are useful when writing
axioms on operations. For example, since devices are now identified by
strings, and not by ranges over the set of naturals, predicates is single device,
is measuring channel, is component, etc. are used to determine the nature of
the device; furthermore, event variation instant models the instant when the
variation of a quantity, which must be notified to the IMS, occurs.

parallel Application Object Class MCAlarmGenerator
inherit IDTypes, VarTypes, ODAlarmModule::State

visible alarmObj_name

temporal domain real

TI Items
predicate is_alarm(AM_status_name);
predicate alarmObj_name(alarm_name, OID);

state Items
status (AMstatus_name);
alarm_ack_rule (alarm_name, ack_rule);
alarm_enabled (alarm_name);

used interfaces
AlarmReceiver;

/* axiom definitions... */
end MCAlarmGenerator

This Application Object class derives from TRIO class MCAlarmGenerator
defined during Substep 3.1. To represent the fact that this object knows which
are the Alarm objects, which correspond to the alarms it can raise (in conformity
with the definition of State objects of ADM), predicate alarmObj name, which
binds the name of an alarm with the reference of an object, has been introduced.

parallel Application Object Class BPVFloatObj

inherit BPVModule::odFloat

temporal domain real

end BPVFloatObj

odFloat objects have been introduced during step 5, to represent the mea-
sures exchanged by IMS and GPDB application objects. Since we are not in-
terested in the behavior of these objects, Application Object class BPVFloatObj
does not contain any axioms.

Environment Classes’ Signatures

IMS defines just one Environment class, containing all objects involved in the
application.

5.4. AXIOMATIC LABOR LIMÆ 75

Environment Class IMSApplication
inherit IDTypes, VarTypes
temporal domain real
modules

IMS : IMSObj;
ControlSystem : CS;
GPDB :GPDBObj;
MeasuringChannels : array [TmeasuringChannelID]

of MeasuringChannel;
MCAlarmGenerators : array [TmeasuringChannelID]

of MCAlarmGenerator;
AlarmChannel : AlarmChan;
HMI : HMIObj;

/* %%% Old TRIO version %%%
IMS : IMSclass;
ControlSystem : CS;
GPDB :GPDBclass;
MeasuringChannels : array [TmeasuringChannelID]

of MeasuringChannel;
MCAlarmGenerators : array [TmeasuringChannelID]

of MCAlarmGenerator;
AlarmChannel : AlarmChan;
HMI : HMIclass;
%%% ---------------- %%% */
AlarmObjs : array [1..A] of AlarmObj;
BPVFloatObjs : array [1..F] of BPVFloatObj;

/* %%% Old TRIO version %%%
AlarmObjs : array [1..TmeasuringChannelID] of AlarmObj;
%%% ---------------- %%% */

connections
(connect IMS, GPDB)
(connect IMS, ControlSystem)
(connect GPDB, MeasuringChannels)
(connect IMS, GPDB, BPVFloatObjs)
(connect IMS, GPDB, MCAlarmGenerators)
(connect MCAlarmGenerators, AlarmChannel)
(connect AlarmChannel, HMI)
(connect HMI, AlarmObjs)

/* %%% Old TRIO version %%%
(connect IMS, GPDB)
(connect IMS, ControlSystem)
(connect MCAlarmGenerators, IMS)
(connect MCAlarmGenerators, GPDB)
(connect MCAlarmGenerators, AlarmChannel)
(connect AlarmObjs, HMI)
(connect HMI, AlarmChannel)
(connect GPDB, MeasuringChannels)
%%% ---------------- %%% */

/* axioms ... */
end IMSApplication

76 CHAPTER 5. THE TC METHODOLOGY

This class is derived from TRIO class IMSApplication as modified during
Substep 3.1. Notice that the cardinality of array AlarmObjs has been changed:
At this stage, we must consider that there can be more that one alarm which
is raised by an alarm generator, so the cardinality of array MCAlarmGenera-
tors and AlarmObjs cannot be the same. Nonetheless, this level of detail can
only be introduced at this stage, since it derives from practical CORBA mecha-
nisms present in TC (like referencing Application Object classes through their
identifier).

5.4.2 TC Classes’ Axioms

There are four types of mechanisms through which the TC specification can be
produced from the TRIO document:

1. Straight derivation of axioms;

2. Introduction of axioms which define the CORBA details of a general
mechanism;

3. Definition of axioms unrelated with the TRIO specification (because they
define the meaning of new items, or because they describe CORBA-
specific mechanisms);

4. Deletion of TRIO axioms automatically guaranteed by TC.

In the rest of this section we show an example for each case. All axioms are
taken from Application Object class GPDBObj.

Straight Derivation

Uniqueness_of’MCAlarmGenerator’_status_change:
set_current_status(i).invoke &
set_current_status(j).invoke &
set_current_status(i).receiverID(AM) &
set_current_status(j).receiverID(AM) &
set_current_status(i).name = sn1 &
set_current_status(j).name = sn2
-> i = j & sn1 = sn2

/* %%% Old TRIO version %%%
Uniqueness_of’MeasChanAlarmMgr’_status_change

IMS_change_AM_status(AM, i, sn1) &
IMS_change_AM_status(AM, j, sn2)
-> i = j & sn1 = sn2
%%% ---------------- %%% */

Event GPDB change AM status represents, in the TRIO specification, the
moment when GPDB changes the state of a module of array MeasChanAlar-
mMgrs. Now, event GPDB change AM status was identified, during Sub-
step 3.2, with operation set current status, and from the split of array

5.4. AXIOMATIC LABOR LIMÆ 77

MeasChanAlarmMgrs array MCAlarmGenerators was created. The first pa-
rameter of predicate GPDB change AM status represents the exact module on
which the state is changed, and then corresponds to the reference of the appli-
cation object (i.e. the receiver) on which the operation is invoked. The third
parameter of predicate GPDB change AM status represents the name of the
new state to be set, and corresponds to input parameter name of operation
set current status. The translation of the TRIO axiom into the TC format is
straightforward.

Introduction of More Detailed Axioms

Measures_sent_on_’get_measure’_1:
get_measure(i).end_ok &
Past (get_measure(i).call & get_measure(i).device = dev &

measure(MC_ad, mID, mval, vi, t_s), T) &
MC_measure(dev, mID) & MC_address(dev, MC_ad) ->

ex j1, j2, j3, j4, l, T1, T2,
T3, T4, T5, T6, T7, T8, bpv_v (
T2<T1<T & Past(SET_NAME(j1, mID, bpv_v), T1) &

Past(set_name(j1).reply, T2) &
T4<T3<T & Past(SET_VALUE(j2, mval, bpv_v), T3) &

Past(set_value(j2).reply, T4) &
T6<T5<T & Past(SET_VALIDITY(j3, vi, bpv_v), T5) &

Past(set_validity(j3).reply, T6) &
T8<T7<T & Past(SET_TIME_STAMP(j4, t_s, bpv_v), T7) &

Past(set_time_stamp(j4).reply, T8) &
get_measure(i).measures(l) = bpv_v &
all k (

all mID1 (˜WithinP(SET_NAME(k, mID1, bpv_v), T2)) &
all mval1 (˜WithinP(SET_VALUE(k, mval1, bpv_v), T4)) &
all vi1 (˜WithinP(SET_VALIDITY(k, vi1, bpv_v), T6)) &
all t_s1 (˜WithinP(SET_TIME_STAMP(k, t_s1, bpv_v), T8)))

)

Measures_sent_on_’get_measure’_2:
get_measure(i).end_ok & get_measure(i).measures(l) = bpv_v &
Past (get_measure(i).call & get_measure(i).device = dev, T) -

>
ex mID (MC_measure(dev, mID) &

ex j, T1, T2 (T2<T1<T &
Past(SET_NAME(j, mID, bpv_v), T1) &
Past(set_name(j).reply, T2) &
all k, mID1 (˜WithinP (SET_NAME(k, mID1, bpv_v), T2))) &

all bpv_v1, m (get_measure(i).measures(m) = bpv_v1 &
bpv_v1 <> bpv_v ->

all k (˜WithinP (SET_NAME(k, mID, bpv_v1), T)))
)

(similar rules are defined for operation variation in axioms Mea-
sures sent on ’variation 1’ and Measures sent on ’variation 2’)

78 CHAPTER 5. THE TC METHODOLOGY

/* %%% Old TRIO version %%%
Measure_data_sent_on_’cyclic_acq’_and_’on_variation_acq’

(cyclic_acq(i, MC) | on_variation_acq(i, MC)) &
MC_measure(MC, mID) ->

ex mval, vi, timetag (
measure_info(MC, mID, mval, vi, timetag)

& measure(MC, mID, mval, vi, timetag))
%%% ---------------- %%% */

The original TRIO specification states that on cyclic acq and on variation -
acq some data is sent, but it does not define the data structures through which
these data are exchanged. On the other hand, the TC specification must deal
also with these details. The foregoing TC axioms state that, before answer-
ing to a get measure invocation, GPDB must take the measures’ values from
the devices, set the corresponding odFloat objects, and fill array measures (re-
turned by get measure) with the references to odFloat objects. Axiom Mea-
sures sent on ’get measure 2’ guarantees that only one copy for each measure is
returned in array measures.

Axioms Unrelated with the TRIO Specification

Measure_data_sent_in_contiguous_arrays_1:
get_measure(i).end_ok &
get_measure(i).measures(l) = bpv_v1 & l > 0 ->

ex bpv_v2 (get_measure(i).measures(l-1) = bpv_v2)

Definition_of_predicate’MC_address’_1:
MC_address(dev, MC_ad1) &
MC_address(dev, MC_ad2) -> MC_ad1 = MC_ad2

Definition_of_predicate’MC_address’_2:
ex MC_ad (MC_address(dev, MC_ad))
<-> is_measuring_chan(dev)

Axiom Measure data sent in contiguous arrays 1 states that when measures
are returned after a get measure invocation, the fields of the array that contains
them are consecutive. This axiom is not related with any TRIO axioms, since it
deals with a property that is typical of a particular data structure.

TRIO Axioms Guaranteed by TC

Uniqueness_of_event_index_1
GPDB_change_AM_status(AM1, i, sn1) & t <> 0
-> ˜Dist (GPDB_change_AM_status(AM2, i, sn2), t)

Uniqueness_of_event_index_2
GPDB_change_AM_status(AM1, i, sn1) &
GPDB_change_AM_status(AM2, i, sn2) ->

5.4. AXIOMATIC LABOR LIMÆ 79

AM1 = AM2 & sn1 = sn22

These axioms state that the index (i.e. the second argument of the pred-
icate), which identifies different instances of a state change notification, is
unique. This index, in TC, becomes the standard identifier of invocation for
operation set current status, and it is unique by definition. As a consequence,
the previous axioms can be discared.

80 CHAPTER 5. THE TC METHODOLOGY

Chapter 6

Automatic Analysis of TRIO
Specifications

A key feature of the TRIO language is its executability, that allows the construc-
tion of semantic tools, to help validation and verification, by means of spec-
ification simulation and test case generation. Chapter 7 provides a complete
overview of the TRIO tool set.

In general, the satisfability of arbitrary first-order TRIO formulae is unde-
cidable: a general interpretation algorithm is not guaranteed to terminate with
a definite answer. To achieve executability, in TRIO the original interpretation
domains, which are usually infinite, are replaced by some finite approximation
thereof. Of course validating a specification using finite domains does not pro-
vide answers for the corresponding problem in the infinite domain case, but
still provides useful and effective validation methods.

The definition of algorithms for the finite domain case requires a suitable
finite-domain semantics, that is a semantics on finite domains that approxi-
mates the results on infinite domains. In this chapter we show how the original
finite domain semantics of the TRIO language (MPS) needed to be revised in
order to overcome several major problems1.

6.1 Specification Languages and Automatic Analy-
sis

The use of formal executable specifications has many advantages: By execut-
ing formal specifications it is possible to observe the behavior of the specified
system and check whether they capture the intended functional requirements.
This kind of analysis, called specification testing, increases the confidence in the

1The main results reported in this chapter were presented in [16].

81

82 CHAPTER 6. AUTOMATIC ANALYSIS OF TRIO SPECIFICATIONS

correctness of the specification in much the same way as testing a program
may increase the confidence on its reliability, assessing the adequacy of the re-
quirements before a costly development takes place. Moreover, execution may
allow the generation of test data, that can be used for functional testing, that
is for checking the correctness of the implementation against the specification
[30].

TRIO, introduced in Chapter 4, is by its very nature a specification formal-
ism very suitable to real-time systems. Such a formalism allows one to ex-
press complex temporal conditions and properties in a precise, quantitative
way, while its denotational style allows one to abstract from implementation
details until the beginning of the development phase. However, specifications
written using a first-order temporal logic with metric are in general not decid-
able.

The two main and well-established automated analysis approaches based
on temporal logic are model checking and theorem proving, usually the former
based on decidable idoms, while the latter is suitable for undecidable lan-
guages, too. Refer to [13] for a recent and thorough survey of the field.

Model checking relies on building a finite model of the system to be ana-
lyzed, and then checking that a desired property holds in that model. Usually
this check is performed as an exhaustive finite state space search. The main
objective in this case is to tackle the state explosion problem using heuristic
algorithms/data structures.

Temporal model checking was introduced independently by Clarke and
Emerson [20] and by Queille and Sifakis [50]. In this approach the specifica-
tion is expressed by a temporal logic formula, while the system is described by
a finite state transition system. The algorithm rely on a search procedure used
to check is a given transition system is a model for the specification. Some no-
table examples are the Spin system [25], Murphi [17]. HyTech [24] and Kronos
[18] are tools suited for real time systems.

In theorem proving, both the system and its desired properties are ex-
pressed using logic formulae. Formulae are built within a formal system, con-
sisting of axioms and inference rules. Essentially, theorem proving is the pro-
cess of finding a proof of a property, starting from the axioms describing the
system. Usually this activity depends heavily on human ingenuity, therefore
is less suited to be automated than model checking. Here are some examples
of (semi-)automatic theorem provers: Nqthm [7], ACL2 [26], STeP [31] (which
contains a model checker, too), and PVS [49]. In [1] is presented a TRIO encod-
ing in PVS.

The approach described in this chapter is based on techniques quite differ-
ent from both model checking and theorem proving. There are some analogies
with model checking, in that we work with finite state logic models: They are
finite by construction, using MPS. But these actually are finite time representa-
tions of executions of the specification, and we do not use operational models
of the specification. Moreover, we face similar state explosion problems. On the
other hand, the deductive approach, based on theorem provers, results to be

6.1. SPECIFICATION LANGUAGES AND AUTOMATIC ANALYSIS 83

totally complementary. To our knowledge, at present there are no tools freely
available, in any way similar to the TRIO environment tools.

Executability is achieved by defining a model-theoretic semantics (i.e., an
interpretation schema) that, for any formula, builds its possible models (i.e.,
assignments of values to variables and predicates such that the formula evalu-
ates to true), and by exploiting the idea of finite approximation of infinite domains.
Original interpretation domains, which are usually infinite, are replaced by fi-
nite approximations (or finite abstractions) thereof. For instance, the set of
integers is replaced by the range 0..100.

In this way, every decision problem becomes decidable even though there
is no a priori guarantee that the results obtained on the finite domain coincide
with the theoretical results that would be obtained on the infinite domain. In
practice, however, we may often rely on this type of prototyping, especially
if the domains are large enough to contain all the “relevant facts” about the
system under analysis, on the basis of the following considerations:

� Non-terminating reactive systems often have periodical behaviors. Thus
it usually suffices to analyse them for a time period of, for instance, twice
their periodicity.

� Using some common sense and experience one can tell whether all “rel-
evant facts” about a system, whose dynamic behavior is in the order of
magnitude of seconds, have been generated after having tested it for sev-
eral hours.

� One may try several executions with different time domains of increasing
cardinality. If the results do not change, one can infer that they will not
change for larger domains.

Clearly, this approach is based on the assumption that it is possible to sig-
nificantly evaluate formulae on a finite time domain, while a specifier usually
makes the natural assumption of an infinite time domain. Hence, the finite-
ness is only a “trick” to enable specification execution and therefore it is crucial
to provide a finite-domain semantics such that the results obtainable on finite
histories may be easily extended to infinite behaviors of the system.

Various proposals of finite-domain semantics have appeared in the litera-
ture, for both TRIO and other temporal logic languages. In [23], a conventional� � � � � (or ����� �) value is given to every formula (or part of a formula) whose
evaluation time does not belong to the time domain. Very early it was recog-
nised that this resulted in a very counterintuitive semantics. In [11] the lan-
guage has two temporal distance operators: A strong operator � and a weak
one � . � ��� is true iff there exists a time instant whose distance from the cur-
rent one equals � , in which � is true , while � ��� is true iff there exists a time
instant whose distance from the current one equals � , in which � is true, or if
there is no such � . Using this approach the specification must be written taking
into account the finite domains from the beginning. Moreover, the use of two
different distance operators has proved to be confusing for most users.

84 CHAPTER 6. AUTOMATIC ANALYSIS OF TRIO SPECIFICATIONS

in in
out

in

1 5 10 15

out out

20

in

Figure 6.1: The finite restriction of the history of Figure 4.2 to the domain 1..20

The best proposal up to now is the model-parametric semantics (MPS) pre-
sented in [33]. MPS correctly interpretates many cases of practical interests
that are not dealt with adequately by the other proposals. However, in this
chapter we show that MPS causes formulae with bounded temporal operators,
which impose upper or lower bounds on the occurrence of events, to become
counter-intuitive and has also some other minor problems. These problems in
the interpretation of formulae over finite domains limit the validity and the
use of the tools for executing specifications and hence may seriously hamper
the validation phase. This is especially true for real-time systems since most of
them require explicit time bounds, that is their specification must use bounded
temporal operators. It is then of the outmost importance to define the seman-
tics of such operators in the most general and intuitive way.

This chapter presents a new semantics for the finiteness problem by mod-
ifying MPS. In particular, it provides a different semantics for the bounded
temporal operators, along with some minor changes to the original definition
in order to deal correctly with all temporal operators.

6.2 TRIO’s Formal Semantics: Problems and Solu-
tions

Let us consider formula �
of example 1 (the transmission line), presented in

Section 4.1.2,

TL: ����� � � � � � ��� ��� ����� �&% 	
	 .

and the history depicted in Figure 4.1 restricted to the instants 1..20. This
is certainly an acceptable behavior of the system. Notice that developing a
finite-domain semantics adequate to this example is fairly easy; for instance,
by providing a conventional evaluation to false for everything lying outside
the time domain.

However, consider the history of Figure 4.2, again restricted to the instants
1..20, which is reported in Figure 6.1.

In this case, � � is true at instant 16 and there is no corresponding ����� , since
it would occur at instant 21, which is outside the time domain. However, also
this (finite) behavior should be considered acceptable because the � � at instant
16 is a border event: It could be followed by an ����� at instant 21, that is there

6.2. TRIO’S FORMAL SEMANTICS: PROBLEMS AND SOLUTIONS 85

exists at least one infinite history containing all the events of Figure 6.1 which
satisfies �

. Obviously, there are also infinite histories that include the history
of Figure 6.1 which do not satisfy �

(e.g. a history in which there is no ����� at
instant 21).

Therefore, a finite-domain semantics should consider the history of Figure
6.1 as a model of �

. The use of conventional truth values, however, does
not work since it would conventionally assume that at instant 21 ����� is false
(assuming a conventional true value outside the temporal domain would even
worsen the situation). Enlarging or restricting the time domain does not solve
this problem since: If the instant 21 is included in the time domain then also
the instant 26 should be included and so on.

In order to enable the execution of TRIO specifications a model parametric
semantics MPS was defined. The MPS may refer to any finite or infinite time
domain � , the finite case being considered an approximation of the infinite
one. If the finite time domain is large enough to include all relevant events, the
corresponding finite history is included in an infinite behavior of the system.

As a consequence the size of the time domain is quite important: If it is too
small some relevant event may not be included, and thus the finite restriction
of an infinite history may not be meaningful. For instance, a specification such
as ��
 � � � 	 is verified whenever there exists at least one occurrence of � � . Every
finite history in which no � � occurs can hardly be considered to verify ��
 � � � 	 ;
however, any such history can be extended to include an occurrence of � � , and
hence it is a sub-history of a behavior of the system.

One could argue that this fact hampers the validity of the finiteness ap-
proach. However, this approach is very often used to build histories rather
than verifying them, and thus generated histories usually include all relevant
events. For instance, in generating a finite history for ��
 � � � 	 , the test case
generator tool requires that an � � occurs in some instant of the time domain.

The basic idea of MPS consists in not evaluating a formula in those instants
in which the truth of the formula depends on what may or may not occur
outside the time domain. For instance, the meaning of the ����� operator be-
comes: ����� � � 	 is true iff � holds in every instant in which � may be evalu-
ated. ��
 � � 	 is true iff there exists an instant in which � can be evaluated and
holds. If � cannot be evaluated in any instant, then ����� � � 	 and ��
 � � 	 are
considered meaningless.

Hence, according to MPS, formula �
, evaluated on the history of Figure

6.1 becomes true, since the subformula � � � � ��� ��� ����� �&% 	 is true where it can
be evaluated, that is on the range 1..15. The truth value of the formula is not
checked in 16, since

� ��� ��� ����� �&% 	 cannot be evaluated.

To better understand MPS and its problems in what follows we summarize
its formal definition given in [33].

86 CHAPTER 6. AUTOMATIC ANALYSIS OF TRIO SPECIFICATIONS

6.2.1 MPS Formal Definition

For the sake of simplicity we consider only formulae where all variables are
of the type distance domain (� �), which in MPS is interpreted as the interval
��� ����� � � � � ��� � � , and there are no time dependent functions or constants.

A quantifier
���

in a formula of type
��� � is restricted to those values

��� � �
such that �
	� (the formula obtained from � by replacing every occurrence of

�
with the value

�
) can be evaluated without referencing time instants outside the

time domain. This can be obtained by defining a function � �
� � that associates

every formula with the subset of � on which it can be evaluated. The definition
of � �

� � is:

1. � �
� �
��
 	 � � , for an atomic formula
 .

2. � �
� �
� � � 	 � � �

� �
� � 	 .
3. � �

� �
� � � $ 	 � � �
� �
� � 	��� �

� �
� $.
4. � �

� �
� � ��� ��� � � �
	
	 � �
� � ������� � � � �

� �
� � 	 � .

5. � �
� �
� ��� � 	 ���

	������ � �
� �
� �
	� 	 .

A formula � is said to be not evaluable iff � �
� �
� � 	 ��� , that is it cannot be

evaluated in any instant. In this case, the formula � is considered meaningless.

Notice that the evaluation of formulae following MPS differs from tradi-
tional evaluation only when quantifiers are involved. In fact, if a formula such
as

��� � can be evaluated, (i.e., � �
� �
� ��� � 	 	���), then its truth value in an instant

� is true if �
	� is true in � for every
��� � � such that � belongs to � �

� �
� ��	� 	 , it is
false otherwise.

6.2.2 Problems of MPS

While we believe that the general idea behind the MPS is very appealing, its
definition is not completely satisfactory. Its main problems are discussed in
what follows and concern the characterization of the distance domain � � , the
treatment of the bounded operators and the semantics of propositional opera-
tors.

Recall the time domain, from Chapter 4 (usually denoted by �). A special
domain directly related to � is the distance domain � � , a numeric domain com-
posed of the distances between instants of the time domain.

The distance domain � �

Let us consider the timed lamp example, presented in Section 4.1.2,

A1: �	��
������� � �� � � � � � � � �&% 	 .

6.2. TRIO’S FORMAL SEMANTICS: PROBLEMS AND SOLUTIONS 87

1 5 10 15

push
timeout

on on on
push

on on

push

onon

Figure 6.2: A restriction of the history of Figure 4.3 to 1..15

4 5 10 15

timeout

on on on
push

on on
push

on

Figure 6.3: A behavior for the timed lamp, where ��� , ��� and ��� are false

A2:
$ �!� ��
� � � � � 	 � � � �
 � � ��� ��� � � � � � � 	 .

A3:
$ �!� ��
� � � � � � 	 � � � � �
 � � ��� ��� � � � � � 	 � �	��
�������
	 .

and the restriction of the history depicted in Figure 4.3 to the time domain
1..15, as shown in Figure 6.2.

This behavior is intuitively correct and obviously includes every rele-
vant event. However, according to MPS the subformula ��� , �	��
������� �
�� � � � � � � � �&% 	 , is false at instant 1. In fact, the definition of

�� � � � � � � � �&% 	 , is��� � � � � � % � � ��� ��� � � � � � 	
	 , where
�

is a variable in the distance domain
� � = -14..14. Thus, at instant 1

�
can assume any value in the range -14..02, and

the condition
��� � � % is false for every

�
. As a consequence,

�� � � � � � � � �&% 	 is
true in 1, while �	��
������� is not.

The problem does not disappear by extending the time domain: There is
always a left border where ��� can be false. Other similar counterexamples
can be built for other TRIO operators, such as � ��� � and

�
� �	��� , and are very

puzzling for most users of the tools based on MPS.

The problem arises from the use of non positive values in the distance
domain � � � ��� ��� � � � � � ��� � � , that may create undesired border effects.
It can be solved by defining � � as � � � � ��� � � . In this case, the subformula��� � � � � � % � � ��� ��� � � � � � 	
	 becomes not evaluable at instant 1 and there-
fore instant 1 is ignored when evaluating ��� .

Bounded operators

Let us further restrict the time domain of the previous example to the range
4..15 (Figure 6.3).

2The values greater than 0 are ruled off since 3,�5���6�����2#�� ' % cannot be evaluated

88 CHAPTER 6. AUTOMATIC ANALYSIS OF TRIO SPECIFICATIONS

4 5 10 15

timeout

on on
push

on on
push

on

Figure 6.4: An incorrect behavior of the timed lamp: There is a timeout but
two instants before the lamp was off

The history describes what can still be considered an intuitively acceptable
behavior for the specification ��� : There is a border effect in the instants from 4
to 7, where the lamp has been on for less than 4 instants. Therefore we cannot
know whether timeout should actually hold at instant 7. However, we expect
the axiom ��� to hold, because the left border 4..7 should not be considered
for evaluation; at most, we could accept that the specification is not evaluable,
thus signalling that we should have chosen a larger domain including at least
instant 3. Unfortunately, also in this case according to MPS formula ��� is false
at instant 6 (and also at instant 5), and thus the specification ����� � ��� � ��� � ��� 	
does not hold. In fact, looking at formula

��� � � � � � % � � ��� ��� � � � � � 	
	 , i.e.�� � � � � � � � �&% 	 , we notice that at instant 6,
�

can have at least values 1 and 2
(both if � � � ��� ��� � � � � � ��� � � or � � � � � � � ��� � �). Hence,

�� � � � � � � � �&% 	 holds
at instant 6, because

� ��� ��� � � � � � 	 and
� ��� ��� � � � ��� 	 hold. But �	��
������� is false

at 6.

The problem is that MPS evaluates
�� � � � � � � � �&% 	 to true whenever � � is

true in every instant among the previous 4, in which
� ��� ��� � � � � � 	 can be eval-

uated. Near the border, � � can be evaluated in less than 4 instants, and thus�� � � � � � � � �&% 	 becomes true even if � � does not last for at least 4 instants.

This situation is typical of every bounded operator. A possible solution
consists in regarding a bounded operator as not evaluable whenever its dis-
tance from the border is less than the stated bound. In the above example,�� � � � � � � � �&% 	 should not be evaluated in 4, 5, 6 and 7, that is the border should
be ignored. In this way the specification becomes true. However, it is possible
to improve further this solution as shown next.

Consider the history depicted in Figure 6.4, which is similar to the history
of Figure 6.3 but in which � � is false at instant 5. There is no finite or infinite
behavior of the specified system that may include this one, since there can-
not be a timeout at instant 6. The specification should evaluate to false when
interpreted over this history. Hence, we should not ignore the border of the�� � � � � operator, but instead check if it is possible to establish its truth from the
available data. Only when this is not possible, the

�� � � � � operator should be
regarded as not evaluable at the border.

Our proposal distinguishes the semantics of bounded operators from that
of unbounded ones. Every quantification over the distance domain � � , de-
fined as � � � � ��� , is assumed to be unbounded and hence treated as in MPS. In-
stead, in order to deal with the bounded operators,

�� � �
� and the temporally

6.2. TRIO’S FORMAL SEMANTICS: PROBLEMS AND SOLUTIONS 89

1 5 10 15

pushtimeout
onon

Figure 6.5: An incorrect behavior of the timed lamp: There is a ���������
	�� and
the lamp stays on

symmetrical
�� � � � � are added as primitive operators of the language. Their

semantics is defined as follows:

�
�� � � � � � � � �
	 is true in i iff

�� � � ����� � � � � � � � and � holds in � � � ;
�

�� � � � � � � � �
	 is false in i iff
��� � ����� � � , such that � � � � � and � does

not hold in � � � ;
�

�� � � � � � � � �
	 is not evaluable in � otherwise.

