
I. INTRODUCTION

Computer based systems are getting ever more pervasive and
in charge of critical missions. Mission criticality stems from
economic, environmental, human-life-safety factors, as for
example in systems for patient monitoring, flight control or
automatic guidance. Often such systems are operated by
organizations providing services (such as energy production
and distribution, telecommunications, logistics,
transportation), but that do not develop computer-based
systems themselves. Rather, they act only as system
integrators of systems purchased from external suppliers,
typically hardware and/or software high tech companies.
Service providers have therefore the problem of managing
acquisition and integration of purchased (sub)systems.
Hence, such organizations often need clear, unambiguous,
possibly formal, requirement specifications, to set
requirements and make clear the responsibility of the
purchaser and of the supplier. Moreover, both the purchaser
and their suppliers must agree on rigorous acceptance
procedures, based on verification (testing) and (final)
validation, functional and safety assessment and safety
approval. Last, uniform, possibly standardized
documentation is essential to permit the monitoring of the
development and facilitate the operation and the
maintenance.
When dealing with safety-critical systems, the procurement
task is made even harder by the requirement, under

• This work was partially supported by MIUR Project:
“QUACK: Piattaforma per la qualità di sistemi embedded
integrati di nuova generazione”.

applicable national and international laws, that the systems
must verify a suitable set of international standards, dictating
procedures for design, deployment and maintenance. These
standards must be applied under the legal responsibility of
both the purchaser and their suppliers.
The present paper reports the experience of a joint project
between Politecnico di Milano and Italian State Railway FS,
Infrastructure Department (which recently became Rete
Ferroviaria Italiana S.p.A: R.F.I. S.p.A.). The purpose of the
project was to define procedures and rules for managing
software procurement for safety-critical signalling equipment.
The latter includes a broad range of devices, governing lines
and tracks in stations, railway/road crossings, and train
movements.
Various goals obtained in the project, which were imposed as
additional constraints, are:
• the project covers all phases of system development,

from requirements elicitation to implementation, final
validation, approval and acceptance;

• the project provides requirements on methods,
languages and tools to be used during software
development, without any bias towards any particular
technology or tool provider. The only general
requirement is technical soundness and being up to date
with respect to the current advances in computer
science.

• the results are consistent with, and acceptable against,
international standards (mainly the EN50128 standard
for software [EN01]).

• choices are made (by imposing requirements) to obtain
the best combination / trade off between needs of
purchaser and provider.

The Role of Formal Methods in Software Procurement
for the Railway Transportation Industry ••••

Umberto Foschi1, Mauro Giuliani1, Angelo Morzenti2, Matteo Pradella3, Pierluigi San Pietro2

(1) Rete Ferroviaria Italiana S.p.A., Italia; e-mail: {u.foschi, m.giuliani}@rfi.it;
(2) Dipartimento di Elettronica e Informazione, Politecnico di Milano, Italia,
 email: {morzenti, sanpietr}@elet.polimi.it;
(3) CNR Istituto di Elettronica e di Ingegneria dell’Informazione e delle Telecomunicazioni, Milano,
 email: pradella@elet.polimi.it.

Abstract-- The present paper reports the experience of a joint project between Politecnico di Milano and Italian
State Railway FS, Infrastructure Department(became Rete Ferroviaria Italiana S.p.A.: R.F.I. S.p.A.). The
purpose of the project was to define procedures and rules for managing software procurement for safety-critical
signalling equipment. The project covers all phases of system development, from requirements elicitation to
implementation and final validation, providing requirements on methods, languages and tools to be used during
software development, without any bias towards any particular technology or tool provider. The results are
consistent with, and acceptable against, international standards. In particular, Requirements/Recommendations
have been issued, tailored on various kinds of systems under examination, concerning: a) methods, techniques,
languages and tools; b) organization of the provider company in terms of independence and responsibility of
participating actors; c) documentation to be produced by the provider. A first experimental evaluation of formal
specification methods applied to signalling systems is also reported, and we outline a further experimentation,
where the results presented here will be applied on an industrial scale in the procurement, by RFI, of a complex
signaling apparatus.
Keywords: Requirements Analysis, Verification and Validation, Command and Control Systems, Transportation
Systems

• the chosen methods are mature at industrial level, are
supported by automatic tools, and are likely to gain
acceptance by average engineers, both in the railway and
computer technology domains.