Symmetrically for
�� � �
� .

The meaning of these clauses is that
�� � � � � � � � �
	 is true iff � can be evalu-

ated and it is true in the previous � � � instants. It is false if � is false in at least
one of the previous � � � instants, even if in some of these instants � cannot be
evaluated. Finally,

�� � � � � � � � �
	 cannot be evaluated if either � cannot be eval-
uated in any of the previous � � � instants or � can be evaluated only in some
of them and the evaluation is true. Notice that the other bounded operators of
TRIO can be derived from

�� � �
� and
�� � � � � .

The semantics of propositional operators

According to MPS if a formula � cannot be evaluated at instant � , then also
� � $

is not evaluable at � , whatever the value of
$

is. This semantics of propo-
sitional operators may be called strict: A propositional formula is evaluable
only if every part of the formula is evaluable. This leads to some unpleasant
drawbacks. For instance, the semantics of

�� � � � � � � � �&% 	 is not equivalent to� ��� ��� � � � � � 	 � � ��� ��� � � � ��� 	 � � ��� ��� � � � � � 	 � � ��� ��� � � � ��� 	 whatever semantics
we choose for the

�� � � � � operator (MPS or our proposal).

Another example is the history shown in Figure 6.5, which should not sat-
isfy the specification of the timed lamp example since, at instant 1, the timeout
occurs and the lamp is still on.

In fact, there is no finite or infinite behavior of the specified system that
may include this one: The specification should evaluate to false when inter-
preted over this history. Instead, according to MPS the evaluation of ����� � ��� �
��� � ��� 	 gives the value ����� � . In fact, formula ��� ,

$ �!� ��
� � � � � � 	 � � � �
 �
� ��� ��� � � � � � 	 � �	��
������� , cannot be evaluated at instant 1, since

$ �!� ��
� � � � � � 	
may not. As a consequence also formula ��� � ��� � ��� cannot be evaluated in
1, and therefore ����� � ��� � ��� � ��� 	 holds since ��� � ��� � ��� holds in every

90 CHAPTER 6. AUTOMATIC ANALYSIS OF TRIO SPECIFICATIONS

� ��� � ��� � � �
a \ b T F U

T T F U
F T T T
U T U U

a \ b T F U
T T F U
F F T U
U U U U

a \ b T F U
T T T T
F T F U
U T U U� � � �

xor � � �
a \ b T F U

T T F U
F F F F
U U F U

a \ b T F U
T F T T
F T F U
U T U U

a
T F
F T
U U

Table 6.1: Kleene’s three-valued propositional tables.

instant in which it can be evaluated (2..15 in the original MPS, 4..15 with our
semantics of the bounded operators).

In order to overcome this problem, we use a different evaluation of propo-
sitional operators based on the introduction of a third truth value, called un-
evaluable (or undefined). The idea is that if � is false at instant � then � � $

is
false, even if

$
is not evaluable (i.e., it is not possible to establish whether

$
is

true or false). This can be described as follows:

� � � $
is true at an instant � iff both � and

$
are evaluable and true at � ;

� � � $ is false at an instant � iff either � is false (regardless of the possibility
of evaluating

$
) or

$
is false (regardless of the possibility of evaluating

�) at � ;

� � � $
is not evaluable at � otherwise.

This approach corresponds to adopting the Kleene’s truth tables of three-
valued logic [54], which are shown in Table 1. The main feature of Kleene’s
tables is that the value ����� � or the value

� � � � � is returned whenever pos-
sible. In this way the previous example is now satisfactorily dealt with:� � �
 � � ��� ��� � � � � � 	 � �	��
������� is true at 1, since �	��
������� holds;

$ �!� ��
� � � � � � 	 is
defined as � � � � � ��� ��� � � � � � 	 , and therefore is false since on holds at 1. Hence,
��� is false and therefore also ��� � ��� � ��� is false at 1. As a consequence
����� � ��� � ��� � ��� 	 is false.

It is easy to verify that using the new definition for bounded and
propositional operators

�� � � � � � � � �&% 	 becomes equivalent to
� ��� ��� � � � � � 	 �

� ��� ��� � � � ��� 	 � � ��� ��� � � � � � 	 � � ��� ��� � � � ��� 	 , that is universal bounded quan-
tification can be treated as an extended conjunction.

6.3. THE FORMALIZATION OF THE REVISED SEMANTICS 91

6.3 The Formalization of the Revised Semantics

In this section the formalization of our proposal is presented by using a nota-
tion based on a three-valued evaluation of a formula over a finite history. Let
us first define the concept of history, that is a structure on which formulae are
evaluated, then the evaluation function for terms and formulae is presented.

History

A history (or structure) for a formula F is a triple � �5� � � � ����� ��� � � � � , where:

� � is the time domain.
�

�
is a set of interpretation domains for all identifiers occurring in � . The

distance domain, � � � � � � � ��� , is an element of
�

. The notation
� � � 	

denotes the interpretation domain associated with identifier
�
.

�
����� � � � � � is a set of functions, providing interpretations on the do-
mains of

�
for the function and predicate names of � .

���
provides a

different interpretation for every instant � of the time domain.

Time independent functions and predicates are treated as special cases
for which the different

���
do not change with � . If

�
is the name of an n-

place predicate with signature � � � � � � � ,
���

assigns an n-ary relation to it, that
is
��� � � 	�� � ��� � 	�� � � � � ��� � 	 ; if

�
is an n-place function name with signa-

ture � � � � � � � � � ��	 � , then it is assigned an n-ary operation
��� � � 	�
 � ��� � 	�� � � �� ��� � 	 � � ��� ��	 � 	 . Time independent and time dependent constants are also

assigned values by this component since they are considered as special cases
of time independent and time dependent functions, respectively.

In order to interpret a formula, we need a value assignment to every vari-
able. An assignment for a structure is a function mapping every variable�

, declared of type � � in formula � , to a value � � 	 � � ��� � 	 . A reassignment
of for variable

�
is defined as any assignment � that differs from at most

in the value assigned to
�

. The notation �� represents a structure with an
assignment .

Evaluation of terms

We define inductively a function ��� which determines the value of terms and
formulae for each time instant � � � . The index , conveying the dependence
of

�
from an assignment, will be omitted when no confusion can arise.

�
is

defined for terms according to the following clauses.

1. ��� � � 	 � � � 	 , for every (time independent) variable
�

.

2.
� � � � � � � � � � � � 	
	 � ��� � � 	�� � � � � 	 � � � � � � � � 	
	 , for every application of function�
.

92 CHAPTER 6. AUTOMATIC ANALYSIS OF TRIO SPECIFICATIONS

3.
� ��� 	 � ��� ��� 	 , for every constant � .

Evaluation of formulae

For formulae �� returns true, false or uneval, that stands for unevaluable. The
main idea is that the truth value of an atomic formula is considered not evalu-
able at instant � whenever �

	� � :
�

in this case returns � � ��� � � . The value
� � ��� � � is propagated to formulae using Kleene semantics for propositional op-
erators, a definition equivalent to MPS for the quantifiers over the distance
domain, and a new definition for the bounded operators

�� � �
� and
�� � � � � and

bounded quantifications.

1.
� � � � � � � � � � � � 	
	 � if � � � then (if � � � � � 	 � � � � � � � � 	 � � ��� � � 	 then ����� � else� � � � � 	 else � � ��� � � , for a predicate

�
.

2.
� � � � 	 � if

� � � 	 � � � � � � then ����� � elsif
� � � 	 � ����� � then

� � � � � else
� � ��� � � .

3.
� � � � $ 	 � if � � � � 	 � ����� � and

� � $ 	 � ����� � 	 then ����� � elsif � � � � 	 �
� � � � � or

� � $ 	 � � � � � � 	 then
� � � � � else � � ��� � � .

4.
� � � ��� ��� � � �
	
	 � � 	������ ��� � � 	 .

5. ��� � ��� � 	 � if
� � � �
	� � � 	 � � � � � � 	 then

� � � � � elsif
� � � �
	� � � 	 �

� � ��� � � 	 then � � ��� � � else ����� � , for a variable
�

of domain � � .

6. ��� � ��� � 	 � if
� � � �
	� � � 	 � � � � � � 	 then

� � � � � elsif
� � � �
	� � � 	 � ����� � 	

then ����� � else � � ��� � � , where
�

is a variable of a domain different from
� � .

7.
� � �� � �
� � � � �
	
	 � if

�� � � ��� �
� � �
	��

� 	� � � 	 � ����� � 	 then ����� � elsif��� � �������
� � �
	 and

� 	� � � 	 � � � � � � 	 then
� � � � � else � � ��� � � .

Clause 4 allows the propagation of the
� ��� � operator; clause 6 is introduced

to differentiate every domain different from � � , because � � is assumed to be
the only unbounded domain: The other domains are bounded and are treated
correspondingly.

�� � � � � may be defined symmetrically as in clause 7.

6.4 Some Theoretical Properties

The main properties originally stated in [33] still hold in this new version of
the semantics.

Definition 1 Given a structure � �5�
�
� � � ��� �� � � � �

�
� � , a restriction of S is

a structure � � �5��� � � � ��� �� � � � ��� � � such that ��� is a subinterval of �
�

. A
restriction � is finite if ��� is finite.

6.4. SOME THEORETICAL PROPERTIES 93

Lemma 1 Every formula � may be transformed into an equivalent formula ��� in
prenex normal form; moreover, every positive quantifier of � becomes a universal
quantifier in � � , while every negative quantifier of � becomes an existential one in
��� .

Proof. In order to transform a TRIO formula in its prenexed form, we need
the following transformation rules (suppose that

�
is not free in

$
and in �):

1. � ��� � � � $ 	 � � ��� � � � $;
2. � � � � � � $ 	 � � � � � � � $;
3. � ��� � � � � � � � � ;

4. � � � � � � � ��� � � ;

5.
� ��� ��� ��� � � � �
	 � � ��� � � ��� ��� � � �
	 ;

6.
� ��� ��� � � � � � �
	 � � � � � � ��� ��� � � �
	 ;

7.
�� � �
� � ��� � � � �
	 � � ��� � �� � �
� � � � �
	 ;

8.
�� � �
� � � � � � � �
	 � � � � � �� � �
� � � � �
	 .

As usual, we implicitly assume a renaming of the quantified variables,
when two quantifications involve the same name of variable.

Let us consider the case
��� � � � $ 	 � � � ��� � � � $, with

�
not free in

$
(the first transformation rule).

We can rewrite the first subformula in this way:

� � ��� � � � $ 	
	 (6.1)

= (by definition of
�

)

= if
� � � �
	� � � � $ 	 � � � � � � 	 then

� � � � � elsif
� � � �
	� � � � $ 	 � � � ��� � � 	

then � � ��� � � else ����� � =

(by definition of � and because
�

is not free in
$

)

= if
� � � �
	� � � 	 � � � � � � 	 or

� � $ 	 � � � � � � then
� � � � � elsif

� � �
� �
	� � � 	 	�
����� � or

� � $ 	 	� ����� � 	 and � �
	� � � 	 	� � � � � � and
� � $ 	 	� � � � � � 	
	 then � � ��� � �

else ����� � .
Let us now consider the other subformula:

� � ��� � � � $ 	 (6.2)

= (by definition of �)

= if
� � ��� � � 	 � ����� � and

� � $ 	 � ����� � then ����� � elsif
� � ��� � � 	 � � � � � � or

� � $ 	 � � � � � � then

� � � � � else � � ��� � � =

94 CHAPTER 6. AUTOMATIC ANALYSIS OF TRIO SPECIFICATIONS

(by definition of
�

)

= if
� � � �
	� � � 	 	� � � � � � 	 and

� � � �
	� � � 	 	� � � ��� � � 	 and
� � $ 	 � ����� � then

����� � elsif
� � � �
	� � � 	 � � � � � � 	 or

� � $ 	 � � � � � � then
� � � � � else � � ��� � � .

We can now consider the truth values of the two formulae 6.1 and 6.2. Let
us begin with the

� � � � � case.

� expression 6.1:

� � ��� � � � $ 	
	 � � � � � � � � � � � �
	� � � 	 � � � � � � 	 or

� � $ 	 � � � � � � .
� expression 6.2:

� � ��� � � � $ 	 � � � � � � � � � � � �
	� � � 	 � � � � � � 	 or

� � $ 	 � � � � � � .

The two cases are therefore identical. Now we can consider the � � ��� � � case.

� expression 6.1

� � ��� � � � $ 	
	 � � � ��� � � � �

� � �
� �
	� � � 	 	� ����� � or
� � $ 	 	� ����� � 	 and � �
	� � � 	 	� � � � � � and

� � $ 	 	�
� � � � � 	
	 .

� expression 6.2:

� � ��� � � � $ 	 � � � ��� � � � �

� � � � � �
	� � � 	 	� � � � � � 	 or � � � � �
	� � � 	 	� � � ��� � � 	 or
� � $ 	 	� ����� � 	 and

� � � � � �
	� � � 	 � � � � � � 	 and
� � $ 	 	� � � � � � 	 � �

� � � � �
	� � � 	 � � � � � � 	 or
� � � �
	� � � 	 � � � ��� � � 	 or

� � $ 	 	� ����� � 	 and� � � �
	� � � 	 	� � � � � � 	 and
� � $ 	 	� � � � � � .

But it’s possible to simplify the term
� � � �
	� � � 	 � � � � � � 	 because it’s in

or with something other and it is in and with
� � � �
	� � � 	 	� � � � � � 	 , so it’s

always false.
� � � � � � �
	� � � 	 � � � ��� � � 	 or

� � $ 	 	� ����� � 	 and � � � � �
	� � � 	 	�
� � � � � 	 and

� � $ 	 	� � � � � � 	
� � � � � � �
	� � � 	 � � � ��� � � 	 and

� � $ 	 	� � � � � � 	 or � � � � �
	� � � 	 	�
� � � � � 	 and

� � $ 	 � � � ��� � � 	 .

It is easy to note that:
� � � �
	� � � 	 	� � � � � � and

� � $ 	 	� � � � � � and � �
	� � � 	 	� ����� � or
� � $ 	 	�

����� � 	
	 iff

� � � � �
	� � � 	 � � � ��� � � 	 and
� � $ 	 	� � � � � � 	 or � � � � �
	� � � 	 	� � � � � � 	 and

� � $ 	 � � � ��� � � 	 .

Now we can consider the last case, i.e. when expressions 6.1 and 6.2 are
true.

6.4. SOME THEORETICAL PROPERTIES 95

� expression 6.1

� � ��� � � � $ 	
	 � ����� � � �

� � � � � �
	� � � 	 � � � � � � 	 or
� � $ 	 � � � � � � 	 and � � � � �
� �
	� � � 	 	� ����� � or

� � $ 	 	� ����� � 	 and � �
	� � � 	 	� � � � � � and

� � $ 	 	� � � � � � 	
	
	 � �
� � � �
	� � � 	 	� � � � � � 	 and

� � $ 	 	� � � � � � and
� � �
� �
	� � � 	 � ����� � and

� � $ 	 � ����� � 	 or �
	� � � 	 � � � � � � or

� � $ 	 � � � � � � 	 � �
We can simplify the two subformulae �
	� � � 	 � � � � � � and

� � $ 	 � � � � � �
because they are in and with their negations and they are part of a or.
� � � � � �
	� � � 	 	� � � � � � 	 and

� � $ 	 	� � � � � � and
� � �
� �
	� � � 	 � ����� �

and
� � $ 	 � ����� � 	
	 � �

We can now simplify
� � $ 	 	� � � � � � because is in and with

� � $ 	 � ����� � .
� � � � � �
	� � � 	 	� � � � � � 	 and

� � � �
	� � � 	 � ����� � 	 and
� � $ 	 � ����� �

� expression 6.2:

� � ��� � � � $ 	 � ����� � � �

� � � �
	� � � 	 	� � � � � � 	 and
� � � �
	� � � 	 	� � � ��� � � 	 and

� � $ 	 � ����� �

It is very easy to note that:
� � � �
	� � � 	 	� � � � � � 	 and

� � � �
	� � � 	 � ����� � 	 and
� � $ 	 � ����� � iff

� � � �
	� � � 	 	� � � � � � 	 and
� � � �
	� � � 	 	� � � ��� � � 	 and

� � $ 	 � ����� � .
This completes the proof for the first transformation rule.

The other rules can be treated in an analogous way. �

Definition 2 A quantification
��� � � is called temporal-unbound (or unbound for

short) iff
� � � 	 � � � . A universal-unbounded (u.u.) formula is a closed formula

where there are no occurrences of negative unbounded quantifiers, i.e. in the scope of
an odd number of negations. An existential-unbounded (e.u.) formula is a closed
formula where there are no occurrences of positive unbounded quantifiers, i.e. in the
scope of an even number of negations.

Notation:
�

stand for an universal unbounded formula, � stand for an
existential unbounded formula.

Universal unbounded formulae are very common in the specification of
hard real-time systems. Special cases of u.u. formulae are those of type ����� � � 	 ,
where � is a bounded formula: these are typically invariant properties of the
specified system. Special cases of e.u. formulae are those of type ��
 � � 	 ,
where � is a bounded formula: these are typically liveness properties of the
specified system.

The following lemma directly corresponds to the first restriction theorem
presented in [33]. Given the new semantics, however, its result is stronger,
because includes all TRIO’s temporal bounded operators - naturally derived
by

�� � �
� �
� � , e.g.

� ����
 � ��
 .

96 CHAPTER 6. AUTOMATIC ANALYSIS OF TRIO SPECIFICATIONS

Lemma 2 For every formula � without unbound quantifiers, for every structure ,
for every instant � � �

�
, if

� ��� 	 � ����� � then for every restriction � of , � � ��� 	 is
either ����� � or � � ��� � � .

Proof. The proof is done by induction on the structure of the formula.

� Base step. � is an atomic formula. Therefore if
� ��� 	 � ����� �

� � � � � � then
� � ��� 	 � ����� �

� � � � � � trivially holds, if � is in the reduced temporal do-
main. Otherwise, � � ��� 	 � � � ��� � � by definition of the semantics.

� Let � � � � . If
� ��� 	 � ����� � , then, by definition,

� � � 	 � � � � � � . By ind
hyp, this implies � � � � 	 � � � � � � , which means � � ��� 	 � ����� � .

� Let � � � � $
. Let

� ��� 	 � ����� � . This means that both
� � � 	 and

� � $ 	
hold. By ind hyp, this implies that � � � � 	 and � � � $ 	 hold. Therefore,
� � ��� 	 � ����� � .

� Let � � ��� � . By hypothesis,
� � � 	 	� � � , therefore by definition,

 and � have the same definition of
� � � 	 . Let us consider the case

� ��� 	 � ����� � .

� ��� 	 � ����� � iff
� � ��� � 	 � ����� � iff

� � � �
	� � � 	 � ����� � 	 .
By induction hyp, �
	� � � 	 � ����� � implies that for all � , � �
	� � � 	 is true.
But this means that � � � � � 	 is true.

� Let � � � ��� ��� � � �
	 . � � �
	 � � � � �
	 � � by definition of and � . Therefore

� ��� 	 � ����� � iff

� 	�� � � 	 � ����� � . By ind hyp, this means � � 	�� � � 	 � ����� � ,
i.e. � � � � ��� ��� � � �
	
	 is true.

� Let � � �� � �
� � � � �
	 (the
�� � � � � case is totally analogous). Let

� � �
	 � � .
Therefore

� ��� 	 � ����� � iff
�� � � � � �

�
�

� 	� � � 	 � ����� � 	 But, by
definition of and � ,

� � � 	 � � � � � 	 , for every
�
. This implies, by ind

hyp, that � � 	� � � 	 must be true, for every
�
. Therefore, � � ��� 	 � ����� � . �

The next is a new re-statement of the second restriction theorem, plus the
natural “add-on” of the bounded operators granted by the previous lemma.

Theorem 1 For every u.u. formula
�

, for every structure , for every instant � � �
�

,
if

� � � 	 � ����� � then for every restriction � of , � � � � 	 is either ����� � or � � ��� � � .

Proof. Assume
�

in prenex normal form, by Lemma 1. The proof is done
by induction on the external u.u. quantifiers of the formula.

� Base step.
�

is without u.u. quantifiers. Lemma 2 applies.

� Let
� � ��� � , with

� � � 	 � � � . Being � a restriction of , in � � � � 	 �
� ��� is a proper subset of the corrispondent domain in . So, if

� � � 	 �
����� � , then � � � � �
	� � � 	 � � � � � � 	 and � � � � �
	� � � 	 � � � ��� � � 	 . Being

� ��� � � �
�

, � � � � � �
	� � � 	 � � � � � � 	 . Therefore either � � � � 	 is ����� � or
� � ��� � � . �

6.5. IMPACT ON THE TRIO TOOLS 97

Theorem 1 ensures that for u.u. formulae the truth value on a restriction of a
structure cannot change to false if it is true on . Of course, the formula may
become unevaluable on the restriction. This is useful for instance in testing: If a
tester can find a finite structure � where a u.u. formula is false then the formula
is false also on any structure of which � is a restriction. A dual theorem holds
for e.u. formulae:

Corollary 1 For every e.u. formula � , for every structure , for every instant � � �
�

,
if

� � � 	 � � � � � � then for every restriction � of , � � � � 	 is either
� � � � � or � � ��� � � .

Proof. Assume � in prenex normal form, by Lemma 1. � is equivalent to
the negation of a u.u. formula:

� � � � � ��� ����� � � � $ � � � � � � � � ����� � � � � $

Apply Theorem 1 to � � . �

6.5 Impact on the TRIO Tools

The present version of the TRIO semantic tools, whose structure and main fea-
tures will be presented in the next chapter, is based on the new model para-
metric semantics.

The interpreter (or History Checker) is basically a straightforward imple-
mentation of the semantics.

The Test Case Generator - a finite model generator, instead, is based on
the tableaux algorithm, originally described in [33]. This is used for building
finite models (or test cases) starting from the TRIO definition of the specifica-
tion. Given the simplicity of the new semantics, the algorithm was very easily
and naturally adapted. For instance, the concept of evaluation domain is now
surpassed, embedded in Kleene’s three valued logic, therefore a great part of
the algorithm could be discarded with benefits both in term of efficiency and
easiness of description.

98 CHAPTER 6. AUTOMATIC ANALYSIS OF TRIO SPECIFICATIONS

Chapter 7

The TRIO Tool Suite

The present chapter provides an overview of the TRIO tool suite, by covering
its structure and the main features of the tools1. It must be noted that, beside
the OpenDREAMS projects, various other applications in current industrial
practice have used these tools, e.g. [3, 9].

Notably, this chapter describes the natural and practical offsprings of the
results presented during the previous chapters: TRIO/TC specification editing
and a design methodology (covered by Chapters 4 and 5); specification analy-
sis (covered by Chapter 6).

7.1 Overview

In order to use TRIO for “real-world” systems, it is necessary to provide the
designers with a set of tools supporting the different activities that can be done
using a formal specification language. Such activities can be roughly divided
into:

1. Producing a specification, and

2. Performing computations on the basis of a specification.

Let us note that both activities are related to each other; first of all the de-
signer comes up with a first (partial) draft of the specification of a system, then
(s)he tries to understand whether the specification exactly captures the require-
ments the system should have. This can be done, for instance, by checking
whether a set of possible behaviors of the system are compatible with the spec-
ification, or by trying to formally prove that some properties are satisfied by
the specification. In other words, the designer tries to validate the specifi-
cation. On the basis of the results of this latter activity, (s)he may decide to

1For the interested reader, [48] contains a description and user manuals of the TRIO tool suite.

99

100 CHAPTER 7. THE TRIO TOOL SUITE

Figure 7.1: The TRIO Environment

modify the specification because, for example, some expected properties do
not hold, or because the specification does not include all the relevant aspects
of the system. Once the specification has been modified it should undergo an-
other validation phase. This process may be repeated until the designers are
fully confident on the accuracy of their specification.

The TRIO tool suite supports the two aforementioned activities by means
of a set of specialized tools:

� The editing tool (TGE) for specifying/designing applications using
TRIO/TC;

� The integrated semantics tools (HC/TCG) for validating the specification
against user requirements, and for generating test cases from it.

The structure of these tools and their main interactions are reported in Fig-
ure 7.1.

In what follows we detail the different tools comprising the environment.

7.2 The TRIO Graphic Editor

The TRIO Graphic Editor (TGE) is an interactive graphical editor that fully sup-
ports the TRIO and TC languages. The five major steps of the TC methodology
are also covered, for moving from a TRIO specification to a (partial) TC design.

Specifications are written in an interactive way by defining both the class
hierarchy and the class structure of the system. Moreover, TGE allows one to
define the semantics of the different classes by introducing TRIO axioms.

7.2. THE TRIO GRAPHIC EDITOR 101

Figure 7.2: The TRIO specification

As an example, we report in Figure 7.2 a subset of the structural represen-
tation of the specification of the IMS application, already discussed in Chapter
5.

Starting from a TRIO specification one can move towards a TC design doc-
ument by applying the different steps of the methodology. At each step one
can save the result along with the transformations performed. Moreover, the
semantics transformations are automatically carried out, so that the axioms
providing semantics to the description are kept up to date with the representa-
tion. For instance when introducing operations, axioms stating the properties
of an operation are automatically added. In this way, TGE fully supports the
TC methodology2.

For example, Figure 7.3 shows the graphical representation of the architec-
tural design obtained at the end of the design activity for the system shown in
Figure 7.2.

2The present version of TGE is to be considered as an advanced prototype. Therefore some of
these axiomatic translations are still to be fully implemented.

102 CHAPTER 7. THE TRIO TOOL SUITE

Figure 7.3: The Architectural Graphic Representation

7.3. THE TRIO SEMANTIC TOOLS 103

7.3 The TRIO Semantic Tools

Once a specification (design document) has been written it is necessary to val-
idate against users’ requirements. The validation activity can be conducted
in two different ways: The simpler way consists in checking the specification
against different behaviors of the system that have been written by the design-
ers. Typically the designers describe a set of expected behavior of the system
along with some illegal behaviors and checks whether the former are compat-
ible with the specification while the latter are not. This activity is known as
history checking and, given a complete description of a possible evolution of the
described system, it consists in checking whether the specification is true or
false in that structure, thus providing a yes/no answer.

A more complex validation activity consists in generating from the speci-
fication some (possibly all) models, that is legal behaviors of the system that
fulfill the specification, to see whether or not they correspond to the expecta-
tions of the designer. Notice that this kind of validation activity can also be use
to derive test cases for the implementation: Since a specification is a descrip-
tion of the functionality of the system, it is quite straightforward to use it to
select the input data to be used as test cases. Moreover, if the specification is
executable it is also possible to compute, using the specification, the expected
output, and thus it is possible to compare it to the output produced by the
actual system.

It must be noticed how the above two techniques can be viewed as the two
extremes of a continuum. In fact, let us consider history checking: Besides the
two obvious answers yes or no, a third possibility arises: The history might
describe a legal evolution of the system only under the condition that some
further information is added, in the form of more tuples of values for rela-
tions or variables and functions assignments. The tuples of values added to
the relations interpreting the time dependent predicates would then represent
other events that must be assumed to take place, while the new assignments to
time dependent variables would impose additional constraints on the physical
quantities they represent. The activity of providing such additional constraints
is referred to as completing the history, because ultimately amounts to provid-
ing the missing events and conditions, in order to make it represent a correct
evolution of the system. Now, if the information included in the history is in-
tended as a description of the initial condition and the input stimuli in one hy-
pothetical run of the specified system, then the events and conditions added to
complete the history represent events and configurations taking place as con-
sequences of the initial settings and of the applied stimuli. Thus the activity of
history completion can be naturally converted to a form of system simulation.

The two main TRIO semantic tools are the following:

� The History Checking tool (HC);

� The Test Case Generator tool (TCG).

104 CHAPTER 7. THE TRIO TOOL SUITE

These automatic instruments are based on a tableau algorithm and their
underlying theory is discussed in [21, 30, 33]. Chapter 6 fully describes the
new finite domain semantics used in the present version of the tools.

7.3.1 Validating the specification

The History Checking tool (HC) checks the specification, i.e. the TRIO axioms
describing the system, against a history providing in this way a yes/no answer
to represent whether or not it represents an evolution of the system compatible
with the specification. If the history is not complete, that is it does not con-
tain enough information (e.g., nothing is said about the truth or the falsity of
some predicates at some time instants) the history checker may not be able to
provide a yes/no answer. In such cases the answer will be unknown in order
to represent that the history does not contain enough information. Whenever
the answer provided by the history checker is different from what the user
expected, the problem of finding what is wrong arises. In order to ease the
analysis of what happened the tool has a Trace option whose effect is to pro-
vide information about the evaluation of each axiom of the class in each time
instant.

Figure 7.4 shows the graphical interface of the HC, where as an example we
consider the requirement “When a self-test is started or any other command is sent
to a device the IMS has already acquired the access rights from the Control System”
which has been formalized in the following way:

� � � � � ����� � � ��� � ����� � � � � � �
 � 	 � � ��

 �
�
� � � � � � � � � ��� � � ��� �
 � 	 � � � � � � � �

�
� ���

Furthermore, the following history describes a scenario in which the IMS is
trying to access a device without having acquired the right access.

BEGIN hist0

not access_avail : [2..8]
test_request(3, 4, cmd2) : 3
command_send(4, 6, d_cmd2) : 5
test_end(3, 4) : 7
status(7, degraded1, MaintenanceRemote, C) : 10

END

As a consequence HC provides the answer false meaning that the history is
not a model of the specification, that is the behavior described in the history
is not compatible with the specification of the system. The history considered
in the picture is correct because in that case IMS does have the right access
(
� � � � � � �

�
� ���
�� � � � �
).

Very often the user is interested in stating only what is true, without having
to state what is false. In order to avoid to require that in each time instant the

7.3. THE TRIO SEMANTIC TOOLS 105

Figure 7.4: The History Checker

106 CHAPTER 7. THE TRIO TOOL SUITE

history should state what is true and what is false, the history checker has also
a Closed World assumption option. In this case everything that is not said to be
true is implicitely considered as false. As a consequence the history checker
will be always able to provide a true/false answer.

7.3.2 Test Cases Generation

To build a model for a specification consists of building an execution of the
system that satisfies S. An execution is a sequence of events (i.e., input events,
output events and internal events) that characterizes the execution itself. Gen-
erating all the models of a consists of building the set of histories that de-
scribes all the possible different behaviors of the system specified by . How-
ever, this can lead to a huge number of history, and in many practical cases
requires an unreasonable amount of time and memory.

The problem of generating only the “relevant” histories has been studied
and the complete results can be found in a technical paper [30], where the focus
was on deriving test cases from a TRIO specification. [32] covers the issue for
large, modular systems.

The main idea consists in not deriving the models for every instant, that is
we don’t need to consider that a given event occurs at time 1, at time 2, etc.,
since it is possible to translate the results obtained to different time instants. For
instance, if we know that the event � � at time 2 causes the event � � to occur
at time 7 we can conclude that if � � occurred at time 8 then � � would occur at
time 10. Thus, given a formula � it is possible to generate all possible models
of � that refers to a generic time instant � . Using the terminology introduced
in [30], we refer to such models as partial test cases. Since in general � contains
temporal operators, any partial test case describes the events that must occur
at time � � � � � � ��� � � � � � � ��� � � ����� in order to satisfy � .

Once some partial test cases have been generated for � , it is possible to
compose them in order to generate the different models that satisfy � on a given
temporal domain. This composition activity requires to select a partial test case
for each time instant of the temporal domain by instantiating � with the values
belonging to the temporal domain.

This approach has the advantage of dividing the problem of generating the
models into two different activities that can be carried out separately, allow-
ing in this way a more effective generation of the models. Both activities are
fully supported by the TRIO environment, by means of the Test Case Generator
(TCG) semantic tool.

Figure 7.5 shows the graphical interface of the TCG, during a partial test
case generation session. The current operator is an existential quantifier (the
highlighted subformula), so the tool is asking the user to pick one of the possi-
ble value for the variable

� ��� � .

7.3. THE TRIO SEMANTIC TOOLS 107

Figure 7.5: The Test Case Generator

108 CHAPTER 7. THE TRIO TOOL SUITE

7.4 Platforms and Versions

The TRIO tool suite runs in a Windows 9x/NT environment, since it has been
partially (namely, the TGE portion) written using Microsoft Visual Basic 6.0,
and Microsoft Access.

The semantic tools (TCG/HC) are entirely written using Java Developer Kit
1.2, and therefore totally portable (in fact, the HC and TCG pictures were taken
from a Sun Sparc running Solaris).

The original version of the semantic tools, implementing the first finite-
domain semantics, was written in C and Motif and runs under SunOS 4. A
Linux/Lesstif version of the same tools is also available.

All the tools are public domain.

Chapter 8

Conclusions

This thesis proposed and illustrated a formal method to develop distributed
applications based on CORBA. The method exploits the OO logic language
TRIO and drives the designer to derive a complete CORBA architectural de-
sign through a smooth sequence of steps starting from the specification of the
application requirements.

The method enjoys the typical benefits of formality, i.e. rigor and precision,
both in specification and in verification and the possibility of using automatic
tools (e.g. to generate test cases for the implementation). In particular, the fact
that the semantics of both application specification and architectural design is
expressed in terms of logic formulae allows one, at least in principle, to prove
the correctness of the design as a typical logical implication.

In our approach we choose not to modify in any way the definition of
CORBA (e.g. we do not propose any formal extensions to IDL). Instead, we
decided to preserve its basic features, coupling them with a formal definition.
This TRIO-based method should not be seen as an alternative to existing non-
formal, non CORBA-oriented methods such as UML; rather, it is well suited
to augment, and be integrated with, several existing informal practices [10].
Moreover, even if we focused on CORBA-based architectures, the same ap-
proach in principle could be adapted and applied to other (object-oriented)
middleware such as DCOM and Java/RMI.

Another distinguishing feature of our method with respect to other ap-
proaches such as Darwin [28] and Durra [2] is being tailored towards SCS,
which are mostly demanding in terms of reliability, and often are real-time sys-
tems. Such an orientation, however, does not affect the whole method, which in
large part is well suited for general distributed applications based on CORBA;
only the final step, which exploits typical services and frameworks, is special-
ized towards this application domain. In fact, we also applied the method to
other, non-SCS applications [34].

The fundamental issue of managing real-time aspects in CORBA-based sys-

109

110 CHAPTER 8. CONCLUSIONS

tems, not considered in this thesis, is the objective of [29] where the recent real-
time extension of CORBA is analyzed and formalized and it is shown how to
build potentially guaranteed real-time applications on top of it.

The other major aspect considered in this thesis is to be found in the avail-
ability of supporting CASE tools. In fact, at present an integrated prototype
tool suite is available for the TRIO/TC method: A graphical interactive editor
able to manage the documentation of all phases, from requirement specifica-
tion to architectural design; a complete set of semantics tools for verification
and test case generation.

As far as primary future issues are concerned, we can mention:

� A stronger integration of the TC methodology with the CORBA real-time
issues, and a better theoretical analysis of the related problems;

� a natural expansion of the TC methodology with refinement techniques,
to cover the last aspect of application development, that of implementa-
tion;

� enhancing the automatic support capabilities of the TRIO tool suite, e.g.
with respect to TC axiom modification, still a highly human-intensive
activity.

Appendix A

TC Reference Manual

TC is based upon TRIO, which is extended in its syntax and semantics to in-
clude some concepts typical of CORBA and IDL. This appendix covers the syn-
tax and the outlines of the semantics of the TC specification language.

A.1 TC Syntax

This section provides the EBNF syntax of TC (both the language and the
methodology steps).

A.1.1 Methodology

Step 1

Connection between <TRIO_class> and <TRIO_class_list>
Dataflows <dataflow_decls>
[Shared Items <TRIO_item_list>]
end
<TRIO_class_list> ::= <TRIO_class> {, <TRIO_class>}*
<TRIO_class> ::= <id>
<dataflow_decls> ::= {<dataflow_decl> ";"}+
<dataflow_decl> ::= <dataflow_name> (<dataflow_item_list>)
<dataflow_name> ::= <id>
<dataflow_item_list> ::= <dataflow_item> {"," <dataflow_item>}*
<dataflow_item> ::= <flow_direction> <TRIO_item>
<flow_direction> ::= from | to | fromto
<TRIO_item> ::= <compound_id>
<TRIO_item_list> ::= <TRIO_item> {"," <TRIO_item_list>}*
<compound_id> ::= <id> | <compound_id> "." <id>

111

112 APPENDIX A. TC REFERENCE MANUAL

Step 2.2

Connection between <TRIO_class> and <TRIO_class_list>
Dataflows <dataflow_decls_with_renaming>
[Shared Items <TRIO_item_list>]
end
<dataflow_decls_with_renaming> ::=

{<dataflow_decl_with_renaming> ";"}+
<dataflow_decl_with_renaming> ::= <dataflow_name>

(<dataflow_item_list>) [was <old_dataflow_name>]
<old_dataflow_name> ::= <id>

Step 3.1

ApplicationObjectClass <application_object_class_name>
[derives from <TRIO_class_list> | was <TRIO_class>]
[TRIO items <TRIO_item_list>]
[operations <dataflow_list>]
[attributes <dataflow_list>]
[multicasts <dataflow_list>]
end <application_object_class_name>
<TRIO_class_list> ::= <TRIO_class> {"," <TRIO_class>}*
<TRIO_item_list> ::= <TRIO_item> {"," <TRIO_item>}*
<dataflow_list> ::= <prefixed_dataflow>

{"," <prefixed_dataflow>}*
<prefixed_dataflow> ::= <compound_id>
<application_object_class_name> ::= <id>
<TRIO_class> ::= <id>
<TRIO_item> ::= <compound_id>
<compound_id> ::= <id> | <compound_id> "." <id>

Step 3.2

ApplicationObjectClass <application_object_class_name>
[derives from <TRIO_class_list>]
[TRIO items <TRIO_item_list>]
[operations <dataflow_list_with_merge>]
[attributes <dataflow_list_with_merge>]
[multicasts <dataflow_list_with_merge >]
end <application_object_class_name>
<dataflow_list_with_merge> := <dataflow_with_merge>

{"," <dataflow_with_merge>}*
<dataflow_with_merge> ::= <prefixed_dataflow>

[<merge> | <simple_renaming>]
<merge> ::= "(" merge of <prefixed_dataflow>

"," <dataflow_list> ")"
<simple_renaming> ::= "(" was <prefixed_dataflow> ")"

A.1. TC SYNTAX 113

A.1.2 Language

<TC_specification> ::= <TC_class_decl>+
<TC_class_decl> ::= <interface_decl> |

<TRIO_class_decl> |
<app_obj_decl> |
<environment_class_decl>

<interface_decl> ::= Interface Class <id>
[inherits <Intf_inherited_class_list>]
[type <Intf_type_decl_sec>]
[exceptions <exc_decl_sec>]
[operations <Intf_op_decl_sec>]
[attributes <Intf_attr_decl_sec>]
[axioms

[vars <var_decl_sec>]
<axiom_def_sec>

]
end <id>

<TRIO_class_decl> ::= TRIO Class <id>
[inherits <TRIO_class_inherited_class_list>]
[visible <visible_item_list>]
[temporal domain <temporal_domain>]
[type <logic_type_decl_sec>]
[TI items <TIitem_decl_sec>]
[TD items <TDitem_decl_sec>]
[event items <event_decl_sec>]
[state items <state_decl_sec>]
[modules <module_decl_sec>]
[connections <base_connection_decl_sec>]
[axioms

[vars <var_decl_sec>]
<axiom_def_sec>

]
end <id>

<app_obj_decl> ::= [parallel] Application Object Class <id>
[<any_decl>]
[inherits <AO_inherited_class_list>]
[visible <visible_item_list>]
[temporal domain <temporal_domain>]
[type <logic_type_decl_sec>]
[TI items <TIitem_decl_sec>]
[TD items <TDitem_decl_sec>]
[event items <event_decl_sec>]
[state items <state_decl_sec>]
[used interfaces <AO_interface_decl_sec>]
[used operations <AO_op_decl_sec>]
[used attributes <AO_attr_decl_sec>]
[modules <module_decl_sec>]
[connections <base_connection_decl_sec>]
end <id>

<environment_class_decl> ::= Environment Class <id>

114 APPENDIX A. TC REFERENCE MANUAL

[<any_decl>]
[inherits <Env_inherited_class_list>]
[visible <visible_item_list>]
[temporal domain <temporal_domain>]
[type <logic_type_decl_sec>]
[TI items <TIitem_decl_sec>]
[TD items <TDitem_decl_sec>]
[event items <event_decl_sec>]
[state items <state_decl_sec>]
[modules <module_decl_sec>]
[connections <ext_connection_decl_sec>]
[axioms

[vars <var_decl_sec>]
<axiom_def_sec>

]
end <id>

<Intf_inherited_class_list> ::= <scoped_id_list>
<Intf_type_decl_sec> ::= {<id_list> "=" <Intf_type_decl> ";"}+
<exc_decl_sec> ::= <exc_decl>+
<exc_decl> ::= <id> <exc_member_decl>
<exc_member_decl> ::= ";" |

members {<member> ";"}+
<member> ::= <id_list> ":" <Intf_type_spec>
<Intf_op_decl_sec> ::= <Intf_op_decl>+
<Intf_op_decl> ::= <id> [":" noblock]

[<op_par_decl_sec>]
[returns <op_par_type_spec> ";"]
[<raised_exc_decl_sec>]

<op_par_decl_sec> ::= parameters
[in <op_par_decls>]
[out <op_par_decls>]
[inout <op_par_decls>]

<op_par_decls> ::= {<op_par_decl> ";"}+
<op_par_decl> ::= <id> ":" <op_par_type_spec>
<raised_exc_decl_sec> ::= <exc_id_list> ";"
<exc_id_list> ::= <scoped_id_list>
<Intf_attr_decl_sec> ::= {<Intf_attr_decl> ";"}+
<Intf_attr_decl> ::= <id_list> ":" [read-
only] <op_par_type_spec>
<Intf_type_decl> ::= <Intf_type_spec> |

<array_decl> |
<Intf_type_spec> ::= <base_type> |

<string_type> |
<fixed_pt_type> |
<enum_type> |
<struct_type> |
<scoped_id>

<op_par_type_spec> ::= <base_type> |
<string_type> |
<fixed_pt_type> |
<scoped_id>

A.1. TC SYNTAX 115

<base_type> ::= <floating_point_type> |
<integer_type> |
<char_type> |
<boolean_type> |
<octet_type> |
<any_type>

<string_type> ::= <(w)string> ["[" <natural> "]"]
<(w)string> ::= string |

wstring
<fixed_pt_type> ::= fixed "[" <natural> "," <natural> "]"
<enum_type> ::= enum <id> "{" <id_list> "}"
<array_decl> ::= array {<array_range>}+ of <Intf_type_spec>
<array_range> ::= <array_finite_range>

<array_infinite_range>
<array_finite_range> ::= "[1.." <natural> "]"
<array_infinite_range> ::= "[]"
<struct_type> ::= struct <id> "{" {<member> ";"}+ "}"
<any_decl> ::= "[" <any_def_list> "]"
<any_def_list> ::= <any_def> {"," <any_def>}*
<any_def> ::= [<compound_id> is <IDL_type_union>]
<IDL_type_union> ::= <op_par_type_spec> |

<IDL_type_union> "" <op_par_type_spec>
<TRIO_class_inherited_class_list> ::= <id_list>
<AO_inherited_class_list> ::= <scoped_id_list>
<Env_inherited_class_list> ::= <id_list>
<visible_item_list> ::= <contained_items_id_list>
<logic_type_decl_sec> ::= {<id_list> "=" <logic_type_spec> ";"}+
<TDitem_decl_sec> ::= <TI/TDitem_decl_sec>
<TIitem_decl_sec> ::= <TI/TDitem_decl_sec>
<TI/TDitem_decl_sec> ::= {<TI/TDitem_decl> ";"}+
<TD/TIitem_decl> ::= <function_decl> |

<predicate_decl> |
<proposition_decl> |
<value_decl>

<function_decl> ::= function <id> "(" <logic_param_list> ")"
":" <logic_type_spec> [partial]

<predicate_decl> ::= predicate <id> "(" <logic_param_list> ")"
<proposition_decl> ::= proposition <id>
<value_decl> ::= value <id> ":" <logic_type_spec>
<event_decl_sec> ::= <state/event_decl_sec>
<state_decl_sec> ::= <state/event_decl_sec>
<state/event_decl_sec> ::= {<state/event_decl> ";"}+
<state/event_decl> ::= <id> ["(" <logic_param_list> ")"]
<logic_param_list> ::= <logic_type_spec> {"," <logic_type_spec>}*
<AO_interface_decl_sec> ::= {<AO_interface_decl> ";"}+
<AO_interface_decl> ::= <scoped_interface_class_id>

[":" multicast]
<AO_op_decl_sec> ::= {<AO_op_decl> ";"}+
<AO_op_decl> ::= <scoped_interface_class_id> "::" <id>

[":" multicast]
<AO_attr_decl_sec> ::= {<AO_attr_decl> ";"}+

116 APPENDIX A. TC REFERENCE MANUAL

<AO_attr_decl> ::= <scoped_interface_class_id> "::" <id>
<scoped_interface_class_id> ::= <scoped_id>
<base_connection_decl_sec> ::= {<connect_decl>}+
<ext_connection_decl_sec> ::= {<connect_decl> | <bind_decl>}+
<connect_decl> ::= "(" connect <connected_id_list> ")"
<connected_id_list> ::= <contained_items_id_list> |

<contained_classes_id_list>
<bind_decl> ::= "(" bind <contained_items_id_list> ")"
<module_decl_sec> ::= {<module_decl> ";"}+
<module_decl> ::= <id_list> ":" <module_type>
<module_type> ::= <contained_class_id> |

array "[" <array_of_modules_range> "]"
of <contained_class_id>

<array_of_modules_range> ::= "1.." <range_limit> |
<id>

<contained_items_id_list> ::= <contained_item_id>
{"," <contained_item_id>}*

<contained_classes_id_list> ::= <contained_class_id>
{"," <contained_class_id>}*

<contained_item_id> ::= <compound_id>
<contained_class_id> ::= <id>
<var_decl_sec> ::= {<var_decl> ";"}+
<var_decl> ::= <id_list> ":" <logic_type_spec>
<logic_type_spec> ::= <base_logic_type> |

<logic_enum_type> |
<range_type> |
<id> |
<logic_type_spec> Union <logic_type_spec>

<base_logic_type> ::= real |
integer |
natural |
time |
string |
boolean |
OID |

<logic_enum_type> ::= "{" <id_list> "}"
<range_type> ::= "[" <range_limit> ".." <range_limit> "]"
<range_limit> ::= <natural> |

<letter>
<id_list> ::= <id> {"," <id>}*
<compound_id> ::= <id> |

<compound_id> "." <id>
<compound_id_list> ::= <compound_id> {"," <compound_id>}*
<scoped_id> ::= <id> |

"::" <id> |
<scoped_id> "::" <id>

<scoped_id_list> ::= <scoped_id> {"," <scoped_id>}*

The previous grammar of TC is not complete, since it leaves some nonter-
minals undefined, especially <axiom_def_sec>, which describes the syntax
used to define TC axioms. However, axioms in TC can be defined as in TRIO,

A.2. TC META-CLASSES 117

and the extensions to the TRIO syntax are informally introduced in the follow-
ing sections.

A.2 TC Meta-Classes

A.2.1 Interface Classes

With respect to TRIO, Interface classes do not declare logic items (time-
invariant, time-varying, events, etc.), but IDL-based exceptions, operations and
attributes, instead.

Interface classes can only inherit from other Interface classes, and can-
not contain modules of any kind. Since they can inherit from other Inter-
face classes, they can also inherit from standard CORBA interfaces. Standard
CORBA interface declarations can easily be translated in TC Interface class dec-
larations: These interfaces belong to specific modules (for example CosTrans-
actions::Resource), and must be addressed using their complete scope.

Properties

As it can be seen from the grammar, an Interface class is a pure set of decla-
rations, there are no axioms. In fact, Interface classes are inherited by Appli-
cation Object classes, which are the classes that actually define the semantics
of the items of the Interface classes. This is adherent to the idea that inter-
faces contain little amount of semantics, since they only define how an object
interacts with the environment, but do not describe how the tasks offered by
the interface itself are carried out (i.e., they do not include an implementation
of their methods, which is given by the application objects that inherit them).
Moreover, different application objects might be designed to define different
semantics of the same interface, and this would not be in contradiction with
CORBA principles. It must be noted, however, that in the future it might be
decided to allow Interface classes to define axioms, too.

By definition, all items of an Interface class are visible to outer classes, so
there is no need to include a visible declaration.

Interface to IDL mapping

The translation of an Interface class declaration in an IDL interface definition
is trivial in most cases. Here, we would like to consider a mapping that is less
trivial, that of arrays with unbounded dimensions. In TC, arrays can be de-
clared to have infinite dimensions, by using the empty range []. Now, array
type declarations whose dimensions are all finite are normally mapped on IDL
array type definitions. On the other hand, the declaration of an array that has
at least one dimension that is infinite is translated to the definition of an IDL

118 APPENDIX A. TC REFERENCE MANUAL

sequence: All unbounded dimensions are mapped on unbounded sequences,
while all bounded dimensions are mapped on bounded sequences. The fol-
lowing table shows some examples of translations:

TC declaration IDL typedef translation
a = array [1..10][1..5] of unsigned long typedef unsigned long a[10][5]
a = array [] of short typedef sequence � short � a
a = array [][1..10][1..5] of string typedef sequence � sequence � sequence

� string, 5 � , 10 � � a

A.2.2 TRIO Classes

The members of TC’s TRIO meta-class are usual TRIO classes, they have only
been extended as far as the declarable logic variables are concerned: In TC,
TRIO classes1 can declare logic variables of type boolean, and OID.

TRIO classes can contain, and can also inherit from other TRIO classes. In-
stead, with respect to the other kinds of classes introduced in TC, TRIO classes
can neither contain nor inherit from any other types of classes.

A.2.3 Application Object Classes

Application Object classes’ syntax is basically the same one of TRIO classes,
augmented with three sections to declare interfaces, operations and attributes
used by the application object. Used operations and attributes are visible by
definition, without need to declare it in the apposite visible clause. To “imple-
ment” an interface, an Application Object class must inherit it.

Application Object classes can include modules, too, and, like TRIO classes,
the modules they include can only be instance of the TRIO meta-class. In fact,
an application object including another application object does not have any
correspondence with the CORBA reality; on the other hand, an application
designer might decide, if an application object is too big, to break up its func-
tionalities and represent each of them with a smaller TRIO class, to allow for a
better modularization of the application object. The semantics of connections
is the same as in TRIO classes.

Application Object classes can inherit from other application object classes,
from TRIO classes, and from Interface classes. Since they can inherit from In-
terface classes, the identifiers of the classes they inherit can be either simple, or
completed with their scope. In conformity with IDL, an application object class
cannot inherit from two Interface classes with the same operation or attribute
name (except if the homonymous element is defined in a common ancestor).

1For the sake of readability, whenever no ambiguity can arise we refer to a member of the TC’s
TRIO meta-class by using the term TRIO class.

A.2. TC META-CLASSES 119

ApObj1 ApObj2

IOp

Environment

Figure A.1:

ApObj1ApObj3 ApObj2

I1 I2Op Op

Figure A.2:

It is possible to declare that an operation can be invoked as a multicast.
Notice that, while modeling a multicast in TC is very simple, in practice it
must be implemented through a CORBA service (see Chapter 5).

Operations and attributes used by an application object must be referred by
the interface that exports them, not by an application object that implements
them. The reason of this choice is that an application object might use the
same operation/attribute from two other different application objects, and this
solution leaves all the complexity of the connection to an outer class (which
has to define the exact servers of the operation/attribute). For example, in
the situation depicted by Figure A.1, the fragment of Application Object class
declaration that states that ApObj1 uses operation Op is:

ApplicationObjectClass ApObj1
/* ... */

used operations
I::Op;

end

and not ApObj2::Op. The outer class Environment defines that ApObj1.Op
is in fact bound to ApObj2.Op.

It is possible that ambiguities arise if an application object inherits from
an Interface class (so that it exports the methods and attributes defined in the
interface) and uses an operation/attribute, which is homonymous (possibly
exactly the same one) to one of the exported ones, on another application ob-
ject (see Figure A.2). To uniquely identify homonymous elements, then, we
prefix the name of the imported ones with the name of the Interface class from

120 APPENDIX A. TC REFERENCE MANUAL

which they are used. The exported element (which is unique, since an Appli-
cation Object class cannot inherit from two interfaces that define the same op-
eration/attribute), instead, is not prefixed. In the foregoing situation, to avoid
name clashes in class ApObj1, when referring to the item Op used by this class
on ApObj2, its name must be prefixed with I2, thus becoming I2.Op; on the
other hand, the item that is exported by ApObj1 (i.e. the one used by ApObj3)
is still referred simply by its name (Op).

Properties

All Application Object classes have a predefined item, which represents the
identifier of the corresponding application object. This identifier could be
thought as the reference of the application object, and is used to uniquely ad-
dress a particular Application Object class. In TRIO terms, this predefined item
is declared as follows:

TI items
value _id : OID

Item id is by definition visible in all outer classes (i.e. in all Environment
classes containing the Application Object class). OID is the set of all possible
identifiers that can be assigned to Application Object classes; in TC, OID is a
basic type, so its formal definition is not analyzed any further here.

Notice that � � can be used to model both the standard CORBA object refer-
ence and the object identity as defined by the IdentifiableObject interface of the
CORBA Relationship service. Let us consider an object O whose item id eval-
uates to val id: in the former case val id represents the “value” to which any
other object must point in order to access O; in the latter case val id represents
the identity of object O.

Application object identifiers have some properties that could be expressed
by means of predefined axioms: Every application object has a unique identi-
fier, and there cannot be two different application objects that share the same
identifier. These axioms must be defined in the outmost Environment class,
the one that contains all Application Object classes modeling the whole appli-
cation.

A.2.4 Environment Classes

An Environment class is basically a TRIO class, augmented with some exten-
sions as far as relationships with other kinds of classes are concerned. Due
to these extensions, as we will see later, the syntax and semantics of connec-
tions has also been extended. The meaning of nonterminal � any decl � will be
explained in the next section.

Environment classes have been introduced to be able to unify in the same
frame all the objects (in the common sense of the term) that model the behav-

A.2. TC META-CLASSES 121

ApObj2

I2

Environment

I1

ApObj3ApObj1

Op1 Op2

Figure A.3:

ior of the application being designed; to comply with this idea, Environment
classes, as previously mentioned, can contain classes of any kinds.

Environment classes can inherit either from other Environment classes, or
from TRIO classes.

Since Environment classes can contain classes of any kinds, the concept of
connections had to be extended to take into account the characteristics of oper-
ations and attributes. While the semantics of connections between usual TRIO
items has not changed with respect to TRIO, the idea of connections between
operations and between attributes is new, and so is their semantics: For this
reason it was chosen to use also a different syntax, when dealing with opera-
tions and attributes, and to name the binding of these items as bind instead of
connect.

The binding of two or more operations is possible only if all bound
operations are defined in the same Interface class (i.e., they might be ex-
ported/imported by different Application Object classes, but they must all de-
rive from the same Interface class). The same applies to the binding of two
or more attributes. Suppose, for example, we have the situation illustrated in
Figure A.3; in this case, class Environment, should include declarations

(bind ApObj1.Op1, ApObj3.Op1)
(bind ApObj2.Op2, ApObj3.Op2)

On the other hand, declarations

(bind ApObj1.Op1, ApObj3.Op2)
(bind ApObj2.Op2, ApObj3.Op1)

would not be allowed, even if I1::Op1 and I2::Op2 had exactly the same
signature, since ApObj3.Op2 and ApObj1.Op1 derive from different Interface
classes.

In every declaration of operation binding there must be at least one class
that uses the operation, and at least one that exports it. The same must happen
for attribute bindings.

The definition of connections between entire classes is an extension of that,
which is already included in TRIO: When two or more classes are connected

122 APPENDIX A. TC REFERENCE MANUAL

together, in fact this is an abbreviation for a list of single connections between
their homonymous items. Since in TC there are not only connections, but also
bindings, a connection between classes uses on the single items the appropriate
semantics: connect in case of TRIO items, and bind in case of operations and
attributes.

In every TC specification there must be at least one Environment class, in
order to be able to precisely define all the connections among classes, and their
properties.

A.3 IDL-Specific Elements

Many IDL concepts have been introduced in TC: They have been built upon
basic TRIO concepts of functions, predicates, etc., with little extensions. This
section starts by introducing the representation of some general-purpose IDL
concepts in TC (simple types, structures, arrays and type any); then, the de-
tails of more complex elements (exceptions, operations and attributes) will be
analyzed.

A.3.1 Compound items

With respect to basic TRIO, TC introduces the idea of compound items: Com-
pound items are in TRIO what structures and records are in programming lan-
guages, that is, named collections of items. These items can be values, propo-
sitions, functions, predicates, or other compound items.

TC operations, attributes, exceptions can be described as TRIO compound
items. Compound items deriving from exceptions are by definition sub-items
of other compound items. For example, if exception E is declared in some In-
terface class, the corresponding compound item E is not defined; instead, if
the same exception can be raised by operations Op1 and Op2, when the cor-
responding compound items Op1 and Op2 are defined (i.e. they are macro-
expanded from their declarations), they both have a compound sub-item de-
fined after exception E (Op1.E and Op2.E).

Construction of user-defined sub-items

The following table describes briefly how the user-defined sub-items are in-
ferred from every operation, attribute, exception declaration:

A.3. IDL-SPECIFIC ELEMENTS 123

Declared item User-defined sub-items
Exception There is a sub-item for each member declared in the

exception
Operation There is a sub-item for each parameter declared in

the signature of the operation;
in case the operation returns a value, there is a sub-
item representing the returned value;
there is a compound sub-item for each user-defined
exception that can be raised by the operation

Attribute there is only one user-defined sub-item, represent-
ing the value of the attribute

In the rest of this section we refer by the name typed element one of the fol-
lowing things: A member of an exception; a parameter of an operation; the
returned value of an operation; the value of an attribute. A typed element is
then associated with a CORBA type, and, when translated in TC terms, be-
comes the sub-item of a compound item. The discussion that follows defines
how an IDL typed element is translated into a TC item.

Representing a typed element of simple type

A typed element of type floating point, integer, unsigned integer, fixed, char,
string (and also wchar and wstring), octet, boolean, enum, or reference to an
object (i.e. any interface name) is represented through a TRIO value time-
dependent sub-item (i.e. a time-varying constant), whose domain depends on
the type of the element. Table A.1 describes how the domain of the item is
determined by the IDL type of the element.

As far as characters and strings of characters are concerned, in TC string
is the basic type, and characters are translated in strings of particular length
(one). If, in the foregoing example, we imagine that operation ExOp also has
an input parameter CharInPar (of type char, naturally), this is translated in a
value, whose signature is CharInPar : string, and in a predefined axiom on the
codomain of the function:

� � " � � ��	 � �
 � ��� ��
 � � � � � � � ��� ��
 ��� 	 � �

(the meaning of the prefix ExOp(i) will be clearer after the introduction of
operations).

Every sub-item corresponding to a typed element can also have value Un-
def. For example, the exact TC domain corresponding to the IDL type short
is � �

���
� � �
���
� � 	�� �

�
� � �

. This has been introduced to model parameters, pro-
gramming language variables, etc. when they are not defined.

124 APPENDIX A. TC REFERENCE MANUAL

IDL TC
float, double, long double interval of real, depending on the precision
long, short, long long interval of integer, depending on the precision;

for example type short is represented by range
� ���

���
� � �
���
� � 	

unsigned long, unsigned
short, unsigned long long

interval of natural , depending on the precision; for
example type unsigned long is represented by range
� � � � �

���
� � 	

fixed real - the range of values that an element of this type
can attain is described by ad-hoc predefined axioms
on the sub-item, not discussed here

char, wchar string - in TRIO, string is a basic type, not char, so a
character is defined as a string of length one; this is
translated in an axiom that limits to one the length
of all the string values attached to the sub-item (see
later); at this time TC makes no difference between
char and wchar

string, wstring string - if the string has a maximum size, this is ex-
pressed by means of an axiom that limits the length
of the string attached to the sub-item (see later); at
present, in TC there is no difference between string
and wstring

octet [0..255] - the correspondence is trivial
boolean boolean - the correspondence is trivial
enum enumeration - the correspondence is trivial
reference OID - the reference to an application object is repre-

sented in TC by the identifier of the object

Table A.1: IDL - TC type mappings

A.3. IDL-SPECIFIC ELEMENTS 125

Representing a typed element of type struct

A structure is a group of IDL-typed elements; for this reason, a structured
typed element is translated into a compound item, whose sub-items are built
following the same rules used for typed elements. There is a sub-item for each
field of the structure (the sub-item and the corresponding field of the structure
share the same name).

For example, imagine we have the following definition:

Interface Class I
type

Tstruct = struct s {
e1 : short;
e2 : float;

};
operations

Op parameters
in

S_in : Tstruct;
end I

E.g., the following are syntactically correct formulae: " � � ��	 � � � � � � � � � ;
" � � ��	 � � � � � � � ��� � % ; " � � ��	 � � � � � � � �

�
� � �

.

Representing a typed element of type array

An array of elements can be always seen as a function from the set, which is
the cartesian product of the ranges of its indexes, to the set to which its ele-
ments belong. For this reason, an array of elements is represented by a function
time-dependent sub-item, whose codomain is specified following the rules de-
scribed in the rest of this section. First of all, two types of arrays must be identi-
fied: arrays of simple elements, and arrays of complex elements (i.e. structures,
while arrays of arrays are still arrays); the two cases are treated separately.

Imagine we have an n-dimensional array of simple elements. This is rep-
resented by function, which is built as follows: if we name � � , � � , ... � � the
ranges over which the � indexes of the array can vary, the domain of the func-
tion is the cartesian product � � � ����� � � � , while its codomain depends on the
type of the elements of the array, and is built following the same rules used for
typed elements of basic type. For example, imagine we define the following
Interface class:

Interface Class I
type

Tarray = array [1..10][] of short;
operations

Op parameters
in

126 APPENDIX A. TC REFERENCE MANUAL

Ar_in : Tarray;
end I

then parameter Ar in is represented by a function � � � � , whose signature is
� � � � � � 	 � � � � ���

���
� � �
���
� � 	 � �

�
� � �

.

For example, " � � ��	 � � � � � � � � �!% 	 � ��� addresses element (3,15) of the array.

If we had an n-dimensional array of structures, instead, we could imagine
it as an array (i.e. a function) of compound items. In fact, this is just a sim-
plification: The real representation of an array of structures in TRIO terms (i.e.
the way how a semantic checker represents arrays of structures) is different,
and is not detailed here (to give a brief idea of the real representation, an ar-
ray of structures is translated in a structure whose elements are arrays, that is,
functions). For example, imagine we have the following declaration.

Interface Class I
type

Tarray = array [1..10][] of
struct s { e1 : short; e2 : long; };

operations
Op parameters

in
Ar_in : Tarray;

end I

parameter Ar in is an array of compound items of two elements e1 and e2.
To address the fields of element (1, 52), we can write:

" � � ��	 � � � � � � � �&% � 	 � � � � � � � � " � � ��	 � � � � � � � �&% � 	 � � � � � �

Of course, different combinations of arrays and structures can be imagined,
as in the following example:

Interface Class I
type

Tarray = array [1..10][] of short;
Tar_s1 = array [] of struct1 s1 { e_ar : Tarray; };
Tstruct2 = struct s2 { e_s1 : Tar_s1; };

operations
Op parameters

in
S2_in : Tstruct2;

end I

In this case, the next is a valid formula:

" � � ��	 � � � � � � � � � � 	 � � � � ��� � � � 	 � � �

A.3. IDL-SPECIFIC ELEMENTS 127

Semantics of IDL type any

In TC the IDL type any does not exist, and typed elements of type any are not
represented by a particular TC type. Instead, if a typed element is of type any,
this means that its image is a generic type. First of all, recall that only Interface
classes can declare elements of type any. An Application Object class inheriting
an Interface class that uses type any, or an Environment class including such an
Application Object class, can define the exact semantics of the typed elements
of type any, which are in their scope. The syntax through which this is done is
reported here for the sake of legibility:

<app_obj_decl> ::= [parallel] Application Object Class <id>
[<any_decl>] /* ... */

<environment_class_decl> ::= Environment Class <id>
[<any_decl>] /* ... */

<any_decl> ::= "[" <any_def_list> "]"
<any_def_list> ::= <any_def> {"," <any_def>}*
<any_def> ::= [<compound_id> is <IDL_type_union>]
<IDL_type_union> ::= <op_par_type_spec> |

<IDL_type_union> Union <op_par_type_spec>

where <compound_id> refers to the sub-item of an operation, attribute or
exception, which can be referred in the class; the effective type of the sub-item
is given in terms of IDL types. If an Application Object class or an Environment
class contains elements of type any, but does not specify their exact types by
means of a is clause, then the sub-items remain generic. For example, if we
have the following declarations:

Interface Class IAny
type Tarray = array [1..10][] of short;
operations

OpAny_short parameters
in

Any_in : any;
OpAny_float parameters

in
Any_in : any;

end IAny

Application Object Class AOAny
[OpAny_short.Any_in is short Union IAny::Tarray]

inherits IAny
/* ... */
end

this means that in Application Object class AOAny, parameter
OpAny short.Any in can be either short or Tarray, but OpAny float.Any in
remains generic; as a consequence, in AOAny we can write:

128 APPENDIX A. TC REFERENCE MANUAL

OpAny_short(i).Any_in = 24;

OpAny_short(i).Any_in(2, 20) = -3

but not

OpAny_short(i).Any_in = 24.36;

OpAny_float(i).Any_in = -3;

OpAny_float(i).Any_in = 24.36

If we have also the following definition:

Environment Class Env [AO1.OpAny1.Any_in is float]
/* ... */
modules AO1 : AOAny
/* ... */
end

in Environment class Env, AO1.OpAny short.Any in would be as before,
and AO1.OpAny float.Any in would be of type float. In class Env we could
write, then:

AO1.OpAny_short(i).Any_in(3, 12) = 5;

AO1.OpAny_float(i).Any_in = 24.36

but not

AO1.OpAny_float(i).Any_in(3, 12) = 5.

A.3.2 Exceptions

As in IDL, exceptions can be of two types: standard and user-defined. Standard
exceptions need not be redeclared by the designer, since they are predefined;
user-defined ones, instead, are declared in Interface classes.

Exceptions are represented through compound items, that have as many
non-predefined sub-items as members. Every member of an exception is trans-
lated in an appropriated sub-item, as previously described. For example, if in
an Interface class we defined the following exception:

exceptions
E members

m : string;

A.3. IDL-SPECIFIC ELEMENTS 129

then sub-item m would be a time-varying constant of type string. For ex-
ample, E.m=”error” means that the value of the member is error.

Every exception has one predefined sub-item, an event representing its rais-
ing. It is defined, in TRIO terms, as follows:

event items
raise

For example, � � � � ��� � � � �
 ��� ��� � � � � states that, when exception E is
raised, then m is error.

A.3.3 Operations

Like exceptions, operations are compound items: Every operation has a sub-
item for each parameter, (possibly) a sub-item for the returned value, and a
compound sub-item for each exception it can raise. The representation of each
element (parameter, returned value, or exception) through the appropriate sub-
item has been previously described. For example, if in an Interface class we
defined the following operation:

operations
Op parameters

in
p : string;

raises
Iext::E

then sub-item p would be a time-varying constant of type string.

While an operation can always raise a standard exception, without need
to declare it explicitly, it can only raise the user-defined exceptions that are
explicitly declared in its signature. Exceptions that are declared in external
Interface classes must be declared using their complete scope. An operation
has a compound sub-item for every exception it can raise (standard or not). The
name of the compound sub-item is the simple name of the exception (not its
scoped identifier). For example, the following terms are valid for the operation
Op previously defined: Op(i).E.raise, and Op(j).BAD_PARAM.raise.

Representing different invocations of an operation

When dealing with operations, it is important to separate different invocations
of the same operation (for example, when an application object invokes twice
the same operation we need to separate the different computations). To achieve
this, an operation can be thought as being a sequence of compound items,
where each element corresponds to a different invocation. For example, to
state that at invocation i of the foregoing operation Op, parameter p is “hello”,
we write: " � � ��	 � � ���
 �!��� � � , where parameter i is of type natural.

130 APPENDIX A. TC REFERENCE MANUAL

Predefined sub-items

Every operation has some predefined sub-items:

event items
invoke
reply
send
get_response (boolean)

TI Items
predicate

receiverID (OID)
callerID (OID)

proposition
noblock

Events invoke and reply refer to a synchronous invocation of the operation,
while send and get response model a deferred synchronous invocation.

When the operation is invoked, then either invoke, or send (depending on
how the operation is called) is true; when the operation successfully returns
after having been invoked synchronously, reply is true. When the client of the
operation, after having invoked the operation in a deferred synchronous way,
asks the server if the operation has completed its computation, and it has, then
get response(TRUE) holds; otherwise, it obtains get response(FALSE).

Time-invariant predicates callerID and receiverID associate an invocation
(synchronous or deferred synchronous) of the operation with its client and
server(s). Since the servers on which the operation is invoked can be more than
one, it is possible to model multicasts. On the other hand, the client associated
with one precise invocation of the operation is unique.

Application designers should be very careful when using predicate callerID
in user-defined axioms. In CORBA, an application object which receives an
operation invocation is not aware of the identity of the client (unless the client
passes its reference to the server through an input parameter). Therefore us-
ing predicate callerID in TC user-defined axioms might model the situation in
which the server has by default a reference to the client. When a server needs to
know the identity of the object which invoked a method (to issue a callback, for
example), this method should allow the client to send its reference as input pa-
rameter: Axioms will refer to this parameter, instead of predicate callerID. As a
matter of fact, the main use for predicate callerID is allowing an easy formula-
tion of the semantics of bindings, so it is of great utility for defining predefined
axioms.

Time-invariant proposition noblock is true if and only if the operation has
been defined as noblock (it is useful when an axiom has to check if the oper-
ation is non-blocking of not). Since the fact of being or not non-blocking is a
characteristic that belongs to the operation, not to a specific invocation of it,
proposition noblock has the same value for every invocation.

A.3. IDL-SPECIFIC ELEMENTS 131

In addition to the predefined sub-items described above, other predefined
sub-items have been introduced. They represent the invocation and response
of an operation, independently of how it is invoked (synchronously or deferred
synchronously). These additional predefined sub-items are defined as follows:

event Items
raise_exception({standard, nonstandard})
end_invoke
call
end
complete_ok
end_ok

state Items
computing

The semantics of these sub-items is based on the sub-items previously de-
fined, and could be formally defined by means of TC axioms. However, in
the following discussion, we will simply give an informal definition of the
meaning of the new sub-items, but its formalization is straightforward. The
sub-items have the following semantics.

� raise exception(standard) is true when the operation raises a standard
exception; similarly, raise exception(nonstandard) is true when the oper-
ation raises a non-standard exception.

� end invoke is true when the operation ends its computation (successfully
or not), and the invocation was synchronous (i.e. the computation started
with invoke).

� call is true in the precise moment of an invocation (independently of the
fact that the invocation is synchronous or deferred synchronous).

� end is true when the operation returns to the caller, independently of how
it was invoked and of its outcome (successful or not; in the latter case an
exception is raised).

� complete ok is true when the operation ends its computation success-
fully. The fact that the operation ends successfully does not imply that
it returns its results to the caller, this happens only in the case of a syn-
chronous invocation: in the case of a deferred synchronous invocation,
the client gets the results only when get response is invoked.

� end ok is true when the operation returns its results after a successful
computation, independently of how it was invoked. As a result, it is true
either when reply is true or, in case of a deferred synchronous invoca-
tion, when get response(TRUE) is true and the operation completed its
computation without errors.

� computing is true while the server is still processing the operation. In
the case of deferred synchronous invocation, get response(TRUE) is true

132 APPENDIX A. TC REFERENCE MANUAL

only after (or, at most, in the same instant when) computing becomes
false.

For example, events call and end could be formally defined using other
predefined events, as in the following axioms:

� � ��� � � � � � � � � � � � �
� �5��� � � 	

As further example, state computing could be defined as follows:

$ �!� ��
� � ��� ��
 � ���	� ��� 	 � � � ���
� � � � � � � � � � $ �!� ��
� � � � � ��
 � ���	� ��� 	
� � � � � � � � � � � �5��� � � 	 � ��
�
 � � $ �!� ��
� � � � � ��
 � ���	� ��� 	
	

Predefined axioms

All operations have some properties, which can be formalized using TC ax-
ioms (for example, a simple property could be represented by the fact that an
operation cannot reply to an invocation, if it was not called before).

The axioms that define these properties are predefined; they are included
either in the application object class that exports the operation (the server), or in
the application object class that imports it (the client). The placement is specific
of each axiom, so it is analyzed case by case.

The axioms are defined for each operation, and rule only over the sub-items
of the operation itself. If we name by � � � � a generic operation, some simple
examples of predefined axioms are:

� � � ��� ��	 � � � � � � � ��
�
 � � � � � ��� ��	 � � � � � � � 	 � � � � � ��� ��	 � � � � � � � �
� � � ��� ��	 � � � � � � � � � ��� � 	� � � � � ��� ��� � � � ��� ��	 � � � � � � � � �
	
	
� � � ��� ��	 � � � � � � � � ����� � � � � � ��� ��	 � � � � � 	
� � � ��� ��	 � � � � � � � � � � � � ��� � 	 � � � � � � � �

Notice how these axioms rule over the sub-items of a particular operation,
so if, for example, an Application Object class exports two operations Op1 and
Op2, both axioms

" � � � ��	 � � � � � � � ��
�
 � � " � � � ��	 � � � � � � � 	 � � " � � � ��	 � � � � � � � �
" � � � ��	 � � � � � � � ��
�
 � � " � � � ��	 � � � � � � � 	 � � " � � � ��	 � � � � � � � �

have to be included in the class, because they state the same property, but
for two different operations.

For each operation it uses, an Application Object class must contain the
following axiom:

A.3. IDL-SPECIFIC ELEMENTS 133

� � � ��� ��	 � � � ��� � � � � ��� ��	 � � � ��� ����� � � � � 	

For each operation it exports (i.e. for each operation it inherits from an
Interface class), an Application Object class must contain the following axiom:

� � � ��� ��	 � � � ��� � � � � � � � �!� � � � ����� � � � � 	

In the foregoing axioms, mentioning also � � � ��� ��	 � � � � is needless, since re-
ceiverID and callerID are time-invariant for a specific computation i of the op-
eration: They do not change between the moment when the operation i is in-
voked and the moment when it returns.

When an operation is declared multicast, then it can (but need not) be in-
voked on more than one receiver (i.e. if r id1 and r id2 are different OID vari-
ables, and � � � � is a multicast, then both receiverID(r id1) and receiverID(r id2)
can be true). On the other hand, for each operation � � � � not declared to be a
multicast by the application object class that uses it, the following predefined
axiom is added to the client:

� � � ��� ��	 � � �!� � � � ����� � �5� � � � 	 � � � � ��� ��	 � � �!� � � � ����� � �5� � � � 	 � � � � � � � � � �

A.3.4 Attributes

Attributes are compound items with three sub-items: One sub-item represent-
ing the value of the attribute; one the operation that reads this value; and one
the operation that sets it. The sub-item that represents the value of the at-
tribute is not visible outside the class that exports the attribute. If the attribute
is marked readonly, the sub-item that sets its value does not exist (the attribute
can be changed just by the exporting class).

The value of the attribute is represented by a sub-item named value. If the
IDL type of the attribute is �5� � �	��� � , the operations that read and set its value
are defined (in TC terms) as follows:

operations
get_value returns <Tattr>;
set_value parameters

in new_value : <Tattr>;

The corresponding compound sub-items of the attribute are defined in the
same way as usual operations are in TC. For example, if we define attribute A,
then A.get value(i).invoke is a valid term.

134 APPENDIX A. TC REFERENCE MANUAL

Predefined axioms

In addition to the predefined axioms specific of operations get value and
set value, quite naturally an attribute also has other, more specific predefined
axioms. These axioms bind the outcome of get value and set value operations
to the value of the attribute. For example, an axiom states that get value returns
exactly attr value, and not some other value; another one states that attr value
changes if an only if set value is invoked. For shortness, the actual definition
of these predefined axioms is not included here.

A.3.5 Connections

As previously mentioned, TC introduces a new concept for connections: The
binding of operations and attributes. We do not introduce here the semantic of
a connection between usual TRIO items, since it has not changed with respect
to TRIO. What we would like to analyze in this section is how the bind of oper-
ations and attributes is interpreted. Only Environment classes can contain bind
declarations.

Binding between operations

When two (or more) operations are bound together, some predefined axioms
are added to the Environment class that declared the binding. These axioms
state that:

� For each invocation i of a generic operation � � � � , the calling application
object is unique.

� When an Application Object class, which uses operation � � � � , invokes the
operation (i.e. � � � � (i).call is true) on the application object(s) specified by

� � � � (i).receiverID(id), then in this (these) application object(s) � � � � (i).call
is also true.

� When an Application Object class, which exports operation � � � � , replies
to a preceding invocation of the operation (i.e. � � � � (i).end is true), then in
the calling application object (which is unique) � � � � (i).end is also true.

� When invocation i of operation � � � � either is issued, or its reply is sent
to the caller (i.e. either � � � � (i).call, or � � � � (i).end is true), then the com-
pound items � � � � (i) of the application objects involved in the invocation
are identical.

� If an Application Object class � client class � uses operation � � � � , then
� client class � . � � � � (i).receiverID(r id) is true only if r id is the identi-
fier of an Application Object class that exports � � � � and is bound to

� client class � .

A.3. IDL-SPECIFIC ELEMENTS 135

To express the previous properties (except the last one, which is not be for-
malized here), recall that in every declaration of operation binding there must
be at least one class that uses the operation, and at least one that exports it.
We say that a client/server pair ��� � �	� � � � � � � � � � � � ��� � ��� � � � � � �
	 is inferable from
a binding if � client class � and � server class � are both involved in the binding
(since they import/export the operation that is the object of the binding). For
example, if Op is a multicast from application object Client to application ob-
jects Server1 and Server2 and we have the binding

(bind Client.Op,Server1.Op,Server2.Op)

then � � � �	� � � � ��� � ��� � 	 and � � � �	� � � � ��� � ��� � 	 are the only two possible
client/server inferable pairs.

For each operation � � � � declared in a binding of an Environment class, for
each possible client/server pair � ��� � �	� � � � � � � ��� � ��� �
	 , inferable from that bind-
ing, the following axioms are automatically added to the Environment class:

��� � �	� � � � � � � � ��� ��	 � � � ��� � ��� � �	� � � � � � � � ��� ��	 � � �!� � � � ����� � � � � ��� � ��� � � � � 	 �
� � ��� � ��� � � � � � ��� ��	 � � � ��� � � � ��� � ��� � � � � � ��� ��	 � � � ��� ����� � � ��� � �	� � � � � � � 	

��� � �	� � � � � � � � ��� ��	 � � � � � ��� � �	� � � � � � � � ��� ��	 � � �!� � � � ����� � � � � ��� � ��� � � � � 	 �
� � ��� � ��� � � � � � ��� ��	 � � � � � � � ��� � ��� � � � � � ��� ��	 � � � ��� ����� � � ��� � �	� � � � � � � 	
�
� ��� � �	� � � � � � � � ��� ��	 � � � � � � � ��� � ��� � � � � � ��� ��	 � � � � 	 �
� ��� � �	� � � � � � � � ��� ��	 � � � ��� � � � ��� � ��� � � � � � ��� ��	 � � � ��� 	
	 �
��� � �	� � � � � � � � ��� ��	 � � �!� � � � ����� � � � � ��� � ��� � � � � 	 �
� � ��� � ��� � � � � � ��� ��	 � � � ��� ����� � � ��� � �	� � � � � � � 	 �
��� � �	� � � � � � � � ��� ��	 � � � ��� � ��� � � � � � ��� ��	

In the foregoing axioms, the equality between compound items
(��� � �	� � � � � � � � ��� ��	 � � � ��� � ��� � � � � � ��� ��) is a shorthand for:

� ��� � �	� � � � � � � � ��� ��	 � � � � � � � � � � ��� � ��� � � � � � ��� ��	 � � � � � � � 	 �
� ��� � �	� � � � � � � � ��� ��	 � � � � � � � � ��� � ��� � � � � � ��� ��	 � � � � � 	 �
� ��� � �	� � � � � � � � ��� ��	 � � �!� � � � ����� � � � � 	 � � � ��� � ��� � � � � � ��� ��	 � � �!� � � � ����� � � � � 	
	 �
� ��� � �	� � � � � � � � ��� ��	 � � � � � � � � � ��� � ��� � � � � � ��� ��	 � � � � � �
	 �
� ��� � �	� � � � � � � � ��� ��	 � � � �	��� � � � � � ��� � ��� � � � � � ��� ��	 � � � �	��� � � 	 �

where � � � � � means that a similar formula must be written for every parameter
of the operation, and the formula on returns is written only if the operation
returns a value.

��� � �	� � � � and � � ��� � ��� � can possibly refer to the element of an array of mod-
ules declared in the Environment class (for example Server[j]).

The axioms that define the binding between operations/attributes could
be thought as modeling the behavior of the ORB. As a consequence, a delay

136 APPENDIX A. TC REFERENCE MANUAL

(constant or variable) might be introduced between the moment when the in-
vocation of an operation is issued, and the moment when it is received.

Binding between attributes

When two (or more) operations are bound together in an environment class,
this declaration is translated in the binding of the single operations (get value
and set value) that compose the attribute. This binding has the same semantics
and follows the same rules described in the previous case.

A.3.6 Degree of concurrence of Application Object classes

When an Application Object class is declared to be parallel, it can issue/receive
multiple operation invocations at the same time. This is allowed by default if
no additional axioms forbidding concurrent processing of different operations
are added to the class.

On the other hand, when an Application Object class is not declared to be
parallel, some predefined axioms, preventing concurrent invocations of opera-
tions, must be included in the class. These axioms state that, when an operation
invocation is issued/received, the application object cannot issue/receive any
other operation invocations until the first operation has completed process-
ing, that is, the application object is blocked. These axioms have the following
structure:

� � � � ��� ��	 � � � � � � � � �
� �	����� � � � � � � � � ��� � 	 � � � ��� � � � � � ��� � 	 � � � ��� �

����� � � � � � ��� � 	 � � � ��� 	 � � � � � ��� � 	 � � � � � � � � � � 	
� � � � ��� ��	 � � � ��� � � � � � � � ��� � 	 � � � ��� � � � ��� ��� � 	 � � � ��� � � � � � � � � � ��� � 	 � � � ��� 	
� � � � ��� ��	 � � � ��� � � � � � ��� � 	 � � � ��� � � � �

� � � � � � ����� � � � � � are all the operations that the application object can im-
port/export.

Appendix B

The IMS TRIO Specification

B.1 General-purpose classes

Classes ’IDTypes’ and ’VarTypes’ define some ad-hoc types of variables, which
are used by all other classes.

The next class defines the nature of the identifiers of the elements (devices,
measures, calibrations) involved in the application. Identifiers of physical de-
vices are represented by natural numbers; different kinds of physical devices
are associated with different ranges over the set of naturals.

Class IDTypes
type

TchannelID = [1..C];
TsingleDevID = [C+1..D];
TcomponentDevID = [D+1..P];
TdevPartID = [P+1..N];

TmeasuringChanID = TchannelID Union TsingleDevID;
TdevID = TsingleDevID Union TcomponentDevID;
TcomponentID = TcomponentDevID Union TdevPartID;
TallDevID = TchannelID Union TsingleDevID

Union TcomponentDevID Union TdevPartID;

TmeasureID = string;
TcalibID = string;

end

Class VarTypes
type

Tdev_status = {ok, degraded1, degraded2, out_of_order};
operating_mode = {ControlRemote, ControlLocal, MaintenanceRemote,

MaintenanceLocal, Commissioning};
meas_value = real;
validity_index = integer;
temporal_tag = string;
date = string;
zero_error = real;

137

138 APPENDIX B. THE IMS TRIO SPECIFICATION

span_error = real;
linear_eq = string;
counter = natural;
access_permission = string;
dev_functional_name = string;
dev_type = string;
dev_manufacturer&model = string;
dev_description = string;
dev_image = string;
dev_strategic_key = string;
min_value = real;
max_value = real;
max_variation = real;
dev_command = string;
test_command = string;
AM_status_name = string;
alarm_name = string;
Talarm_status ={on, off};
ack_rule = {none, simple, active, all};

end

B.2 Component classes

B.2.1 Class IMSClass

Class IMSclass

inherit IDTypes, VarTypes

visible chan_status, chan_detailed_status, measure_info, calib_info,
dev_age, dev_static_info, dev_max_age, test_request, test_end,
command_send, cyclic_acq, on_variation_acq, IMS_change_dev_status,
access_request, access_granted, access_denied, abort_request,
access_yield, dev_component, measure_of_test, dev_calib, MC_measure

temporal domain real

/* The time-invariant items describe the knowledge that the IMS have
about the system. In the following description, arg1, ... argn
correspond to the n-th parameter of a predicate. ’dev_component’
associates every physical device (arg1) that is articulated in
subdevices with its components (arg2); ’measure_of_test’ describes,
for each test command (arg2) that can be sent to a device (arg1),
which are the measures (arg3) returned after the test. ’dev_calib’
associates every device (arg1) with its calibrations (arg2);
’MC_measure’ describes, for every measuring channel (arg1), which are
the measures (arg2) that it returns. */

TI Items
predicate dev_component (TmeasuringChanID

Union TcomponentDevID, TcomponentID);
predicate measure_of_test (TmeasuringChanID,

test_command, TmeasureID);
predicate dev_calib (TdevID, TcalibID);
predicate MC_measure (TmeasuringChanID, TmeasureID);

B.2. COMPONENT CLASSES 139

/* The first argument of the following time-dependent predicates
represents the measuring channel (a single physical device in the case
of calibration parameters) from which the data is retrieved. The
detailed status of a measuring channel (’chan_detailed_status’) is
represented by the status of each one of its components. */

TD Items
predicate chan_status (TmeasuringChanID,

Tdev_status, operating_mode, access_permission);
predicate chan_detailed_status (TmeasuringChanID,

TcomponentID, Tdev_status);
predicate measure_info (TmeasuringChanID, TmeasureID,

meas_value, validity_index, temporal_tag);
predicate calib_info (TdevID, TcalibID, date, zero_error,

span_error, linear_eq);

/* In the following event items, the parameter of type ’natural’ is
used to separate different events of the same type (for example two
different test requests, or cyclic acquisitions). Parameters of type
’TmeasuringChanID’ and ’TdevID’) represent the measuring
channel/single device with which the IMS is interacting. ’test_end’
corresponds to a precise ’test_request’ through its parameters. */

event Items
test_request (natural, TmeasuringChanID, test_command);
test_end (natural, TmeasuringChanID);
command_send (natural, TdevID, dev_command);
cyclic_acq (natural, TmeasuringChanID);
on_variation_acq (natural, TmeasuringChanID);
IMS_change_dev_status (TmeasuringChanID, natural, AM_status_name);
access_request (natural);
access_granted (natural);
access_denied (natural);
abort_request (natural);
access_yield (natural);

/* State ’validating’ is true when measure arg2 from measuring channel
arg1 is being validated. ’access_avail’ is true when the IMS has the
access rights to operate (i.e. send commands, including test-on-demand
ones) on the devices. */

state Items
validating (TmeasuringChanID, TmeasureID);
access_avail;

axioms
vars

AM, AM1, AM2, MC, MC1, MC2 : TmeasuringChanID;
dev, dev1, dev2 : TdevID;
sn1, sn2 : AM_status_name;
test_cmd, test_cmd1, test_cmd2 : test_command;
dev_cmd, dev_cmd1, dev_cmd2 : dev_command;
i, j, k : natural;
t : time;

/* State ’access_avail’ is true from the moment the CS grants the IMS
the access to the devices (’access_granted), until the moment ths IMS
gives the access rights back to the CS (’access_yield’). Access rights

140 APPENDIX B. THE IMS TRIO SPECIFICATION

can be released only if they had been previously acquired. */

Definition_of_state_’access_avail’_1:
Becomes(access_avail) <-> ex i (access_granted(i))

Definition_of_state_’access_avail’_2:
Becomes(˜access_avail) <-> ex i (access_yield(i))

Necessary_condition_for_’access_yield’:
access_yield(i) -> access_avail

/* While it has the access rights on the devices, the IMS does not
request them any more to the CS. Similarly, if the IMS is waiting for
the CS to answer to an access request, it does not issue further
access requests. */

No_further_access_requests_when_access_already_available:
access_avail -> ˜access_request(i)

No_more_access_requests_while_waiting_for_the_access_to_be_granted:
t <> 0 & LastTime (access_request(i), t) &
Lasted_ii (˜(access_granted(i) | access_denied(i) |

abort_request(j)), t) ->
˜access_request(k)

/* If the IMS has not received any answer from the CS within a minute
after an access rights request, it aborts the request
(’abort_request’). */

Necessary_and_sufficient_condition_for_’abort_request’:
ex i, t (t = 60 & LastTime (access_request(i), t) &

Lasted_ii (˜(access_granted(i) | access_denied(i)), t))
<-> ex j (abort_request(j))

/* As previously mentioned, the ’natural’ argument of the event items
separates two different instances of the same event. The following
axioms, then, define that the IMS cannot issue a request to the CS
twice at the same time. */

Only_one_request_to_the_ControlSystem_at_a_time_1:
access_request(i) & access_request(j) -> i = j

Only_one_request_to_the_ControlSystem_at_a_time_2:
access_yield(i) & access_yield(j) -> i = j

Only_one_request_to_the_ControlSystem_at_a_time_3:
abort_request(i) & abort_request(j) -> i = j

/* This specification does not define when the IMS changes the status
of a ’MeasChanAlarmMgr’ class. This is tightly linked to the semantics
of validation, which is not entirely clear. However, the IMS cannot
notify a ’MeasChanAlarmMgr’ two different status changes at the same
time. */

Uniqueness_of_’MeasChanAlarmMgr’_status_change
IMS_change_AM_status(AM, i, sn1) &
IMS_change_AM_status(AM, j, sn2) ->

i = j & sn1 = sn2

/* The following axioms define when the IMS can send commands
(including test-on-demand requests) to a device. Commands can be sent
only when the IMS has the rights to operate on the devices; if the IMS
sends a command to a device, it does not issue any other requests to
the device at the same time (not even data acquisitions, since these

B.2. COMPONENT CLASSES 141

can be performed only when the plant is under the control of the CS,
as stated by axiom
Acquisition_from_devices_only_during_normal_control_operations); the
IMS does not send any other requests to a device which still has to
complete a test. */

Commands_sent_only_when_access_to_devices_is_available:
command_send(i, dev, dev_cdm) | test_request(i, MC, test_cmd)
-> access_avail

No_command_sent_or_test_requested_on_the_same_device_at_the_same_time:
test_request(i, MC, test_cmd) ->

˜(command_send(j, dev, dev_cmd) &
(dev = MC | dev_component(MC, dev)))

No_more_test_requests_or_command_issue_on_a_device_that_must_still
_complete_a_test:

test_request(i, MC, test_cmd1) ->
Until (˜(command_send(j, dev, dev_cmd) &

(dev = MC | dev_component(MC, dev))) &
˜(test_request(j, MC, test_cmd2)), test_end(i, MC))

Uniqueness_of_command_sent_to_a_device:
command_send(i, dev, dev_cmd1) & command_send(j, dev, dev_com2) ->

i = j & dev_cmd1 = dev_cmd2

Uniqueness_of_test_requested_to_a_device:
test_request(i, MC, test_cmd1) & test_request(j, MC, test_com2) ->

i = j & test_cmd1 = test_cmd2

/* usual acquisition operations are launched only when the devices are
driven by the CS: when they are under the the control of the IMS, data
is acquired thorugh tests. Furthermore, no measure retrieved from the
device must be under validation. */

Acquisition_from_devices_only_during_normal_control_operations:
cyclic_acq(i, MC) -> ˜access_avail & ˜validating(MC, mID)

/* In the case of event item ’cyclic_acq’, the ’natural’ parameter,
which identifies different instances of the event, plays also the role
of a counter of the number of acquisition requests issued (notice that
this is not true for the other event items: the event identifier does
not define any ordering among events, in general); this is necessary
to be able to express axiom
At_least_50_data_must_be_retrieved_every_3_seconds_during_cyclic
_acquisition (whose meaning is clear). As far as the latter axiom is
concerned, notice that when ’access_avail’ is false, then the CS is
driving the plant, which is operating in normal mode, then (i.e. the
IMS must simply acquire the data); on the other hand, when the IMS is
driving the plant (’access_avail’ is true), it can acquire data only
through tests. */

In_the_case_of_’cyclic_acq’_the_index_is_also_a_counter:
cyclic_acq(i, MC1) & i <> 0 -> SomPi (cyclic_acq(i-1, MC2))

At_least_50_data_must_be_retrieved_every_3_seconds_during_cyclic
_acquisition:

Lasts (˜access_avail, 3) ->
ex i, MC1, MC2 (WithinF (cyclic_acq(i, MC1), 3) &

WithinF (cyclic_acq(i+49, MC2), 3))

142 APPENDIX B. THE IMS TRIO SPECIFICATION

/* Validation of a measure starts when the measure is retrieved
(either through a test, or through a cyclic acquisition, or through an
’on variation’ acquisition) from a measuirng channel. The following
axioms are the only ones that define when the validation is
performed. Nothing is said about how the validation is done, nor when
it ends. */

Definition_of_’validating’_state_1:
validating(MC, mID) ->

ex test_cmd (measure_of_test(MC, test_cmd, mID)) |
MC_measure(MC, mID)

Definition_of_’validating’_state_2:
Becomes (validating(MC, mID)) <->

ex i (((cyclic_acq(i, MC) | on_variation_acq(i, MC))
& MC_measure(MC, mID)) |

(test_end(i, MC) &
ex test_cmd (SomP (test_request(i, MC, test_cmd)) &

measure_of_test(MC, test_cmd, mID))))

/* The following axioms define that argument of type ’natural’ of
every event item separates two different issues of the same event. */

Uniqueness_of_event_index_1:
access_request(i) & t <> 0 -> ˜Dist (access_request(i), t)

Uniqueness_of_event_index_2:
abort_request(i) & t <> 0 -> ˜Dist (abort_request(i), t)

Uniqueness_of_event_index_3:
access_yield(i) & t <> 0 -> ˜Dist (access_yield(i), t)

Uniqueness_of_event_index_4:
IMS_change_AM_status(AM1, i, sn1) & t <> 0 ->

˜Dist (IMS_change_AM_status(AM2, i, sn2), t)
Uniqueness_of_event_index_5:

IMS_change_AM_status(AM1, i, sn1) &
IMS_change_AM_status(AM2, i, sn2) ->

AM1 = AM2 & sn1 = sn2
Uniqueness_of_event_index_6:

test_request(i, MC1, test_cmd1) & t <> 0 ->
˜Dist (test_request(i, MC2, test_cmd2), t)

Uniqueness_of_event_index_7:
test_request(i, MC1, test_cmd1) &
test_request(i, MC2, test_cmd2) ->

MC1 = MC2 & test_cmd1 = test_cmd2
Uniqueness_of_event_index_8:

command_send(i, dev1, dev_cmd1) & t <> 0 ->
˜Dist (command_send(i, dev2, dev_cmd2), t)

Uniqueness_of_event_index_9:
command_send(i, dev1, dev_cmd1) &
command_send(i, dev2, dev_cmd2) ->

dev1 = dev2 & dev_cmd1 = dev_cmd2
Uniqueness_of_event_index_10:

cyclic_acq(i, MC1) & t <> 0 -> ˜Dist (cyclic_acq(i, MC2), t)
Uniqueness_of_event_index_11:

cyclic_acq(i, MC1) & cyclic_acq(i, MC2) -> MC1 = MC2
end IMSclass

B.2. COMPONENT CLASSES 143

B.2.2 Class GPDBClass

Class GPDBclass
inherit IDTypes, VarTypes

visible chan_status, chan_detailed_status, measure_info, calib_info,
dev_age, dev_static_info, dev_max_age, test_request, test_end,
command_send, cyclic_acq, on_variation_acq, GPDB_change_dev_status,
measure, status, detailed_status, dev_component, measure_of_test,
dev_calib, MC_measure

temporal domain real

/* The following predicates have the same meaning as in class
’HMIClass’ */

TI Items
predicate dev_component (TmeasuringChanID Union TcomponentDevID,

TcomponentID);
predicate measure_of_test (TmeasuringChanID, test_command,

TmeasureID);
predicate dev_calib (TdevID, TcalibID);
predicate MC_measure (TmeasuringChanID, TmeasureID);

TD Items
predicate chan_status (TmeasuringChanID, Tdev_status,

operating_mode, access_permission);
predicate chan_detailed_status (TmeasuringChanID, TcomponentID,

Tdev_status);
predicate measure_info (TmeasuringChanID, TmeasureID, meas_value,

validity_index, temporal_tag);
predicate calib_info (TdevID, TcalibID, date, zero_error,

span_error, linear_eq);

event Items
test_request (natural, TmeasuringChanID, test_command);
test_end (natural, TmeasuringChanID);
command_send (natural, TdevID, dev_command);
cyclic_acq (natural, TmeasuringChanID);
on_variation_acq (natural, TmeasuringChanID);
GPDB_change_AM_status (TmeasuringChanID, natural, AM_status_name);

/* In the following state items, arg1 determines the physical
measuring channel (represented by an element of array
’MeasuringChannels’) with which data are exchanged. */

state Items
measure (TmeasuringChanID, TmeasureID, meas_value, validity_index,

temporal_tag);
status (TmeasuringChanID, Tdev_status, operating_mode,

access_permission);
detailed_status (TmeasuringChanID, TcomponentID, Tdev_status);

axioms
vars

AM, AM1, AM2, MC, MC1, MC2 : TmeasuringChanID;
comp, subcomp : TcomponentID;
dev : TdevID;
cal : TcalibID;
d, d1, d2 : date;

144 APPENDIX B. THE IMS TRIO SPECIFICATION

z_e, z_e1, z_e2 : zero_error;
s_e, s_e1, s_e2 : span_error;
lin_eq, lin_eq1, lin_eq2 : linear_eq;
mID : measureID;
mval : meas_value;
vi : validity_index;
timetag : temporal_tag;
dev_s : Tdev_status;
om : operating_mode;
ac_p : access_permission;
test_cmd : test_command;
sn1, sn2 : AM_status_name;
i, j : natural;

/* As for the IMS, this specification does not define when the GPDB
changes the status of a ’MeasChanAlarmMgr’ class. The GPDB cannot
notify a ’MeasChanAlarmMgr’ two different status changes at the same
time. */

Uniqueness_of_’MeasChanAlarmMgr’_status_change:
GPDB_change_AM_status(AM, i, sn1) &
GPDB_change_AM_status(AM, j, sn2) ->

i = j & sn1 = sn2

/* The GPDB cannot notify the IMS the abnormal variation of a
quantity, if the IMS is retrieving that measurement thrugh cyclic
acquisition at the same time. */

No_’on_variation_acq’_when_’cyclic_acq’_is_performed:
cyclic_acq(i, MC) -> ˜on_variation_acq(j, MC)

/* The following axioms define the correspondence between ’measure’
and ’measure_info’, ’status’ and ’chan_status’ and ’detailed_status’
and ’chan_detailed_status’: when the GPDB sends data to the IMS, they
are in fact retrieved from the measuring channels. */

Status_data_sent_on_’cyclic_acq’_on_’on_variation_acq’_and_on_test:
cyclic_acq(i, MC) | on_variation_acq(i, MC) | test_end(i, MC) ->

(dev_component(MC, comp) ->
ex dev_s (chan_detailed_status(MC, comp, dev_s) &

detailed_status(MC, comp, dev_s))) &
(dev_component(MC, comp) & dev_component(comp, subcomp) ->

ex dev_s (chan_detailed_status(comp, subcomp, dev_s) &
detailed_status(comp, subcomp, dev_s))) &

ex dev_s, om, ac_p (chan_status(MC, dev_s, om, ac_p) &
status(MC, dev_s, om, ac_p))

Measure_data_sent_on_’cyclic_acq’_and_’on_variation_acq’:
(cyclic_acq(i, MC) | on_variation_acq(i, MC)) &
MC_measure(MC, mID) ->

ex mval, vi, timetag (measure_info(MC, mID, mval, vi, timetag) &
measure(MC, mID, mval, vi, timetag))

Measure_data_sent_on_test:
test_end(i, MC) & SomP(test_request(i, MC, test_cmd)) &
measure_of_test(MC, test_cmd, mID) ->

ex mval, vi, timetag (measure_info(MC, mID, mval, vi, timetag) &
measure(MC, mID, mval, vi, timetag))

B.2. COMPONENT CLASSES 145

/* Calibration parameters are sent to the IMS only when the GPDB
notifes the IMS about the abnormal variation of a quantity; a device
cannot have different parameters for the same calibration at the same
time. */

Calibration_data_sent_only_on_’on_variation_acq’:
on_variation_acq(i, MC) & dev_calib(dev, cal) &
(MC = dev | dev_component(MC, dev)) ->

ex d, z_e, s_e, lin_eq(calib_info(dev, cal, d, z_e,
s_e, lin_eq))

Uniqueness_of_’calib_info’:
calib_info(dev, cal, d1, z_e1, s_e1, lin_eq1) &
calib_info(dev, cal, d2, z_e2, s_e2, lin_eq2) ->

d1 = d2 & z_e1 = z_e2 & s_e1 = s_e2 & lin_eq1 = lin_eq2

/* A test ends only if it was previously requested; when a test is
requested, it must be completed. */

Behavior_of_’test_end’_1:
test_end(i, MC) ->
ex test_cmd (SomP (test_request(i, MC, test_cmd)))

Behavior_of_’test_end’_2:
test_request(i, MC, test_cmd) -> SomF (test_end(i, MC))

/* The following axioms define that argument of type ’natural’ of
every event item separates two different issues of the same event. */

Uniqueness_of_event_index_1:
GPDB_change_AM_status(AM1, i, sn1) & t <> 0 ->

˜Dist (GPDB_change_AM_status(AM2, i, sn2), t)
Uniqueness_of_event_index_2:

GPDB_change_AM_status(AM1, i, sn1) &
GPDB_change_AM_status(AM2, i, sn2) ->

AM1 = AM2 & sn1 = sn22
Uniqueness_of_event_index_3:

test_end(i, MC1) & t <> 0 -> ˜Dist (test_end(i, MC2), t)
Uniqueness_of_event_index_4:

test_end(i, MC1) & test_end(i, MC2) -> MC1 = MC2
Uniqueness_of_event_index_5:

on_variation_acq(i, MC1) & t <> 0 ->
˜Dist (on_variation_acq(i, MC2), t)

Uniqueness_of_event_index_6:
on_variation_acq(i, MC1) & on_variation_acq(i, MC2) -> MC1 = MC2

end GPDBclass

B.2.3 Class MeasuringChannel

Class MeasuringChannel
inherit IDTypes, VarTypes

visible measure, status, detailed_status, is_component

temporal domain real

146 APPENDIX B. THE IMS TRIO SPECIFICATION

/* Predicate ’is_component’ determines which are the components of the
measuring channel. The definition of the predicate can be found in
class ’IMSApplication’ */

TI Items
is_component (TcomponentID);

state Items
measure (TmeasureID, meas_value, validity_index, temporal_tag);
status (Tdev_status, operating_mode, access_permission);
detailed_status (TcomponentID, Tdev_status);

axioms
vars

comp : TcomponentID;
mID : measureID;
mval1, mval2 : meas_value;
vi1, vi2 : validity_index;
timetag1, timetag2 : temporal_tag;
dev_s, dev_s1, dev_s2 : Tdev_status;
om1, om2 : operating_mode;
ac_p1, ac_p2 : access_permission;

/* The measurement and status data sent by a measuring channel are
consistent: a measuring channel cannot send at the same time different
values for the measurment of a quantity, or for the global status of
the channel, or for the status of a component of the measuring channel
*/

Definition_of_state_’measure’:
measure(mID, mval1, vi1, timetag1) &
measure(mID, mval2, vi2, timetag2) ->

mval1 = mval2 & vi1 = vi2 & timetag1 = timetag2

Definition_of_state_’status’:
status(dev_s1, om1, ac_p1) & status(dev_s2, om2, ac_p2) ->

dev_s1 = dev_s2 & om1 = om2 & ac_p1 = ac_p2

Definition_of_state_’detailed_status’_1:
detailed_status(comp, dev_s1) & detailed_status(comp, dev_s2)
-> dev_s1 = dev_s2

/* ’detailed_status’ contains information only about the components of
the measuring channel (other devices are ignored). */

Definition_of_state_’detailed_status’_2:
detailed_status(comp, dev_s) -> is_component(comp)

end MeasuringChannel

B.2.4 Class MeasChanAlarmMgr

Class MeasChanAlarmMgr
inherit IDTypes, VarTypes

visible alarm_notify, alarm_ack, GPDB_change_AM_status,
IMS_change_AM_status temporal domain real

B.2. COMPONENT CLASSES 147

/* Predicate ’is_alarm’ determines if a certain status of the
measuring channel represents an alarm situation. */

TI Items
predicate is_alarm(AM_status_name);

/* As in the foregoing classes, in the following event items, the
parameter of type ’natural’ is used to separate different events of
the same type (for example two different alarm notifications). */

event Items
alarm_notify (natural, alarm_name, Talarm_status, temporal_tag,

ack_rule);
alarm_ack (natural, alarm_name);
GPDB_change_AM_status (natural, AM_status_name);
IMS_change_AM_status (natural, AM_status_name);

/* State ’status’ keeps track of the current status of the measuring
channel; ’alarm_enabled’ determines if the alarm represented by arg1
is enabled; ’alarm_ack_rule’ associates an alarm with its current
acknowledgment rule. */

state Items
status (AMstatus_name);
alarm_ack_rule (alarm_name, ack_rule);
alarm_enabled (alarm_name);

axioms
vars

i, j : natural;
al, : alarm_name;
al_s, al_s1, al_s2 : Talarm_status;
sn, sn1, sn2 : AM_status_name;
timetag : temporal_tag;
ack_r, ack_r1, ack_r2 : ack_rule;

/* The status of a measuring channel changes if and only if either the
IMS, or the GPDB notify its change; the status of a measuring channel
is unique. */

Definition_of_state_’status’_1:
Becomes (status(sn)) <->

ex i (IMS_change_AM_status(i, sn) |
GPDB_change_AM_status(i, sn)) & ˜status(sn)

Definition_of_state_’status’_2:
status(sn1) & status(sn2) -> sn1 = sn2

/* The acknowledgment rule of an alarm is unique; every alarm is
associated with an acknowledgment rule (which can possibly be
’none’). While an alarm is active, it cannot change of acknowledgment
rule, nor switch from ’enabled’ to ’not enabled’ (or viceversa). */

Definition_of_state_’alarm_ack_rule’_1:
alarm_ack_rule (al, ack_r1) & alarm_ack_rule (al, ack_r2)
-> ack_r1 = ack_r2

Definition_of_state_’alarm_ack_rule’_2:
is_alarm(al) -> ex ack_r (alarm_ack_rule (al, ack_r))

148 APPENDIX B. THE IMS TRIO SPECIFICATION

State_’alarm_ack_rule’_and_’alarm_enabled’_do_not_change_while_alarm
_is_active:

status(al) | Becomes(status(al)) ->
˜ex ack_r (Becomes (alarm_ack_rule(al, ack_r))) &
˜Becomes (alarm_enabled(al)) & ˜Becomes (˜alarm_enabled(al))

/* A ’MeasChanAlarmMgr’ notifies the HMI that an alarm is active when
the new status of the measuring channel is an alarm, which is also
enabled. Similarly, when the status associated with an alarm is no
more the current status of the measuring channel, the HMI is notified
that the alarm is no more active. When an alarm is notified to the
HMI, the information associated with it is unique. */

Notification_of_an_alarm_1:
ex i, timetag, al_s (alarm_notify(i, al, al_s, timetag, ack_r)

& al_s = on) <->
Becomes (status(al)) & is_alarm(al) & alarm_enabled(al) &

alarm_ack_rule(al, ack_r)

Notification_of_an_alarm_2:
ex i, timetag, al_s (alarm_notify(i, al, al_s, timetag, ack_r) &

al_s = off) <->
Becomes (˜status(al)) & is_alarm(al) & alarm_enabled(al) &

alarm_ack_rule(al, ack_r)

Uniqueness_of_data_associated_with_a_notified_alarm:
alarm_notify(i, al, al_s1, timetag1, ack_r1) &
alarm_notify(j, al, al_s2, timetag2, ack_r2) ->

i = j & al_s1 = al_s2 & timetag1 = timetag2 & ack_r1 = ack_r2

end MeasChanAlarmMgr

B.2.5 Class AlarmChan

Class AlarmChan
inherit IDTypes, VarTypes

visible alarm_notify, alarm_deliver

temporal domain real

event Items
alarm_notify (TmeasuringChanID, natural, alarm_name,

Talarm_status, temporal_tag, ack_rule);
alarm_deliver (natural, TmeasuringChanID, alarm_name,

Talarm_status, temporal_tag, ack_rule);
axioms

vars
al, al1, al2 : alarm_name;
al_s, al_s1. al_s2 : Talarm_status;
timetag, timetag1, timetag2 : temporal_tag;
ack_r, ack_r1, ack_r2 : ack_rule;
AM, AM1, AM2 : TmeasuringChanID;
i, j, k : natural;
t : real;
T : time;

B.2. COMPONENT CLASSES 149

/* ’AlarmChannel’ delivers an alarm notification to the HMI only if
the alarm was previously raised by a measuring channel. When
’AlarmChannel’ receives an alarm notification from a measuring
channel, it must propagate the alarm to the HMI within one second from
the reception. Thanks to axiom
An_alarm_cannot_be_raised_twice_in_one_second, an alarm cannot become
active and then inactive within one second; this should not be a
strong assumption, but, as a result of it, axiom
Alarm_delivery_within_1_second_after_reception need not take into
account the possibility that an alarm becomes inactive before it was
propagated to the IMS. */

Alarm_delivery_only_if_alarm_previously_raised:
alarm_deliver(i, AM, al, al_s, timetag, ack_r) ->

ex T (LastTime (ex j (alarm_notify(AM, j, al, al_s, timetag,
ack_r)), T) &
Lasted_ei (˜ex k (alarm_deliver(k, AM, al, al_s,
timetag, ack_r)), T))

Alarm_delivery_within_1_second_after_reception:
alarm_notify(AM, i, al, al_s, timetag, ack_r) ->
ex j (WithinFii(alarm_deliver(j, AM, al, al_s, timetag, ack_r),1))

An_alarm_cannot_be_raised_twice_in_one_second:
alarm_notify(AM, i, al, al_s1, timetag1, ack_r1) ->

Lasts_ei (˜ex j, al_s2, timetag2, ack_r2 (alarm_notify(AM, j,
al, al_s2, timetag2, ack_r2)), 1)

/* The following axioms define that argument of type ’natural’ of
every event item separates two different issues of the same event. */

Uniqueness_of_event_index_1:
alarm_notify(AM1, i, al1, al_s1, timetag1, ack_r1) & t <> 0 ->

˜Dist (alarm_notify(AM2, i, al2, al_s2, timetag2, ack_r2), t)
Uniqueness_of_event_index_2:

alarm_notify(AM1, i, al1, al_s1, timetag1, ack_r1) &
alarm_notify(AM2, i, al2, al_s2, timetag2, ack_r2) -> AM1 = AM2

Uniqueness_of_event_index_3:
alarm_deliver(i, AM1, al1, al_s1, timetag1, ack_r1) & t <> 0 ->

˜Dist (alarm_deliver(i, AM2, al2, al_s2, timetag2, ack_r2), t)
Uniqueness_of_event_index_4:

alarm_deliver(i, AM1, al1, al_s1, timetag1, ack_r1) &
alarm_deliver(i, AM2, al2, al_s2, timetag2, ack_r2) -> AM1 = AM2

end AlarmChan

B.2.6 Class HMIClass

Class HMIclass
inherit IDTypes, VarTypes

visible alarm_deliver, alarm_ack

temporal domain real

event Items
alarm_deliver (natural, TmeasuringChanID, alarm_name,

Talarm_status, temporal_tag, ack_rule);
alarm_ack (TmeasuringChanID, natural, alarm_name);

150 APPENDIX B. THE IMS TRIO SPECIFICATION

/* State ’to_be_acknowledged’ is true when an alarm still has to be
acknowledged by the HMI. */

state Items
to_be_acknowledged (TmeasuringChanID, alarm_name, ack_rule);

axioms
vars

al , al1, al2: alarm_name;
al_s, al_s1. al_s2 : Talarm_status;
timetag, timetag1, timetag2 : temporal_tag;
ack_r, ack_r1, ack_r2 : ack_rule;
AM, AM1, AM2 : TmeasuringChanID;
i, j : natural;
t : real;
T : time;

/* An alarm becomes ’to_be_acknowledged’ when the HMI receives the
notification that the alarm is active, and the acknowledgment rule
associate with it is not ’none’. The acknowledgment rule associated
with an alarm that still has to be acknowledged is unique. */

Definition_of_state_’to_be_acknowledged’:
Becomes (to_be_acknowledged(AM, al, ack_r)) <->

ex i, al_s, timetag (al_s = on &
alarm_deliver(i, AM, al, al_s, timetag, ack_r)) &
ack_r <> none & ˜to_be_acknowledged(AM, al, ack_r)

Uniqueness_of_’ack_rule’:
to_be_acknowledged(AM, al, ack_r1) &
to_be_acknowledged(AM, al, ack_r2) ->

ack_r1 = ack_r2

/* An acknowledge can be sent only for those alarms that still have to
be acknowledged.*/

Alarm_acknowledgment_only_when_alarm_to_be_acknowledeged:
alarm_ack(AM, i, al) ->
ex ack_r (to_be_acknowledged(AM, al, ack_r))

/* The following axioms define when an alarm stops having to be
acknowledged */

In_case_of_’simple’_acknowledgment_rule_no_acknowledgment_needed
_after_alarm_deactivation:

to_be_acknowledged(AM, al, ack_r) & ack_r = simple & al_s = off &
alarm_deliver(i, AM, al, al_s, timetag, ack_r) ->

Becomes (˜to_be_acknowledged(AM, al, ack_r))

Acknowledgment_in_case_of_’active’_or_’simple’_acknowledgment_rule:
alarm_ack(AM, i, al) & to_be_acknowledged(AM, al, ack_r) &
(ack_r = active | ack_r = simple) ->
Becomes (˜to_be_acknowledged(AM, al, ack_r))

Acknowledgment_in_case_of_’all’_acknowledgment_rule:
alarm_ack(AM, i, al) & to_be_acknowledged(AM, al, ack_r) &
ack_r = all &
LastTime (Becomes(to_be_acknowledged(AM, al, ack_r), T) ->

(WithinP (alarm_ack(AM, j, al), T) ->

B.2. COMPONENT CLASSES 151

Becomes (˜to_be_acknowledged(AM, al, ack_r))) &
(˜WithinP (alarm_ack(AM, j, al), T) ->

˜Becomes (˜to_be_acknowledged(AM, al, ack_r)))

/* The following axioms define that argument of type ’natural’ of
every event item separates two different issues of the same event. */

Uniqueness_of_event_index_1:
alarm_ack(AM1, i, al1) & t <> 0 ->
˜Dist (alarm_ack(AM2, i, al2), t)

Uniqueness_of_event_index_2:
alarm_ack(AM1, i, al1) & alarm_ack(AM2, i, al2) ->
AM1 = AM2 & al1 = al2

end HMIclass

B.2.7 Class CS

Class CS

visible access_request, access_granted, access_denied, abort_request,
access_yield

temporal domain real

/* The following predicates have the same meaning as in class
’HMIClass’ */

event Items
access_request (natural);
access_granted (natural);
access_denied (natural);
abort_request (natural);
access_yield (natural);

axioms
vars

i, j : natural;
t : real;

/* When the IMS issues an access rights request to the CS, either the
CS answers it (positively or not, thorugh ’access_granted’ or
’access_denied’), or the IMS aborts it. */

Effect_of_an_access_request:
access_request(i) ->
SomF (access_granted(i) | access_denied(i)
| ex j (abort_request(j)))

/* If the IMS aborts an access rights request, the CS will never
answer to it. */

No_answer_after_an_abort_request:
abort_request(j) &
Since (˜(access_granted(i) |

access_denied(i)), access_request(i)) ->
˜Som (access_granted(i) | access_denied(i))

152 APPENDIX B. THE IMS TRIO SPECIFICATION

/* The CS answers to an access rights request only after the request
is issued. The answer to an ’access_request’ is unique (the CS cannot
grant the access rights and then deny them, or viceversa; on the other
hand, different access requests can have different answers). */

Necessary_condition_for_denying_or_granting_the_access:
access_granted(i) | access_denied(i) -> SomP (access_request(i))

Incompatibility_of_’access_granted’_and_’access_denied’:
access_granted(i) -> ˜Som (access_denied(i))

/* The following axioms define that argument of type ’natural’ of
every event item separates two different issues of the same event. */

Uniqueness_of_events_1:
access_denied(i) & t <> 0 -> ˜Dist (access_denied(i), t)

Uniqueness_of_events_2:
access_granted(i) & t <> 0 -> ˜Dist (access_granted(i), t)

end CS

B.3 The overall system: Class IMSApplication

This is the class which puts all foregoing elements together, that is, which de-
scribes the composition of the overall system. It corresponds to the specifica-
tion of the IMS application.

Class IMSApplication
inherit IDTypes, VarTypes
temporal domain real

modules
IMS : IMSclass;
ControlSystem : CS;
GPDB :GPDBclass;
MeasuringChannels : array [TmeasuringChannelID] of

MeasuringChannel;
MeasChanAlarmMgrs : array [TmeasuringChannelID] of

MeasChanAlarmMgr;
AlarmChannel : AlarmChan;
HMI : HMIclass;

connections
(connect IMS, GPDB)
(connect IMS, ControlSystem)
(connect MeasChanAlarmMgrs, IMS)
(connect MeasChanAlarmMgrs, GPDB)
(connect MeasChanAlarmMgrs, AlarmChannel)
(connect MeasChanAlarmMgrs, HMI)
(connect HMI, AlarmChannel)
(connect GPDB, MeasuringChannels)

axioms
vars

comp : TcomponentID;

B.3. THE OVERALL SYSTEM: CLASS IMSAPPLICATION 153

MC, MC2 : TmeasuringChannelID;

/* The following axiom states that the information that the IMS and
the GPDB have about the components of a measuring channel (which is
represented by predicate ’dev_component’ shared by ’IMS’ and ’GPDB’)
is consistent with the structure of the measuring channel (represented
by predicate ’is_component’ the corresponding module of array
’MeasuringChannels’). */

Definition_of_predicate_’is_component’_of_’MeasuringChannels’
MeasuringChannels[MC].is_component(comp) <->

IMS.dev_component(MC, comp) |
ex MC2 (IMS.dev_component(MC, MC2) &

IMS.dev_component(MC2, comp)

end IMSApplication

154 APPENDIX B. THE IMS TRIO SPECIFICATION

Appendix C

The IMS TC Specification

C.1 TC Methodology Steps

C.1.1 Step 1

Connection between IMS and ControlSystem
Dataflows

request_access (from access_request,
to access_granted,
to access_denied);

abort_request (from abort_request);
access_yield (from access_yield);

end

Connection between IMS and GPDB
Dataflows

request_test (from test_reqeust,
to test_end,
to chan_status,
to chan_detailed_status,
to measure_info);

command_send (from command_send);
cyclic_acq (from cyclic_acq,

to chan_status,
to chan_detailed_status,
to measure_info);

on_variation_acq (to on_variation_acq,
to chan_status,
to chan_detailed_status,
to measure_info,
to calib_info);

Shared Items
dev_calib, MC_measure, dev_component, measure_of_test

end

Connection between IMS and MeasChanAlarmMgrs
Dataflows

155

156 APPENDIX C. THE IMS TC SPECIFICATION

IMS_change_AM_status (from IMS_change_AM_status);
end

Connection between GPDB and MeasChanAlarmMgrs
Dataflows

GPDB_change_AM_status (from IMS_change_AM_status);
end

Connection between MeasChanAlarmMgrs and AlarmChannel
Dataflows

alarm_notify (from alarm_notify);
end

Connection between AlarmChannel and HMI
Dataflows

alarm_deliver (from alarm_deliver);
end

Connection between MeasChanAlarmMgrs and HMI
Dataflows

alarm_ack (to alarm_ack);
end

C.1.2 Step 2

Connection between IMS and ControlSystem
Dataflows

request_access (from access_request,
to access_granted,
to access_denied);

abort_request_access (from abort_request) was abort_request;
access_yield (from access_yield);

end

Connection between IMS and GPDB
Dataflows

test (from test_reqeust,
to test_end,
to chan_status,
to chan_detailed_status,
to measure_info) was request_test;

command (from command_send) was command_send;
get_measure (from cyclic_acq,

to chan_status,
to chan_detailed_status,
to measure_info) was cyclic_acq;

variation (to on_variation_acq,
to chan_status,
to chan_detailed_status,
to measure_info,
to calib_info) was on_variation_acq;

Shared Items
dev_calib, MC_measure, dev_component, measure_of_test

end

Connection between IMS and MeasChanAlarmMgrs
Dataflows

C.1. TC METHODOLOGY STEPS 157

IMS_change_AM_status (from IMS_change_AM_status);
end

Connection between GPDB and MeasChanAlarmMgrs
Dataflows

GPDB_change_AM_status (from IMS_change_AM_status);
end

Connection between MeasChanAlarmMgrs and AlarmChannel
Dataflows

raise_alarm (from alarm_notify) was alarm_notify;
end

Connection between AlarmChannel and HMI
Dataflows

raise_alarm (from alarm_deliver) was alarm_deliver;
end

Connection between MeasChanAlarmMgrs and HMI
Dataflows

acknowledge (to alarm_ack) was alarm_ack;
end

C.1.3 Step 3

Substep 3.1

ApplicationObjectClass IMS
TRIO items validating, access_avail, dev_component,

measure_of_test, dev_calib, MC_measure
operations test, command, get_measure, variation,

IMS_change_AM_status, request_access, abort_request_access,
access_yield

end IMS

ApplicationObjectClass GPDB
TRIO items dev_component, measure_of_test, dev_calib, MC_measure,

measure, status, detailed_status
operations test, command, get_measure, variation,

GPDB_change_AM_status
end GPDB

ApplicationObjectClass MCAlarmGenerators
derives from MeasChanAlarmMgrs
TRIO items status, is_alarm, alarm_enabled, alarm_ack_rule
operations raise_alarm, IMS_change_AM_status, GPDB_change_AM_status
end MeasChanAlarmMgrs

ApplicationObjectClass AlarmObjs
derives from MeasChanAlarmMgrs
operations acknowledge
end AlarmObjs

ApplicationObjectClass AlarmChannel
operations raise_alarm, HMI.raise_alarm
end AlarmChannel

158 APPENDIX C. THE IMS TC SPECIFICATION

ApplicationObjectClass HMI
TRIO items to_be_acknowledged
operations raise_alarm, acknowledge
end HMI

Array ’MeasChanAlarmMgrs’ has been split into two arrays: ’MCAlarm-
Generators’ and ’AlarmObjs’, as described by the foregoing declarations. As a
consequence, the declaration of connections and the TRIO specification must
be modified as shown below (the connections, classes and axioms that are not
reported here remain unchanged).

Connection between IMS and MCAlarmGenerators
Dataflows

IMS_change_AM_status (from IMS_change_AM_status);
end

Connection between GPDB and MCAlarmGenerators
Dataflows

GPDB_change_AM_status (from IMS_change_AM_status);
end

Connection between MCAlarmGenerators and AlarmChannel
Dataflows

raise_alarm (from alarm_notify) was alarm_notify;
end

Connection between AlarmObjs and HMI
Dataflows

acknowledge (to alarm_ack) was alarm_ack;
end

Furthermore, classes ’MCAlarmGenerator’ and ’AlarmObj’ must be intro-
duced in the TRIO specification, as shown below (the classes and axioms that
are not reported here remain unchanged).

Class MCAlarmGenerator
inherit IDTypes, VarTypes

visible alarm_notify, GPDB_change_AM_status, IMS_change_AM_status

temporal domain real

TI Items
predicate is_alarm(AM_status_name);

event Items
alarm_notify (natural, alarm_name, Talarm_status, temporal_tag,

ack_rule);
GPDB_change_AM_status (natural, AM_status_name);
IMS_change_AM_status (natural, AM_status_name);

state Items
status (AMstatus_name);
alarm_ack_rule (alarm_name, ack_rule);
alarm_enabled (alarm_name);

C.1. TC METHODOLOGY STEPS 159

/* The axioms defined in this class are all those of original class
’MeasChanAlarmMgr’ */

end MeasChanAlarmMgr

Class AlarmObj
inherit VarTypes

visible alarm_ack

temporal domain real

event Items
alarm_ack (natural, alarm_name);

end AlarmObj

Class ’AlarmObj’ does not define any axioms since class ’MeasChahAlarm-
Mgr’, from which it derives, does not inclue any rules on item ’alarm ack’ (the
only item assigned to ’AlarmObj’).

In addition, the new arrays of classes must be represented in class ’IMSAp-
plication’ (and array ’MeasChanAlarmMgrs’ disappears).

Class IMSApplication
inherit IDTypes, VarTypes

temporal domain real

TI Items
[...]

modules
[...]
MCAlarmGenerators : array [TmeasuringChannelID] of

MCAlarmGenerator;
AlarmObjs : array [TmeasuringChannelID] of AlarmObj;

connections
[...]
(connect MCAlarmGenerators, IMS)
(connect MCAlarmGenerators, GPDB)
(connect MCAlarmGenerators, AlarmChannel)
(connect AlarmObjs, HMI)

end IMSApplication

Substep 3.2

Operations ’IMS change AM status’ and ’GPDB change AM status’ of appli-
cation object class ’MCAlarmGenerators’ (the server) are merged together in
operation ’set current status’.

ApplicationObjectClass IMS
TRIO items validating, access_avail, dev_component, measure_of_test,

dev_calib, MC_measure
operations test, command, get_measure, variation,

set_currrent_status (was IMS_change_AM_status),

160 APPENDIX C. THE IMS TC SPECIFICATION

request_access, abort_request_access, access_yield
end IMS

ApplicationObjectClass GPDB
TRIO items dev_component, measure_of_test, dev_calib, MC_measure,

measure, status, detailed_status
operations test, command, get_measure, variation,

set_currrent_status (was GPDB_change_AM_status)
end GPDB

ApplicationObjectClass MCAlarmGenerators
derives from MeasChanAlarmMgrs
TRIO items status, is_alarm, alarm_enabled, alarm_ack_rule
operations raise_alarm,

set_current_status (merge of IMS_change_AM_status,
GPDB_change_AM_status)

end MCAlarmGenerators

ApplicationObjectClass AlarmObjs
derives from MeasChanAlarmMgrs
operations acknowledge
end AlarmObjs

ApplicationObjectClass AlarmChannel
operations raise_alarm, HMI.raise_alarm
end AlarmChannel

ApplicationObjectClass HMI
TRIO items to_be_acknowledged
operations raise_alarm, acknowledge
end HMI

The specification need not be modified (i.e. there are no axioms that must be
deleted because of the merge), since in the server class (’MCAlarmGenerator’)
there is only one axiom, Definition of state ’status’ 1, which rules over the
merged items (note that, in this axiom, the items that compose the merged
operations have the same role):

Definition_of_state_’status’_1:
Becomes (status(sn)) <->

ex i (IMS_change_AM_status(i, sn) |
GPDB_change_AM_status(i, sn)) & ˜status(sn)

C.2 TC Specification

C.2.1 Interface Class definitions

Interface AccessRightManager

Interface Class AccessRightManager
operations

request_access
returns : boolean; /* TRUE if access is granted */

C.2. TC SPECIFICATION 161

abort_request_access;
access_yield : noblock;

end AccessRightManager

Interface DeviceManager

This interface defines, in addition to the operations through which ’IMS’ drives
the devices, the data types exchanged with these devices.Devices are identified
through a name (i.e. a string), and not through a number, as in the TRIO spec-
ification. The structures of types ’dev brief status’, ’dev detailed status’, ’cali-
bration’ have been modeled on the signature of the TRIO items ’chan status’,
’chan detailed status’, ’calib info’. Measurements, instead, are represented
thorugh ’odFloat’ objects of the OD BPV module.

Interface Class DeviceManager
type

devID = string;
calID = string;
dev_status = enum dev_s {ok, degraded1, degraded2, out_of_order};
operating_mode = enum o_m {ControlRemote, ControlLocal,

MaintenanceRemote, MaintenanceLocal, Commissioning}
dev_brief_status = struct dev_brief_st {status : dev_status;

oper_mode : operating_mode;
acc_perm : string;

}
dev_detailed_status = array [] of

struct comp_status {component : devID;
status : dev_status;

};
measureSeq = array [] of BPVModule::odFloat;
calibration = struct cal {calibID : calID;

date : string;
zero_error : float;
span_error : float;
linear_eq : string;

};
calibrationSeq = array [] of calibration;

operations
test

parameters
in device : devID;

testID : string;
out brief_status : dev_brief_status;

detailed_status : dev_detailed_status;
measures : measureSeq;

command
parameters
in device : devID;

commandID : string;
get_measure

parameters
in device : devID;
out brief_status : dev_brief_status;

detailed_status : dev_detailed_status;
measures : measureSeq;

end DeviceManager

162 APPENDIX C. THE IMS TC SPECIFICATION

Interface DataReceiver

Interface Class DataReceiver
operations

variation
parameters
in device : DeviceManager::devID;

brief_status : DeviceManager::dev_brief_status;
detailed_status : DeviceManager::dev_detailed_status;
measures : DeviceManager::measureSeq;
calibrations : DeviceManager::calibrationSeq;

end DataReceiver

Interface AlarmReceiver

Interface Class AlarmReceiver
type

alarm_status = enum al_s {on, off};
operations

raise_alarm
parameters
in source : ODAlarmModule::Alarm;

alarmName : string;
alarmStatus : alarm_status;
timetag : string;
ack_rule : ODAlarmModule::AckRule;

end AlarmReceiver

C.2.2 TRIO Class definitions

TRIO Class IDTypes

When passing to the TC specification, the nature of some identifiers changes. In
particular, devices are no more represented by natural numbers, but by strings
(this reflects the definition given in Interface class DeviceManager). This im-
plies that it is no more possible to distinguish the different type of a device
(channels, devices, parts of devices, etc.) from the range to which its identifier
belongs; instead, ad-hoc predicates are needed to separate the different cases.
’TmeasuringChanID’ remains a range over natural numbers, since it still rep-
resents the index of arrays ’MCAlarmGenerators’ and ’MeasurngChannels’ of
Environment class ’IMSApplication’.

TRIO Class IDTypes
type

TdevID = string;
TmeasuringChanID = [1..D]
TmeasureID = string;
TcalibID = string;

end IDTypes

C.2. TC SPECIFICATION 163

TRIO Class VarTypes

This class remains unchanged.

TRIO Class MeasuringChannel

This class remains unchanged with respect to the TRIO specification, except for
the type of the parameters of predicates ’is component’ and ’detailed status’,
which have been modified to reflect the new representation of device identi-
fiers.

TRIO Class MeasuringChannel
inherit IDTypes, VarTypes, is_component

visible measure, status, detailed_status, is_component

temporal domain real

TI Items
is_component (TdevID);

state Items
measure (TmeasureID, meas_value, validity_index, temporal_tag);
status (Tdev_status, operating_mode, access_permission);
detailed_status (TdevID, Tdev_status);

axioms
vars

comp : TdevID;
mID : measureID;
mval1, mval2 : meas_value;
vi1, vi2 : validity_index;
timetag1, timetag2 : temporal_tag;
dev_s1, dev_s2 : Tdev_status;
om1, om2 : operating_mode;
ac_p1, ac_p2 : access_permission;

Definition_of_state_’measure’:
measure(mID, mval1, vi1, timetag1) &
measure(mID, mval2, vi2, timetag2) ->

mval1 = mval2 & vi1 = vi2 & timetag1 = timetag2

Definition_of_state_’status’:
status(dev_s1, om1, ac_p1) & status(dev_s2, om2, ac_p2) ->

dev_s1 = dev_s2 & om1 = om2 & ac_p1 = ac_p2

Definition_of_state_’detailed_status’_1:
detailed_status(comp, dev_s1) & detailed_status(comp, dev_s2)
-> dev_s1 = dev_s2

Definition_of_state_’detailed_status’_2:
detailed_status(comp, dev_s) -> is_component(comp)

end MeasuringChannel

164 APPENDIX C. THE IMS TC SPECIFICATION

C.2.3 Application Object Class definitions

Application Object Class IMSObj

This application object class derives from TRIO class ’IMSclass’ (the name has
been changed to reflect the fact that this class represents a CORBA application
object).

parallel Application Object Class IMSObj

inherit IDTypes, VarTypes, DataReceiver

visible dev_component, measure_of_test, dev_calib, MC_measure,
is_channel, is_single_device, is_component, is_dev_part,
is_measuring_chan

temporal domain real

/* The following time-invariant predicates have been introduced to be
able to determine the nature of the device through its identifier
(since all device identifiers are strings, now, and not natural
numbers, the type of the associated device cannot be directly inferred
from the value of of identifier). For example, ’is_channel(id)’ is
true iff ’id’ is associated with a channel, ’is_component’ describes
which devices are in fact components of other devices, etc. The
relationships among these predicates are defined in Environment class
’IMSApplication’ */

TI Items
predicate is_channel (TdevID);
predicate is_single_device (TdevID);
predicate is_dev_part (TdevID);
predicate is_component (TdevID);
predicate is_measuring_chan (TdevID);
predicate dev_component (TdevID, TdevID);

/* The other predicates of this class have the same meaning as in
TRIO class ’IMSclass’. */

predicate measure_of_test (TdevID, test_command, TmeasureID);
predicate dev_calib (TdevID, TcalibID);
predicate MC_measure (TdevID, TmeasureID);

used interfaces
AccessRightManager;
DeviceManager;
BPVModule::odFloat;

used operations
ODAlarmModule::State::set_current_status;

state Items
validating (TdevID, TmeasureID);
access_avail;

axioms
vars

AM, AM1, AM2 : OID;
dev, dev1, dev2, MC : TdevID;

C.2. TC SPECIFICATION 165

sn1, sn2 : AM_status_name;
test_cmd, test_cmd1, test_cmd2 : test_command;
dev_cmd, dev_cmd1, dev_cmd2 : dev_command;
i, j, k : natural;
t : time;

/* For simplicity, we will assume that application object IMS does not
invoke operations using the deferred synchronous semantics (on the
other hand, it does not have the control on how other objects invoke
the operations that it exports). Notice that it is possible (and
fairly straightforward) to formalize this statement in TC terms, too.

TRIO ’access_granted’ item was grouped in data flow
’request_access’, which then became the homonymous operation;
furthermore, ’access_granted’ represents the instant when
’request_access’ returns ’TRUE’; from these considerations, the
derivation of the following axiom is straightforward. */

Definition_of_state_’access_avail’_1:
Becomes(access_avail) <->

ex i (request_access(i).end_invoke & request_access(i).returns
= TRUE)

/* Similarly to the previous axiom, once we recognize that TRIO
items ’access_yield’, ’access_request’ and ’abort_request’ correpond
respectively to the invocation of operations ’access_yield’,
’request_access’ and ’abort_request_access’, the following rules are
easily defined. */

Definition_of_state_’access_avail’_2:
Becomes(˜access_avail) <-> ex i (access_yield(i).invoke)

Necessary_condition_for_’access_yield’:
access_yield(i).invoke -> access_avail

No_further_access_requests_when_access_already_available:
access_avail -> ˜request_access(i).call

Necessary_and_sufficient_condition_for_’abort_request’:
ex i, t (t = 60 & LastTime (request_access(i).invoke, t) &

Lasted_ii (˜request_access(i).end_invoke, t))
<-> ex j (abort_request_access(j).invoke)

/* Notice in the previous axiom that formula ’access_granted(i) |
access_denied(i)’ corresponds to a generic successful termination of
operation ’request_access’; as a result, in TC it is represented by
fromula ’request_access(i).end_invoke’. */

No_more_access_requests_while_waiting_for_the_access_to_be_granted:
t <> 0 & LastTime (request_access(i).invoke, t) &
Lasted_ii (˜(request_access(i).end_invoke |
abort_request_access(j).invoke), t) ->

˜request_access(k).invoke

Only_one_request_to_the_ControlSystem_at_a_time_1:
request_access(i).invoke & request_access(j).invoke -> i = j

Only_one_request_to_the_ControlSystem_at_a_time_2:
access_yield(i).invoke & access_yield(j).invoke -> i = j

166 APPENDIX C. THE IMS TC SPECIFICATION

Only_one_request_to_the_ControlSystem_at_a_time_3
abort_request_access(i).invoke &
abort_request_access(j).invoke -> i = j

/* The first parameter of TRIO item ’IMS_change_AM_status’ determines
which is the measuring channel to which the state change is
notified. Now ’IMS_change_AM_status’ in TC corresponds to the
invocation of operation ’set_current_status’, and the recipient of a
generic operation invocation is represented by predefined predicate
’receiverID’; furthermore, the new status of a measuring channel
(corresponding to the third argument) is contained in input parameter
’name’. As a consequence, the derivation of the following axiom is
straightforward. */

Uniqueness_of_’MCAlarmGenerator’_status_change:
set_current_status(i).invoke & set_current_status(j).invoke &
set_current_status(i).receiverID(AM) &
set_current_status(j).receiverID(AM) &
set_current_status(i).name = sn1 &
set_current_status(j).name = sn2 -> i = j & sn1 = sn2

/* As previously mentioned, the representation of device identifiers
in the TC specification has changed with respect to the original
TRIO document. The TRIO representation was such that we could
express the fact that, for example, tests can be requested only to
measuring channels directly in the signature of the corresponding
predicate (in fact, the first argument of TRIO event item
’test_request’ is of type ’TmeasuringChanID’ and not, say,
’TcomponendID’). This is no more possible in the TC specification,
where device identifiers are of type string. As a result, the next
axioms had to be introduced to state what was previously implicitly
defined by signatures: */

’test’_and_’get_measure’_invoked_only_on_proper_devices:
test(i).device = dev | get_measure(i).device = dev
-> is_measuring_chan(dev)

’command’_invoked_only_on_proper_devices:
command(i).device = dev -> is_single_device(dev)

/* The derivation of the following axioms is straightforward since
’command_send’, ’test_request’ and ’cyclic_acq’ correspond to the
invocation of operations ’command’, ’test’ and ’get_measure’,
respectively; the device to which a command/test is sent is
represented by parameter ’device’ in both operations (it cannot be
represented by predicate ’receiverID’, as in ’set_current_status’,
since the ’IMS’ application object does not send commands/test
requests to measuring channels, directly, but through application
object ’GPDB’); ’test_end’ corresponds to the termination of operation
’test’ (i.e. to predicate ’test.end_invoke’, since ’IMS’ always
invokes operations synchronously). */

Commands_sent_only_when_access_to_devices_is_available:
command(i).invoke | test(i).invoke -> access_avail

Uniqueness_of_command_sent_to_a_device:
command(i).invoke & command(i).device = dev &
command(i).commandID = dev_cmd1 &

C.2. TC SPECIFICATION 167

command(j).invoke & command(j).device = dev &
command(j).commandID = dev_cmd2 -> i = j & dev_cmd1 = dev_cmd2

Uniqueness_of_test_requested_to_a_device:
test(i).invoke & test(i).device = dev &
test(i).testID = test_cmd1 &
test(j).invoke & test(j).device = dev &
test(j).testID = test_cmd2 ->

i = j & test_cmd1 = test_cmd2

No_command_sent_or_test_requested_on_the_same_device_at_the_same_time:
test(i).invoke & test(i).device = dev1 ->

˜(command(j).invoke & command(j).device = dev2 &
(dev1 = dev2 | dev_component(dev1, dev2)))

test_request(i, MC, test_cmd) ->
˜(command_send(j, dev, dev_cmd) &
(dev = MC | dev_component(MC, dev)))

No_more_test_requests_or_command_issue_on_a_device_that_must_still
_complete_a_test:

test(i).invoke & test(i).device = dev ->
Until (˜(test(j).invoke & test(j).device = dev) &

˜(command(j).invoke & command(j).device = dev2 &
(dev = dev2 | dev_component(dev, dev2))),

test(i).end_invoke)

Acquisition_from_devices_only_during_normal_control_operations:
get_measure(i).invoke & get_measure(i).device = MC ->

˜access_avail & ˜validating(MC, mID)

In_the_case_of_’get_measure’_the_index_is_also_a_counter
get_measure(i).invoke & i <> 0 -> SomPi (get_measure(i-1).invoke)

At_least_50_data_must_be_retrieved_every_3_seconds_during_cyclic
_acquisition:

Lasts (˜access_avail, 3) ->
ex i, (WithinF (get_measure(i).invoke, 3) &

WithinF (get_measure(i+49).invoke, 3))

Definition_of_’validating’_state_1:
validating(MC, mID) ->

ex test_cmd (measure_of_test(MC, test_cmd, mID)) |
MC_measure(MC, mID)

Definition_of_’validating’_state_2:
Becomes (validating(MC, mID)) <->

ex i (((get_measure(i).reply &
SomP (get_measure(i).invoke &

get_measure(i).device = MC) |
(variation(i).call & variation(i).device = MC)) &
MC_measure(MC, mID)) |
(test(i).reply & ex test_cmd (

SomP (test(i).invoke & test(i).device = MC &
test(i).testID = test_cmd &
measure_of_test(MC, test_cmd, mID)))))

/* Notice that, in the foregoing axiom, ’cyclic_acq’ corresponds to
the successful termination of operation ’get_measure’ (i.e. to
’get_measure.reply’), instead of the invocation. Furthermore, the

168 APPENDIX C. THE IMS TC SPECIFICATION

device from which the measurement is retrieved (i.e. the second
argument of ’cyclic_acq’) in the ’get_measure’ operation is an input
parameter; as a result, the TC axiom refers to the value it had when
the operation was invoked (through formula ’get_measure(i).invoke &
get_measure(i).device = MC’). Notice also that class ’IMSObj’ does
not have the control on how operation ’variation’ is called
(i.e. using the synchronous or the deferred synchronous semantics),
since the operation is exported by the application object class
through interface ’DataReceiver; as a result, the previous axiom must
use the general event ’variation.call’, instead of ’variation.invoke’.
*/
end IMSObj

Application Object GPDBObj

This application object class derives from TRIO class ’GPDBclass’. Its name has
been changed to reflect the fact that this class represents a CORBA application
object.

parallel Application Object Class GPDBObj
inherit IDTypes, VarTypes, DeviceManager

visible measure, status, detailed_status, dev_component,
measure_of_test, dev_calib, MC_measure, is_channel, is_single_device,
is_component, is_dev_part, is_measuring_chan, MC_address

temporal domain real

TI Items
predicate is_channel (TdevID);
predicate is_single_device (TdevID);
predicate is_dev_part (TdevID);
predicate is_component (TdevID);
predicate is_measuring_chan (TdevID);
predicate dev_component (TdevID, TdevID);
predicate measure_of_test (TdevID, test_command, TmeasureID);
predicate dev_calib (TdevID, TcalibID);
predicate MC_measure (TdevID, TmeasureID);

/* Predicate ’MC_address’ says, for every measuring channel (arg1),
which is the address (arg2) of the corresponding physical device
(represented by an item of the array ’MeasuringChannels’ of the
environment class). */

predicate MC_address (TdevID, TmeasuringChanID);
used interfaces

DataReceiver;
BPVModule::odFloat;

used operations
ODAlarmModule::State::set_current_status;

state Items
measure (TmeasuringChanID, TmeasureID, meas_value, validity_index,

temporal_tag);
status (TmeasuringChanID, Tdev_status, operating_mode,

access_permission);
detailed_status (TmeasuringChanID, TcomponentID, Tdev_status);

/* Event ’variation_instant’ represents the moment when the variation

C.2. TC SPECIFICATION 169

of a measure, which is reported by the invocation identified by arg1
of operation ’variation’, happens. */

event Items
variation_instant (natural);

axioms
vars

AM, AM1, AM2 : OID;
dev, dev1, dev2, comp, dev_comp : TdevID;
MC_ad, MC_ad1, MC_ad2 : TmeasuringChanID;
cal, cal1, cal2 : TcalibID;
d, d1, d2 : date;
z_e, z_e1, z_e2 : zero_error;
s_e, s_e1, s_e2 : span_error;
lin_eq, lin_eq1, lin_eq2 : linear_eq;
mID, mID1 : measureID;
mval, mval1 : meas_value;
vi, vi1 : validity_index;
timetag, t_s, t_s1 : temporal_tag;
dev_s, comp_s : Tdev_status;
om : operating_mode;
ac_p : access_permission;
test_cmd : test_command;
sn1, sn2 : AM_status_name;
bpv_v, bpv_v1, bpv_v2 : OID;
i, j, j1, j2, j3, j4, k, l, m, : natural;
T, T1, T2, T3, T4, T5, T6, T7, T8 : time;
t : real;

/* For simplicity, as for application object class ’IMSObj’, we will
assume that application object GPDB does not invoke operations using
the deferred synchronous semantics.

The following five axioms are entirely new with respect to the TRIO
specification, since they define the meaning of predicates that did
not exist in that specification. ’MC_address’ associates the
identifier of a measuring channel with its ’physical’ address
(i.e. with the index of the corresponding element of array
’MeasuringChannels’ of environment class ’IMSApplication’). A
measuring channel cannot be associated with two different addresses.
’variation_instant(i)’ is true only once for each ’i’; furthermore,
invocation ’i’ of operation ’variation’ can be issued only after that
the corresponding variation (represented by ’variation_instant(i)’)
happened. */

Definition_of_predicate_’MC_address’_1:
MC_address(dev, MC_ad1) & MC_address(dev, MC_ad2)
-> MC_ad1 = MC_ad2

Definition_of_predicate_’MC_address’_2:
ex MC_ad (MC_address(dev, MC_ad)) <-> is_measuring_chan(dev)

Definition_of_predicate_’variation_instant’_1:
variation_instant(i) & t <> 0 -> ˜variation_instant(i)

Definition_of_predicate_’variation_instant’_2:
variation_instant(i) -> ˜SomP (variation(i).call)

Definition_of_predicate_’variation_instant’_3:
variation(i).call -> SomPi (variation_instant(i))

Uniqueness_of_’MCAlarmGenerator’_status_change:
set_current_status(i).invoke &

170 APPENDIX C. THE IMS TC SPECIFICATION

set_current_status(j).invoke &
set_current_status(i).receiverID(AM) &
set_current_status(j).receiverID(AM) &
set_current_status(i).name = sn1 &
set_current_status(j).name = sn2 -> i = j & sn1 = sn2

’variation’_invoked_only_on_proper_devices:
variation(i).device = dev -> is_measuring_chan(dev)

/* In the TRIO specification, acquisition of a specific measurement
(either cyclically or ’on variation’) is instantaneous (i.e. it does
not span an interval of time). In TC, while ’on variation’ acquisition
is still instantaneous (in fact, it is achieved through operation
’variation’, which, during step 5 of the methodology, was identified
with a CORBA event), cyclic acquisition is not (operation
’get_measure’ is not an event). As a result, axiom No_’on_variation
_acq’_when_’cyclic_acq’_is_performed of the TRIO specification cannot
be immediately transformed in a TC axiom, because the latter needs to
express some details that were not necessary in the original
specification. In fact, the following TC rule states that, if the GPDB
has not answered to a ’get_measure’ invocation for device ’dev’, yet,
the GPDB itself cannot invoke operation ’variation’ for the same
device ’dev’. */

No_’variation’_when_’get_measure’_is_performed:
SomP (get_measure(i).call & get_measure(i).device = dev) &
˜SomPi (get_measure(i).end)
-> ˜(variation(j).invoke & variation(j).device = dev)

/* While in TRIO exchange of devices’ status information between
classes ’IMSclass’ and ’GPDBclass’ is achieved through shared items
’chan_status’ and ’chan_detailed_status’, in TC this is done through
specific parameters of operations ’get_measure’, ’test’, and
’variation’; in consequence of this, the TC specification introduces
some low-level details, which are described by the axioms below. These
axioms state that: status information returned by operations
’get_measure’ and ’test’ is referred to the instant when the operation
is invoked (represented, in the axioms, as the instant that is T time
units in the past); status information sent by operation ’variation’
is referred to the instant when the variation occurs (represented by
event ’variation_instant’; in the axioms, this instant is T time units
in the past); the brief status of a measuring channel is determined
from predicate ’status’; the status of the components of a measuring
channel is determined from predicate ’detailed_status’; for each
component of the measuring channel from which the measurement is
obtained, there is an element of array parameter ’detailed_status’
which contains the status information of the component (notice that
’detailed_status’ is an output parameter for operations ’get_measure’
and ’test’, while it is an input parameter for operation ’variation’);
there cannot be two elements of array parameter ’detailed_status’
which represent status information about the same component; if an
element of array ’detailed_status’ is initialized when the array is
sent to the IMS (i.e. when ’get_response’ or ’test’ return, or when
’variation’ is invoked), then it represents the status of a component
of the measuring channel, from which the measurement is obtained. */

Brief_status_data_sent_on_’get_measure’:
get_measure(i).end_ok &
Past (get_measure(i).call & get_measure(i).device = dev, T) &

C.2. TC SPECIFICATION 171

MC_address(dev, MC_ad) & Past(status(MC_ad, dev_s, om, a_p), T) ->
get_measure(i).brief_status.status = dev_s &
get_measure(i).brief_status.oper_mode = om &
get_measure(i).brief_status.acc_perm = a_p

Detailed_status_data_sent_on_’get_measure’_1:
get_measure(i).end_ok &
Past (get_measure(i).call &
get_measure(i).device = dev, T) &
MC_address(dev, MC_ad) & (dev_component(dev, comp) |

ex dev_comp (dev_component(dev, dev_comp) &
dev_component(dev_comp, comp)) &

Past(detailed_status (MC_ad, comp, comp_s), T) ->
ex l (get_measure(i).detailed_status(l).component = comp &

get_measure(i).detailed_status(l).status = comp_s)

Detailed_status_data_sent_on_’get_measure’_2:
get_measure(i).end_ok &
Past (get_measure(i).call & get_measure(i).device = dev, T) &
get_measure(i).detailed_status(l).component = comp
-> (dev_component(dev, comp) |

ex dev_comp (dev_component(dev, dev_comp) &
dev_component(dev_comp, comp)) &

(get_measure(i).detailed_status(m).component = comp -> m = l)

Brief_status_data_sent_on_’test’:
test(i).end_ok & Past (test(i).call & test(i).device = dev, T) &
MC_address(dev, MC_ad) & Past(status(MC_ad, dev_s, om, a_p), T) ->

test(i).brief_status.status = dev_s &
test(i).brief_status.oper_mode = om &
test(i).brief_status.acc_perm = a_p

Detailed_status_data_sent_on_’test’_1:
test(i).end_ok & Past (test(i).call & test(i).device = dev, T) &
MC_address(dev, MC_ad) & (dev_component(dev, comp) |

ex dev_comp (dev_component(dev, dev_comp) &
dev_component(dev_comp, comp)) &

Past(detailed_status (MC_ad, comp, comp_s), T) ->
ex l (test(i).detailed_status(l).component = comp &

test(i).detailed_status(l).status = comp_s)

Detailed_status_data_sent_on_’test’_2:
test(i).end_ok & Past (test(i).call & test(i).device = dev, T) &
test(i).detailed_status(l).component = comp ->

(dev_component(dev, comp) |
ex dev_comp (dev_component(dev, dev_comp) &
dev_component(dev_comp, comp)) &

(test(i).detailed_status(m).component = comp -> m = l)

Brief_status_data_sent_on_’variation’:
variation(i).invoke & variation(i).device = dev &
Past (variation_instant(i), T) &
MC_address(dev, MC_ad) &
Past(status(MC_ad, dev_s, om, a_p), T) ->

variation(i).brief_status.status = dev_s &
variation(i).brief_status.oper_mode = om &
variation(i).brief_status.acc_perm = a_p

Detailed_status_data_sent_on_’variation’_1:

172 APPENDIX C. THE IMS TC SPECIFICATION

variation(i).invoke & variation(i).device = dev &
Past (variation_instant(i), T) &
MC_address(dev, MC_ad) & (dev_component(dev, comp) |

ex dev_comp (dev_component(dev, dev_comp) &
dev_component(dev_comp, comp)) &

Past(detailed_status (MC_ad, comp, comp_s), T) ->
ex l (variation(i).detailed_status(l).component = comp &

variation(i).detailed_status(l).status = comp_s)

Detailed_status_data_sent_on_’variation’_2:
variation(i).invoke & variation(i).device = dev &
Past (variation_instant(i), T) &
variation(i).detailed_status(l).component = comp ->

(dev_component(dev, comp) |
ex dev_comp (dev_component(dev, dev_comp) &

dev_component(dev_comp, comp)) &
(variation(i).detailed_status(m).component = comp -> m = l)

/* Some useful macro definitions */

#define SET_NAME(i, mID, bpv_v)
set_name(i).invoke &
set_name(i).name = mID &
set_name(i).receiverID(bpv_v)

#define SET_VALUE(i, mval, bpv_v)
set_value(i).invoke &
set_value(i).val = mval &
set_value(i).receiverID(bpv_v)

#define SET_VALIDITY(i, vi, bpv_v)
set_validity(i).invoke &
set_validity(i).validity = vi &
set_validity(i).receiverID(bpv_v)

#define SET_TIME_STAMP(i, t_s, bpv_v)
set_time_stamp(i).invoke & set_time_stamp(i).date = t_s &
set_time_stamp(i).receiverID(bpv_v)

/* Similarly to what previously described about the exchange of
devices’ status information, while in TRIO the passing of
measurement information between classes ’IMSclass’ and ’GPDBclass’ is
achieved through shared item ’measure_info’, in TC this is done
through array parameter ’measures’ of operations ’get_measure’,
’test’, and ’variation’; in consequence of this, the TC specification
introduces some low-level details, which are described by the axioms
below. */

Measures_sent_on_’get_measure’_1:
get_measure(i).end_ok &
Past (get_measure(i).call & get_measure(i).device = dev &

measure(MC_ad, mID, mval, vi, t_s), T) &
MC_measure(dev, mID) & MC_address(dev, MC_ad) ->

ex j1, j2, j3, j4, l, T1, T2, T3, T4, T5, T6, T7, T8, bpv_v (
T2<T1<T & Past(SET_NAME(j1, mID, bpv_v), T1) &

Past(set_name(j1).reply, T2) &
T4<T3<T & Past(SET_VALUE(j2, mval, bpv_v), T3) &

Past(set_value(j2).reply, T4) &
T6<T5<T & Past(SET_VALIDITY(j3, vi, bpv_v), T5) &

C.2. TC SPECIFICATION 173

Past(set_validity(j3).reply, T6) &
T8<T7<T & Past(SET_TIME_STAMP(j4, t_s, bpv_v), T7) &

Past(set_time_stamp(j4).reply, T8) &
get_measure(i).measures(l) = bpv_v &

all k(all mID1 (˜WithinP(SET_NAME(k, mID1, bpv_v), T2)) &
all mval1 (˜WithinP(SET_VALUE(k, mval1, bpv_v), T4)) &
all vi1 (˜WithinP(SET_VALIDITY(k, vi1, bpv_v), T6)) &
all t_s1 (˜WithinP(SET_TIME_STAMP(k, t_s1, bpv_v), T8))))

Measures_sent_on_’get_measure’_2:
get_measure(i).end_ok & get_measure(i).measures(l) = bpv_v &
Past (get_measure(i).call & get_measure(i).device = dev, T) ->

ex mID (MC_measure(dev, mID) &
ex j, T1, T2 (T2<T1<T &

Past(SET_NAME(j, mID, bpv_v), T1) &
Past(set_name(j).reply, T2) &
all k, mID1 (˜WithinP (SET_NAME(k, mID1, bpv_v), T2))) &

all bpv_v1, m (get_measure(i).measures(m) = bpv_v1 &
bpv_v1 <> bpv_v ->
all k (˜WithinP (SET_NAME(k, mID, bpv_v1), T))))

Measures_sent_on_’variation’_1:
variation(i).invoke & variation(i).device = dev &
Past (variation_instant(i) &

measure(MC_ad, mID, mval, vi, t_s), T) &
MC_measure(dev, mID) & MC_address(dev, MC_ad) ->

ex j1, j2, j3, j4, l, T1, T2, T3, T4, T5, T6, T7, T8, bpv_v (
T2<T1<T & Past(SET_NAME(j1, mID, bpv_v), T1) &

Past(set_name(j1).reply, T2) &
T4<T3<T & Past(SET_VALUE(j2, mval, bpv_v), T3) &

Past(set_value(j2).reply, T4) &
T6<T5<T & Past(SET_VALIDITY(j3, vi, bpv_v), T5) &

Past(set_validity(j3).reply, T6) &
T8<T7<T & Past(SET_TIME_STAMP(j4, t_s, bpv_v), T7) &

Past(set_time_stamp(j4).reply, T8) &
variation(i).measures(l) = bpv_v &
all k (all mID1 (˜WithinP (SET_NAME(k, mID1, bpv_v), T2)) &

all mval1 (˜WithinP (SET_VALUE(k, mval1, bpv_v), T4)) &
all vi1 (˜WithinP (SET_VALIDITY(k, vi1, bpv_v), T6)) &
all t_s1 (˜WithinP (SET_TIME_STAMP(k, t_s1, bpv_v), T8)))

)

Measures_sent_on_’variation’_2:
variation(i).invoke & variation(i).measures(l) = bpv_v &
variation(i).device = dev &
Past (variation_instant(i), T) ->

ex mID (MC_measure(dev, mID) &
ex j, T1, T2 (T2<T1<T &

Past(SET_NAME(j, mID, bpv_v), T1) &
Past(set_name(j).reply, T2) &
all k, mID1 (˜WithinP (SET_NAME(k, mID1, bpv_v), T2))) &

all bpv_v1, m (variation(i).measures(m) = bpv_v1 &
bpv_v1 <> bpv_v ->
all k (˜WithinP (SET_NAME(k, mID, bpv_v1), T)))

)

Measure_data_sent_on_test_1:
test(i).end_ok & Past (test(i).call & test(i).device = dev &
test(i).testID = test_cmd &

174 APPENDIX C. THE IMS TC SPECIFICATION

measure(MC_ad, mID, mval, vi, t_s), T) &
MC_address(dev, MC_ad) & measure_of_test(dev, test_cmd, mID) ->

ex j1, j2, j3, j4, l, T1, T2, T3, T4, T5, T6, T7, T8, bpv_v (
T2<T1<T & Past(SET_NAME(j1, mID, bpv_v), T1) &

Past(set_name(j1).reply, T2) &
T4<T3<T & Past(SET_VALUE(j2, mval, bpv_v), T3) &

Past(set_value(j2).reply, T4) &
T6<T5<T & Past(SET_VALIDITY(j3, vi, bpv_v), T5) &

Past(set_validity(j3).reply, T6) &
T8<T7<T & Past(SET_TIME_STAMP(j4, t_s, bpv_v), T7) &

Past(set_time_stamp(j4).reply, T8) &
test(i).measures(l) = bpv_v &
all k (all mID1 (˜WithinP (SET_NAME(k, mID1, bpv_v), T2)) &

all mval1 (˜WithinP (SET_VALUE(k, mval1, bpv_v), T4)) &
all vi1 (˜WithinP (SET_VALIDITY(k, vi1, bpv_v), T6)) &
all t_s1 (˜WithinP (SET_TIME_STAMP(k, t_s1, bpv_v), T8)))

)

Measure_data_sent_on_test_2:
test(i).end_ok & test(i).measures(l) = bpv_v &
Past (test(i).call & test(i).device = dev &

test(i).testID = test_cmd, T) ->
ex mID (measure_of_test(dev, test_cmd, mID) &

ex j, T1, T2 (T2<T1<T &
Past(SET_NAME(j, mID, bpv_v), T1) &
Past(set_name(j).reply, T2) &
all k, mID1 (˜WithinP (SET_NAME(k, mID1, bpv_v), T2))) &

all bpv_v1, m (test(i).measures(m) = bpv_v1 &
bpv_v1 <> bpv_v ->

all k (˜WithinP (SET_NAME(k, mID, bpv_v1), T)))
)

/* The following axioms define the structure of the ’measures’ and
’detailed_status’ array parameters returned (sent) by operations
’get_measure’ and ’test’ (’variation’). Since they deal with
CORBA-specific mechanisms, there are not corresponding rules in the
TRIO specification. */

Measure_data_sent_in_contiguous_arrays_1:
get_measure(i).end_ok & get_measure(i).measures(l) = bpv_v1 &
l > 0 ->

ex bpv_v2 (get_measure(i).measures(l-1) = bpv_v2)

Measure_data_sent_in_contiguous_arrays_2:
variation(i).invoke & variation(i).measures(l) = bpv_v1 & l > 0 ->

ex bpv_v2 (variation(i).measures(l-1) = bpv_v2)

Measure_data_sent_in_contiguous_arrays_3:
test(i).end_ok & test(i).measures(l) = bpv_v1 & l > 0 ->

ex bpv_v2 (test(i).measures(l-1) = bpv_v2)

Detailed_status_data_sent_in_contiguous_arrays_1:
get_measure(i).end_ok &
get_measure(i).detailed_status(l).component = dev1 & l > 0 ->

ex dev2 (get_measure(i).detailed_status(l-1).component = dev2)

Detailed_status_data_sent_in_contiguous_arrays_2:
variation(i).invoke &
variation(i).detailed_status(l).component = dev1 & l > 0 ->

C.2. TC SPECIFICATION 175

ex dev2 (variation(i).detailed_status(l-1).component = dev2)

Detailed_status_data_sent_in_contiguous_arrays_3:
test(i).end_ok & test(i).detailed_status(l).component = dev1 &
l > 0 ->

ex dev2 (test(i).detailed_status(l-1).component = dev2)

/* Axioms Consistency_of_detailed_status_data_sent_X define that the
state associated with a device in the ’detailed_status’ array
parameter of operations ’get_measure’, ’variation’ and ’test’ cannot
be undefined. */

Consistency_of_detailed_status_data_sent_1:
get_measure(i).detailed_status(l).component = dev ->

is_component(dev) &
ex dev_s (get_measure(i).detailed_status(l).status = dev_s)

Consistency_of_detailed_status_data_sent_2:
variation(i).detailed_status(l).component = dev ->

is_component(dev) &
ex dev_s (variation(i).detailed_status(l).status = dev_s)

Consistency_of_detailed_status_data_sent_3:
test(i).detailed_status(l).component = dev ->

is_component(dev) &
ex dev_s (test(i).detailed_status(l).status = dev_s)

/* As for devices’ status information, while calibration information
exchanged between classes ’IMSclass’ and ’GPDBclass’ is achieved
through a shared item (’calib_info’), in TC this is done through a
specific array parameter (’calibrations’) of operation ’variation’; in
consequence of this, the TC specification introduces some low-level
details, which are described by the axioms below. */

Calibration_data_sent_on_’variation’_1:
variation(i).invoke & variation(i).device = dev &
dev_calib(comp, cal) &
(dev = comp | dev_component(dev, comp)) ->

ex l, d, z_e, s_e, lin_eq (
variation(i).calibrations(l).calibID = cal &
variation(i).calibrations(l).date = d &
variation(i).calibrations(l).zero_error = z_e &
variation(i).calibrations(l).span_error = s_e &
variation(i).calibrations(l).lin_eq = lin_eq)

Calibration_data_sent_on_’variation’_2:
variation(i).invoke & variation(i).device = dev &
variation(i).calibrations(l).calibID = cal ->

ex comp (dev_calib(comp, cal) &
(dev = comp | dev_component(dev, comp))) &

(variation(i).calibrations(m).calibID = cal -> m = l)

/* The following axioms have, for array parameter ’calibrations’, the
same meaning that axioms Consistency_of_detailed_status_data_sent_X
and Measure_data_sent_in_contiguous_arrays_X have for parameters
’detailed_status’ and ’measures’, respectively. */

Calibration_data_sent_in_contiguous_arrays:
variation(i).call & variation(i).calibrations(l).calibID = cal1 &

176 APPENDIX C. THE IMS TC SPECIFICATION

l > 0 ->
ex cal2 (variation(i).calibrations(l-1).calibID = cal2)

Consistency_of_calibration_data_sent:
variation(i).calibrations(l).calibID = cal ->

ex d, z_e, s_e, lin_eq (variation(i).calibrations(l).date = d &
variation(i).calibrations(l).zero_error = z_e &
variation(i).calibrations(l).span_error = s_e &
variation(i).calibrations(l).lin_eq = lin_eq)

/* The derivation of the following axiom from the TRIO analogous
rule is immediate, once we notice that TRIO event ’test_request’
corresponds to the invocation of operation ’test’ (i.e. ’test.call’),
while event ’test_end’ corresponds to the successful termination of
the aforementioned operation (i.e. ’test.complete_ok’); notice that we
used event item ’complete_ok’, instead of ’end_ok’, since, in the case
of a deferred synchronous invocation, the server of the operation
(e.g. ’GPDBObj’) cannot force the client to retrieve the data. */

Necessity_of_test_termination:
test(i).call & test(i).device = dev &
test(i).testID = test_cmd -> SomF (test(i).complete_ok)

/* The next axiom does not have a TRIO corresponding rule:
measurement data retrieval in TRIO is instantaneous, but in TC,
instead, it is modeled through an operation (’get_measure’), which has
an invocation and a termination; the following rule for operation
’get_measure’ has the same meaning as axiom for operation ’test’. */

Necessity_of_measurement_retrieval_completion:
get_measure(i).call & get_measure(i).device = dev ->

SomF (get_measure(i).complete_ok)
end GPDBObj

Application Object MCAlarmGenerator

This application object class derives from the homonymous class ’MCAlarm-
Generator’, which was generated from the split of class ’MeasChanAlarmMgr’
during step 3.1 of the methodology.

parallel Application Object Class MCAlarmGenerator
inherit IDTypes, VarTypes, ODAlarmModule::State

visible alarmObj_name

temporal domain real

TI Items
predicate is_alarm(AM_status_name);

/* Time-invariant predicate ’alarmObj_name’ binds the name of an alarm
with the reference of the corresponding ’Alarm’ application object
class (in a way, it represents the same type of information as
attribute ’StatusList’ of interface ’ODAlarmModule::State’). This
predicate has been introduced, since the alarm generator must give to
the HMI the reference of the application object, to which the
acknowledgment (if necessary) must be sent. */

predicate alarmObj_name(alarm_name, OID);

C.2. TC SPECIFICATION 177

state Items
status (AMstatus_name);
alarm_ack_rule (alarm_name, ack_rule);
alarm_enabled (alarm_name);

used interfaces
AlarmReceiver;

axioms
vars

i, j : natural;
al, al1 al2 : alarm_name;
al_s, al_s1, al_s2 : Talarm_status;
sn, sn1, sn2 : AM_status_name;
timetag : temporal_tag;
ack_r, ack_r1, ack_r2 : ack_rule;
AlObj, AlObj1, AlObj2 : OID;

/* The following axioms are entirely new with respect to the TRIO
specification, since they define the meaning of predicate
’alarmObj_name’, which did not exist in that
specification. ’alarmObj_name’ associates the name of an alarm, with
the reference of the corresponding ’Alarm’ application object class;
states which do not represent alarms (for which ’is_alarm’ is false)
do not correspond to any ’Alarm’ object. An ’Alarm’ application object
class cannot be associated with two different alarms (and, viceversa,
an alarm cannot be associated with two different ’Alarm’ application
objects). */

Definition_of_predicate_’alarmObj_name’_1:
is_alarm(al) <-> ex AlObj (alarmObj_name(al, AlObj))

Definition_of_predicate_’alarmObj_name’_2
alarmObj_name(al1, AlObj1) & alarmObj_name(al2, AlObj2) ->

(AlObj1 = AlObj2 <-> al1 = al2)

/* In the following axiom, notice that event items
’IMS_change_AM_status’ and ’GPDB_change_AM_status’ were merged in the
invocation of operation ’set_current_status’. */

Definition_of_state_’status’_1:
Becomes (status(sn)) <->

ex i (set_current_status(i).call &
set_current_status(i).name = sn) & ˜status(sn)

Definition_of_state_’status’_2:
status(sn1) & status(sn2) -> sn1 = sn2

Definition_of_state_’alarm_ack_rule’_1:
alarm_ack_rule (al, ack_r1) & alarm_ack_rule (al, ack_r2) ->

ack_r1 = ack_r2

Definition_of_state_’alarm_ack_rule’_2:
is_alarm(al) -> ex ack_r (alarm_ack_rule (al, ack_r))

State_’alarm_ack_rule’_and_’alarm_enabled’_do_not_change_while_alarm
_is_active:

status(al) | Becomes(status(al)) ->
˜ex ack_r (Becomes (alarm_ack_rule(al, ack_r)) &
˜Becomes (alarm_enabled(al)) & ˜Becomes (˜alarm_enabled(al))

178 APPENDIX C. THE IMS TC SPECIFICATION

/* The derivation of the following axioms is straightforward since:
’alarm_notify’ corresponds to the invocation of operation
’raise_alarm’; acknowledgment of the alarm is not given to the alarm
generator, but must be sent to the object, which is associated with
the raised alarm through predicate ’alarmObj_name’; the reference of
this object must be stored in parameter ’source’; the name of the
alarm, its status (on or off), its temporal tag and its acknowledgment
rule (which, in the TRIO specification, correspond to arg2, arg3, arg4
and arg5 of event item ’alarm_notify’) are represented by parameters
’alarmName’, ’alarmStatus’, ’timetag’ and ’ack_rule’, respectively.
*/

Notification_of_an_alarm_1:
ex i, timetag, al_s (raise_alarm(i).invoke &

raise_alarm(i).source = AlObj &
raise_alarm(i).alarmName = al &
raise_alarm(i).alarmStatus = al_s & al_s = on &
raise_alarm(i).timetag = timetag &
raise_alarm(i).ack_rule = ack_r) <->

Becomes (status(al)) & is_alarm(al) & alarm_enabled(al) &
alarm_ack_rule(al, ack_r) & alarmObj_name(al, AlObj)

Notification_of_an_alarm_2:
ex i, timetag, al_s (raise_alarm(i).invoke &

raise_alarm(i).source = AlObj &
raise_alarm(i).alarmName = al &
raise_alarm(i).alarmStatus = al_s & al_s = off &
raise_alarm(i).timetag = timetag &
raise_alarm(i).ack_rule = ack_r) <->

Becomes (˜status(al)) & is_alarm(al) & alarm_enabled(al) &
alarm_ack_rule(al, ack_r) & alarmObj_name(al, AlObj)

Uniqueness_of_data_associated_with_a_notified_alarm:
raise_alarm(i).invoke & raise_alarm(i).alarmName = al &
raise_alarm(j).invoke & raise_alarm(j).alarmName = al -> i = j

end MCAlarmGenerator

Application Object AlarmObj

This application object class derives from the homonymous class ’AlarmObj’,
which was generated from the split of class ’MeasChanAlarmMgr’ during step
3.1 of the methodology. Like its corresponding TRIO class, it does not define
any axioms.

parallel Application Object Class AlarmObj
inherit ODAlarmModule::Alarm

temporal domain real

end AlarmObj

C.2. TC SPECIFICATION 179

Application Object AlarmChan

This application object class derives from the homonymous TRIO class ’Alarm-
Chan’.

parallel Application Object Class AlarmChan
inherit IDTypes, VarTypes, AlarmReceiver

temporal domain real

used interfaces
AlarmReceiver;

axioms
vars

AM, AM1, AM2 : OID;
al, al1, al2 : alarm_name;
al_s, al_s1. al_s2 : Talarm_status;
timetag, timetag1, timetag2 : temporal_tag;
ack_r, ack_r1, ack_r2 : ack_rule;
i, j, k : natural;
t : real;
T : time;

/* The derivation of the following axioms from the homonymous TRIO
rules is straightforward, once we notice that:
* ’alarm_notify’ corresponds to the invocation of the operation
’raise_alarm’, which is exported by class ’AlarmChan’ through
interface ’AlarmReceiver’;
* ’alarm_deliver’ corresponds to the invocation of the operation
’raise_alarm’, which is class ’AlarmChan’ uses on (i.e. imports from)
interface ’AlarmReceiver’;
* the class, to which the acknowledgment must be sent (which, in TRIO,
was represented by the second argument of event item ’alarm_deliver’),
corresponds to parameter ’source’;
* the name of the alarm, its status (on or off), its temporal tag and
its acknowledgment rule (which, in the TRIO specification, correspond
to arg3, arg4, arg5 and arg6 of event items ’alarm_notify’ and
’alarm_deliver’) are represented by parameters ’alarmName’,
’alarmStatus’, ’timetag’ and ’ack_rule’, respectively.

Notice that, in order to distinguish homonymous operations
’raise_alarm’ (one exported and one imported), when we want to refer
to the one which is used (i.e. imported), we have to prefix its name
with the name of the interface from which it is imported
(i.e. ’AlarmReceiver’). */

Alarm_delivery_only_if_alarm_previously_raised:
AlarmReceiver.raise_alarm(i).invoke &
AlarmReceiver.raise_alarm(i).source = AM &
AlarmReceiver.raise_alarm(i).alarmName = al &
AlarmReceiver.raise_alarm(i).alarmStatus = al_s &
AlarmReceiver.raise_alarm(i).timetag = timetag &
AlarmReceiver.raise_alarm(i).ack_rule = ack_r ->

ex T (LastTime (ex j (raise_alarm(j).invoke &
raise_alarm(j).source = AM &
raise_alarm(j).alarmName = al &
raise_alarm(j).alarmStatus = al_s &
raise_alarm(j).timetag = timetag &

180 APPENDIX C. THE IMS TC SPECIFICATION

raise_alarm(j).ack_rule = ack_r), T) &
Lasted_ei (˜ex k (AlarmReceiver.raise_alarm(k).invoke &

AlarmReceiver.raise_alarm(k).source = AM &
AlarmReceiver.raise_alarm(k).alarmName = al
AlarmReceiver.raise_alarm(k).alarmStatus = al_s
AlarmReceiver.raise_alarm(k).timetag = timetag
AlarmReceiver.raise_alarm(k).ack_rule = ack_r), T))

Alarm_delivery_within_1_second_after_reception:
raise_alarm(i).invoke & raise_alarm(i).source = AM &
raise_alarm(i).alarmName = al &
raise_alarm(i).alarmStatus = al_s &
raise_alarm(i).timetag = timetag &
raise_alarm(i).ack_rule = ack_r ->

ex j (WithinFii (AlarmReceiver.raise_alarm(j).invoke &
AlarmReceiver.raise_alarm(j).source = AM &
AlarmReceiver.raise_alarm(j).alarmName = al &
AlarmReceiver.raise_alarm(j).alarmStatus = al_s &
AlarmReceiver.raise_alarm(j).timetag = timetag &
AlarmReceiver.raise_alarm(j).ack_rule = ack_r, 1))

An_alarm_cannot_be_raised_twice_in_one_second:
raise_alarm(i).invoke & raise_alarm(i).source = AM &
raise_alarm(i).alarmName = al ->

Lasts_ei (˜ex j (AlarmReceiver.raise_alarm(i).invoke &
AlarmReceiver.raise_alarm(i).source = AM &
AlarmReceiver.raise_alarm(i).alarmName = al), 1)

end AlarmChan

Application Object HMIObj

This application object class derives from TRIO class ’HMIclass’.

parallel Application Object Class HMIObj
inherit IDTypes, VarTypes, AlarmReceiver

temporal domain real

/* The signature of state item ’to_be_acknowledged’ has been
simplified with respect to the TRIO specification. In fact, in the
TRIO specification, acknowledgment for different alarms could be
sent to the same class (recall that the alarm generator and the
receiver of the corresponding acknowledge were the same); in
consequence of this, we needed to keep track not only of the class to
which the acknowledge had to be sent (arg1 of TRIO state item
’to_be_acknowledged’), but also of the specific alarm that had to be
acknowledged (arg2). Instead, in the TC specification, the class that
receives the acknowledge is not the one which generates the alarm;
furthermore, there is only one alarm that corresponds to an
acknowledge receiver; as a result, the first two arguments of the
TRIO state item ’to_be_acknowledged’ can be merged together, thus
reducing the number of parameter of the predicate. */

state Items
to_be_acknowledged (OID, ack_rule);

C.2. TC SPECIFICATION 181

used operations
ODAlarmModule::Alarm::acknowledge;

axioms
vars

AlObj : OID;
al, al1, al2: alarm_name;
al_s, al_s1. al_s2 : Talarm_status;
timetag, timetag1, timetag2 : temporal_tag;
ack_r, ack_r1, ack_r2 : ack_rule;
i, j : natural;
t : real;
T : time;

/* The derivation of the following axioms is straightforward, once we
remark that:
* ’alarm_ack’ and ’alarm_deliver’ correspond to the invocation of
operations ’acknowledge’ and ’raise_alarm’, respectively;
* the first argument of state item ’to_be_acknowledged’ plays the same
role of the combination of the first two parameters of the homonymous
original TRIO state item (see also above);
* the class, to which the acknowledgment must be sent (which, in TRIO,
was represented by the second argument of event item ’alarm_deliver’),
corresponds to parameter ’source’ of operation ’raise_alarm’;
* the name of the received alarm, its status, its temporal tag and its
acknowledgment rule (which, in the TRIO specification, correspond to
arg3, arg4, arg5 and arg6 of event item ’alarm_deliver’) are
respectively represented by parameters ’alarmName’, ’alarmStatus’,
’timetag’ and ’ack_rule’ of operation ’raise_alarm’;
* the class, to which the acknowledgment is sent (which, in TRIO, was
represented by the first argument of event item ’alarm_ack’),
corresponds to the receiver (i.e. to predeicate ’receiverID’ of
operation ’acknowledge’. */

Definition_of_state_’to_be_acknowledged’:
Becomes (to_be_acknowledged(AlObj, ack_r)) <->

ex i, al_s (raise_alarm(i).invoke &
raise_alarm(i).source = AlObj &
raise_alarm(i).alarmStatus = al_s & al_s = on &
raise_alarm(i).ack_rule = ack_r) &

ack_r <> none & ˜to_be_acknowledged(AlObj, ack_r)

Uniqueness_of_’ack_rule’:
to_be_acknowledged(AlObj, ack_r1) &
to_be_acknowledged(AlObj, ack_r2) ->

ack_r1 = ack_r2

Alarm_acknowledgment_only_when_alarm_to_be_acknowledeged:
acknowledge(i).invoke & acknowledge(i).receiverID(AlObj) ->

ex ack_r (to_be_acknowledged(AlObj, ack_r))

In_case_of_’simple’_acknowledgment_rule_no_acknowledgment_needed
_after_alarm_deactivation:

to_be_acknowledged(AlObj, ack_r) & raise_alarm(i).invoke &
raise_alarm(i).source = AlObj &
raise_alarm(i).alarmStatus = al_s & al_s = off &
ack_r = simple ->

Becomes (˜to_be_acknowledged(AlObj, ack_r))

Acknowledgment_in_case_of_’active’_or_’simple’_acknowledgment_rule:

182 APPENDIX C. THE IMS TC SPECIFICATION

acknowledge(i).invoke & acknowledge(i).receiverID(AlObj) &
to_be_acknowledged(AlObj, ack_r) &
(ack_r = active | ack_r = simple) ->

Becomes (˜to_be_acknowledged(AlObj, ack_r))

Acknowledgment_in_case_of_’all’_acknowledgment_rule:
acknowledge(i).invoke & acknowledge(i).receiverID(AlObj) &
to_be_acknowledged(AlObj, ack_r) &
ack_r = all &
LastTime (Becomes(to_be_acknowledged(AlObj, ack_r), T) ->

(WithinP (acknowledge(i).invoke &
acknowledge(i).receiverID(AlObj), T) ->

Becomes (˜to_be_acknowledged(AlObj, ack_r))) &
(˜WithinP (acknowledge(i).invoke &
acknowledge(i).receiverID(AlObj), T) ->

˜Becomes (˜to_be_acknowledged(AlObj, ack_r)))
alarm_ack(AM, i, al) & to_be_acknowledged(AM, al, ack_r) &
ack_r = all &
LastTime (Becomes(to_be_acknowledged(AM, al, ack_r), T) ->

(WithinP (alarm_ack(AM, j, al), T) ->
Becomes (˜to_be_acknowledged(AM, al, ack_r))) &

(˜WithinP (alarm_ack(AM, j, al), T) ->
˜Becomes (˜to_be_acknowledged(AM, al, ack_r)))

end HMIObj

Application Object CS

parallel Application Object Class CS
inherit AccessRightManager
temporal domain real
axioms

vars
i, j : natural;
t : real;

/* TRIO event items ’access_request’ and ’abort_request’ correspond
to the invocation of operations ’request_access’ and
’abort_request_access’, respectively. Furthermore formula
’access_granted(i) | access_denied(i)’ corresponds to a generic
successful (i.e. without errors) termination of operation
’request_access’, which, in TC, is represented by fromula
’request_access(i).complete_ok’. Therefore we obtain: */

Effect_of_an_access_request:
request_access(i).call ->

SomF (request_access(i).complete_ok |
ex j (abort_request_access(j).call))

No_answer_after_an_abort_request:
abort_request_access(j).call &
Since (˜request_access(i).complete_ok, request_access(i).call) ->

˜Som (request_access(i).complete_ok)

end CS

C.2. TC SPECIFICATION 183

Application Object BPVFloatObj

This application object class is the model of the elements that compose array
’BPVFloatObjs’ of environment class ’IMSApplication’ (see below). Since this
array was introduced during step 5 of the methodology, the underlying class
(i.e. ’BPVFloatObj’) cannot contain any user-defined axioms.

parallel Application Object Class BPVFloatObj

inherit BPVModule::odFloat

temporal domain real

end BPVFloatObj

C.2.4 Environment class definitions: class IMSApplication

Environment Class IMSApplication
inherit IDTypes, VarTypes
temporal domain real
modules

IMS : IMSObj;
ControlSystem : CS;
GPDB :GPDBObj;
MeasuringChannels : array [TmeasuringChannelID] of

MeasuringChannel;
MCAlarmGenerators : array [TmeasuringChannelID] of

MCAlarmGenerator;
AlarmChannel : AlarmChan;
HMI : HMIObj;
AlarmObjs : array [1..A] of AlarmObj;
BPVFloatObjs : array [1..F] of BPVFloatObj;

connections
(connect IMS, GPDB)
(connect IMS, ControlSystem)
(connect GPDB, MeasuringChannels)
(connect IMS, GPDB, BPVFloatObjs)
(connect IMS, GPDB, MCAlarmGenerators)
(connect MCAlarmGenerators, AlarmChannel)
(connect AlarmChannel, HMI)
(connect HMI, AlarmObjs)

axioms
vars

d_id, dev, comp, dev_comp : TdevID;
MC_ad, AM, AM1, AM2: TmeasuringChannelID;
AlObj, AlObj1, AlObj2 : OID;
al, al1, al2 : alarm_name;
AlObj_ad, AlObj_ad1, AlObj_ad2 : [1..A];
cal : TcalibID;
mID : TmeasureID;
test_cmd : test_command;

Definition_of_predicate_’is_component’_of_’MeasuringChannels’:
MeasuringChannels[MC_ad].is_component(comp) <->

184 APPENDIX C. THE IMS TC SPECIFICATION

IMS.is_component(comp) & GPDB.MC_address(dev, MC_ad) &
(IMS.dev_component(dev, comp) |
ex MC2 (IMS.dev_component(dev, dev_comp) &

IMS.dev_component(dev_comp, comp))
MeasuringChannels[MC].is_component(comp) <->

IMS.dev_component(MC, comp) |
ex MC2 (IMS.dev_component(MC, MC2) &
IMS.dev_component(MC2, comp)

/* All the remaining axioms have been introduced specifically for the
TC specification. */

Definition_of_relationships_between_types_of_devices_1:
IMS.is_single_device(d_id) -> ˜IMS.is_dev_part(d_id) &
˜IMS.is_channel(d_id)

Definition_of_relationships_between_types_of_devices_2:
IMS.is_channel(d_id) -> ˜IMS.is_dev_part(d_id)

Definition_of_relationships_between_types_of_devices_3:
IMS.is_component(d_id) -> IMS.is_single_device(d_id) |

IMS.is_dev_part(d_id)

Definition_of_relationships_between_types_of_devices_4:
IMS.is_dev_part(d_id) -> IMS.is_component(d_id)

Definition_of_relationships_between_types_of_devices_5:
IMS.is_measuring_chan(d_id) <->

IMS.is_channel(d_id) | (IMS.is_single_device(d_id) &
˜IMS.is_component(d_id))

/* The next axioms state that: calibrations can only be referred to
single devices; measures can only be associated with measuring
channels; tests can only be associated with measuring channels;
predicate ’dev_component’ associates devices with their components.
*/

Definition_of_devices_used_by_predicate_’dev_calib’:
IMS.dev_calib(dev, cal) -> IMS.is_single_device(dev)

Definition_of_devices_used_by_predicate_’MC_measure’:
IMS.MC_measure(dev, mID) -> IMS.is_measuring_chan(dev)

Definition_of_devices_used_by_predicate_’measure_of_test’:
IMS.measure_of_test(dev, test_cmd, mID) -> is_measuring_chan(dev)

Definition_of_devices_used_by_predicate_’dev_component’:
IMS.dev_component(dev, comp) ->

(IMS.is_channel | IMS.is_single_device(dev)) &
IMS.is_component(comp)

/* The last two axioms define the meaning of predicate
’MCAlarmGenerators.alarmObj_name’: alarms can be associated only with
’Alarm’ application object classes that exist in the specification; an
’Alarm’ object represents only one alarm of one alarm generator. */

Definition_of_predicate_’alarmObj_name’_of_’MCAlarmGenerator’:
MCAlarmGenerators[AM].alarmObj_name(al, AlObj) ->

ex AlObj_ad (AlarmObjs[AlObj_ad]._id = AlObj)

C.2. TC SPECIFICATION 185

Two_different_alarm_managers_cannot_use_the_same_alarm_object:
MCAlarmGenerators[AM1].alarmObj_name(al1, AlObj) &
MCAlarmGenerators[AM2].alarmObj_name(al2, AlObj) ->

AM1 = AM2 & al1 = al2

end IMSApplication

186 APPENDIX C. THE IMS TC SPECIFICATION

Bibliography

[1] A. Alborghetti, A. Gargantini, and A. Morzenti. Providing automated
support to deductive analysis of time critical systems. In M. Jazayeri and
H. Schauer, editors, Software Engineering—ESEC/FSE ’97: Sixth European
Software Engineering Conference and Fifth ACM SIGSOFT Symposium on the
Foundations of Software Engineering, volume 1301 of Lecture Notes in Com-
puter Science, pages 211–226, Zurich, Switzerland, Sept. 1997. Springer-
Verlag.

[2] M. Barbacci, C. Weinstock, D. Doubleday, M. Gardner, and et al. Durra:
a structure description language for developing distributed applications.
IEEE Software Engineering Journal, 8(2):83 – 94, March 1993.

[3] M. Basso, E. Ciapessoni, E. Crivelli, D. Mandrioli, A. Morzenti, and P. San
Pietro. Experimenting a logic-based approach to the specification and de-
sign of the control system of a pondage power plant. In M. Wirsing, edi-
tor, ICSE-17 Workshop on Formal Methods Application in Softw. Eng. Practice,
Seattle, WA, April 1995.

[4] B. Boehm. A spiral model of software development and enhancement.
IEEE Computer, 21(5):61–72, May 1988.

[5] G. Booch. Object Oriented Analysis and Design with Applications. Benjamins
Cummings, 1994.

[6] G. Booch, I. Jacobson, and J. Rumbaugh. The Unified Modeling Language for
Object Oriented Development, Documentation set. RationalRose, 1996.

[7] R. S. Boyer and J. S. Moore. A Computational Logic. Academic Press, New
York, 1979.

[8] R. Capobianchi, D. Carcagno, A. Coen-Porisini, D. Mandrioli, and
A. Morzenti. A framework architecture for the development of new gen-
eration supervision and control systems. In M. Fayad and D. Schmidt,
editors, Domain Specific Application Frameworks. J. Wiley, September 1999.

[9] A. Casazza, D. Comini, A. Morzenti, M. Pradella, P. San Pietro, and
F. Scheriber. Specification and test case generation for the safety kernel
of the Naples subway. In Proc. of 5th International Conference on Information
Systems Analysis and Syntesis (ISAS’99), volume 1, pages 533–540, 1999.

187

188 BIBLIOGRAPHY

[10] E. Ciapessoni, A. Coen-Porisini, E. Crivelli, D. Mandrioli, P. Mirandola,
and A. Morzenti. From formal models to formally-based methods: an
industrial experience. ACM TOSEM - Transactions On Software Engineering
and Methodologies, 8(1):79–113, 1999.

[11] E. Ciapessoni, E. Corsetti, A. Montanari, and P. San Pietro. Embedding
time granularity in a logical specification language for synchronous real-
time systems. Science of Computer Programming, 20:141–171, 1993.

[12] E. Ciapessoni, D. Mandrioli, A. Morzenti, and P. San Pietro. TRIO+*:
un linguaggio orientato a oggetti per la specifica in grande di sistemi in
tempo reale. ENEL/Politecnico di Milano Internal Report, 1995.

[13] E. M. Clarke and J. M. Wing. Formal methods: State of the art and future
directions. ACM Computing Surveys, 28(4):626–643, Dec. 1996.

[14] A. Coen-Porisini, M. Pradella, and M. Rossi. An evolutionary approach
to the design of supervision and control systems. In Proc. of International
Workshop on Principles of Software Evolution (IWPSE’99), pages 37–42, July
1999.

[15] A. Coen-Porisini, M. Pradella, M. Rossi, and D. Mandrioli. A formal ap-
proach for designing CORBA based applications. In Proc. of the 22nd Inter-
national Conference on Software Engineering - ICSE2000, Limerick (IR), June
2000.

[16] A. Coen-Porisini, M. Pradella, and P. San Pietro. A finite-domain seman-
tics for testing temporal logic specifications. In A. Ravn and H. Rischel,
editors, FTRTFT ’98—Fifth International School and Symposium on Formal
Techniques in Real Time and Fault Tolerant Systems, volume 1486 of Lecture
Notes in Computer Science, pages 41–54. Springer-Verlag, 1998.

[17] D. L. Dill. The Murphi verification system. In Rajeev Alur and Thomas
A. Henzinger, editors, Proceedings of the Eighth International Conference on
Computer Aided Verification CAV, volume 1102 of Lecture Notes in Com-
puter Science, pages 390–393, New Brunswick, NJ, USA, July/Aug. 1996.
Springer Verlag.

[18] C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The tool KRONOS. In
Hybrid Systems III: Verification and Control, volume 1066 of Lecture Notes in
Computer Science, pages 208–219, Rutgers University, New Brunswick, NJ,
USA, 22–25 Oct. 1995. Springer-Verlag. (Third DIMACS/SYSCON Work-
shop on Verification and Control of Hybrid Systems).

[19] B. P. Douglass. Real-Time UML. Addison Wesley, 1998.

[20] E.M. Clarke and E.A. Emerson. Synthesis of Synchronization Skeletons for
Branching Time Temporal Logic. In Logics of Programs: Workshop, volume
131 of Lecture Notes in Computer Science, Yorktown Heights, New York,
May 1981. Springer-Verlag.

BIBLIOGRAPHY 189

[21] M. Felder and A. Morzenti. Validating real-time systems by history-
checking TRIO specifications. ACM Transactions on Software Engineering
and Methodology, 3(4):308–339, October 1994.

[22] Field Bus. IEC - IS - 1158-2 field bus standard for use in industrial control
system physical layer specification and service definition.

[23] C. Ghezzi, D. Mandrioli, and A. Morzenti. TRIO: A logic language for
executable specifications of real-time systems. The Journal of Systems and
Software, 12(2):107–123, May 1990.

[24] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. A user guide to HyTech.
In E. Brinksma, R. Cleaveland, K. G. Larsen, T. Margaria, and B. Steffen,
editors, Tools and Algorithms for the Construction and Analysis of Systems,
volume 1019 of Lecture Notes in Computer Science, pages 41–71. Springer-
Verlag, 1995.

[25] G. J. Holzmann. Design and Validation of Computer Protocols. Prentice Hall,
Englewood Cliffs, NJ, 1991.

[26] M. Kaufmann and J. S. Moore. ACL2: An industrial strength version of
Nqthm. COMPASS — Proceedings of the Annual Conference on Computer
Assurance, pages 23–34, 1996. IEEE catalog number 96CH35960.

[27] K. Lano. Enhancing object oriented methods with formal notations. Theory
and Practice of Object Systems, 2(4), 1996.

[28] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Specifying distributed
software architecture. In Proc. ESEC ’95, number 989 in Lecture Notes in
Computer Science, pages 137–153. Springer-Verlag, September 1995.

[29] D. Mandrioli, A. Marotta, and A. Morzenti. Modeling and analyzing real-
time CORBA and supervision & control framework and applications. sub-
mitted for publication.

[30] D. Mandrioli, S. Morasca, and A. Morzenti. Generating test cases for real-
time systems from logic specifications. ACM Transactions on Computer Sys-
tems, 13(4):365–398, November 1995.

[31] Z. Manna, N. Bjoerner, A. Browne, and E. Chang. STeP: The Stanford
Temporal Prover. Lecture Notes in Computer Science, 915:793–??, 1995.

[32] S. Morasca, A. Morzenti, and P. San Pietro. Generating functional test
cases in-the-large for time-critical systems from logic-based specifications.
In Proc of ISSTA 1996, ACM-SIGSOFT International Symposium on Software
Testing and Analysis, January 1996.

[33] A. Morzenti, D. Mandrioli, and C. Ghezzi. A Model Parametric Real-Time
Logic. ACM Transactions on Programming Languages and Systems, 14(4):521–
573, 1992.

190 BIBLIOGRAPHY

[34] A. Morzenti, M. Pradella, M. Rossi, S. Russo, and A. Sergio. A case study
in object-oriented modeling and design of distributed multimedia appli-
cations. In Proc. of 2nd Symposium on Software Engineering for Parallel and
Distributed Systems (PDSE’99), Los Angeles (USA), pages 217–223. IEEE
Computer Society Press, May 1999.

[35] A. Morzenti and P. San Pietro. Object-oriented logical specification
of time-critical systems. ACM Transactions on Software Engineering and
Methodology, 3(1):56–98, January 1994.

[36] OMG. A discussion of the Object Management Architecture. Technical
report, OMG, 492 Old Connecticut Path, Framingham, MA 01701, USA,
January 1997.

[37] OMG. CORBA Services book, 98-12-09. Technical report, OMG, 492 Old
Connecticut Path, Framingham, MA 01701, USA, 1998.

[38] OMG. CORBA IIOP 2.3.1 Specification, 99-10-07. Technical report, OMG,
492 Old Connecticut Path, Framingham, MA 01701, USA, 1999.

[39] OMG. The Common Object Request Broker: Architecture and Specifica-
tion, Revision 2.4, 2000-10-01. Technical report, OMG, 492 Old Connecti-
cut Path, Framingham, MA 01701, USA, 2000.

[40] OpenDREAMS Consortium. Supervision and control system requirement
analysis, deliv. wp1/t1.1-isr-rep/r11-v3. Technical report, OpenDREAMS
Consortium, June 1996.

[41] OpenDREAMS II Consortium. Activity modules functional specification,
deliv. wp3/t3.3-isr-rep/r33-v2. Technical report, OpenDREAMS II Con-
sortium, June 1998.

[42] OpenDREAMS II Consortium. EMS application specification extensions,
deliv. wp7/t7.1-enel-rep/r71-v1. Technical report, OpenDREAMS II Con-
sortium, May 1998.

[43] OpenDREAMS II Consortium. Formalization of OD services, deliv.
wp1/t1.3-pdm-rep/r13-v1. Technical report, OpenDREAMS II Consor-
tium, April 1998.

[44] OpenDREAMS II Consortium. Replication service design, deliv.
wp1/t1.4-epfl-rep/ir14-v1. Technical report, OpenDREAMS II Consor-
tium, June 1998.

[45] OpenDREAMS II Consortium. Specification of the transaction service,
deliv. wp1/t1.3-ir13. Technical report, OpenDREAMS II Consortium, June
1998.

[46] OpenDREAMS II Consortium. Utility modules functional specification,
deliv. wp3/t3.2-alct-rep/r32-v1. Technical report, OpenDREAMS II Con-
sortium, August 1998.

BIBLIOGRAPHY 191

[47] OpenDREAMS II Consortium. Development methodology, deliv.
wp5/t5.1-pdm-rep/r51-v2. Technical report, OpenDREAMS II Consor-
tium, June 1999.

[48] OpenDREAMS II Consortium. Integrated toolkit documentation, deliv.
wp5/t5.6-pdm-rep/r56. Technical report, OpenDREAMS II Consortium,
June 2000.

[49] S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype verification sys-
tem. In D. Kapur, editor, Proceedings of the 11th International Conference on
Automated Deduction (CADE-11), volume 607 of Lecture Notes in Computer
Science, pages 748–752, Saratoga Springs, NY, June 1992. Springer-Verlag.

[50] J. P. Queille and J. Sifakis. Specification and verification of concurrent
systems in CESAR. In Proc. 5th Int’l Symp. on Programming, volume 137 of
Lecture Notes in Computer Science, pages 337–371, Berlin/New York, 1982.
Springer-Verlag.

[51] R. Soley (ed.). Object Management Architecture. J. Wiley, 1992.

[52] J. Rumbaugh, M. Blaha, F. Premerlani, F. Eddy, and W. Lorensen. Object-
Oriented Modeling and Design. Prentice Hall, 1991.

[53] J. Siegel. OMG Overview; CORBA and the OMA in Enterprise Comput-
ing. Communications of the ACM, October 1998.

[54] A. Urquhart. Many valued logic. Handbook of Philosophical Logic, 3, 1986.