In particular, Requirements/Recommendations have been
issued, tailored on various kinds of systems under
examination, classified according to the following three
“dimensions”:
1. complexity (low, medium, high)
2. degree of safety-criticality (SIL)
3. presence of temporal requirements (time independency,

qualitative/quantitative time)
Recommendations concern:
a. methods, techniques, languages and tools;
b. organization of the provider company in terms of

independence and responsibility of participating actors;
c. documentation to be produced by the provider.
In the paper we focus on point (a), occasionally mentioning
results of kind (b).
Not surprisingly, the main result/contribution of the project
concerns requirements specification, verification, and
validation: these techniques support a correct interaction
between purchaser and provider (design and
implementation/coding are more mature and less critical:
these choices can be left to providers). In particular, the
project recommends the adoption of formal methods for the
specification phase, when supported by suitable tools and
verification and validation techniques. In the full paper, we
report the results of a comparative evaluation of methods,
tools and notations for (formal) requirements specification,
starting from a discussion of their needed features.
As far as the evaluation of specification methods is
concerned, we performed an experimental activity, the formal
specification of a simple, but highly critical and time
dependent, signaling apparatus. The paper also reports the
main results of this.
We also report overall recommendations concerning:
• verification, e.g., testing through a suitable combination

of functional and structural techniques, and adoption of
coverage metrics;

• coding standards. e.g., choice of programming language
(Ada as opposed to C), use of tools for static and
program analysis;

• final validation, and the problem of minimizing its cost
through a combination of requirements analysis and
acceptance tests performed as much as possible in a
simulated environment rather than in the field.

Our investigation differs from other apparently similar
studies on application of formal methods to validation and
verification of critical systems, such as [NASA95], in that it
is very much finalized to the selection of methods that are
commercially supported and at the same time have a defined
level of automatic support to a given set of validation and
verification activities.
In Section II, the paper describes the main recommendations
issued by the project and in Section III shows the results of
an experimental comparison of specification methods
(Statecharts and SDL). Section 4 draws a few conclusions.

II. MAIN RESULTS AND RECOMMENDATIONS

A. System Classification and Responsibilities
As mentioned in the introduction, the recommendations were
based on a classification of the systems under procurement
according to three dimensions: complexity, criticality, and
temporal requirements. Complexity was assumed to be
conventionally determined by the purchaser, while the degree
of criticality was determined, according to well known and
widely recognized criteria, by the SIL (Safety Integrity Level)
of the application.
The temporal requirements were classified in three
categories: time independent, qualitative time, and
quantitative time. The time independent category refers to
systems without any particular temporal constraints, e.g.
performing pure data or signal elaborations. The qualitative
time category refers to systems that send to or receive from
the environment time-ordered values and actions, without any
quantitative information about time instants and time
distances. Some improper real-time systems are in this
category, systems with strict and binding requisites, but
designed (e.g. by means of ad hoc protocols, synchronization
or interlocking mechanism) to adequately manage every
possible delay (or anticipation), or the absence of expected
events. The quantitative time category comprises the properly
called Hard Real Time (HRT) systems. These systems
interact with processes that are not completely manageable or
controlled, and that cannot avoid a quantitative expression of
their temporal constraints (not just an order relation among
events), without severe consequences. It is worth pointing out
that the category of qualitative time is quite different from the
so-called soft real-time systems, i.e., systems where missing
some (quantitatively of qualitatively stated) time constraint is
undesirable or annoying but does not cause unacceptable
damage; also it does not correspond to high-throughput
systems, which must have the capability of processing high
quantities of data, but with time requirements that are
expressed in statistical terms. This is because the systems
under consideration were in any case critical for safety and
economic reasons, so that missing time requirements (even
when these are qualitative) is not admitted.

With reference to the various phases of the software
development and to the correspondingly produced
documents, the following responsibility roles are
characterized: (i) specifier, (ii) software designer, (iii)
programmer, (iv) person in charge of the requirement
validation and final validation, (v) person in charge of the
software verification. To obtain an effective and correct task
subdivision and to favor independence and detachment of the
acts of the responsible persons, it is required that some
constraints are satisfied in assigning such roles to the persons
who participate to the software development. For systems
having SIL 3 or 4 and medium or high complexity, and for
those of SIL 1 or 2 and high complexity, it is required that
one given person cannot cover two of the above roles
simultaneously; for example, the software designer cannot be
also in charge of its verification; moreover, it is required that,
for the systems with SIL 3 or 4 , the persons who cover roles
(ii) and (iii) belong to one structure or organization (e.g., the
division of planning) distinguished from those of sets (iv)

and (v) (e.g., the quality control division). These
requirements for the personal incompatibility among the
various roles are displayed in Figure 1, using boxes with
long dashes. (The Figure, taken from [SM01], also shows
connections the development phases and the documents there
produced) The requirements are slightly lessened for systems
having SIL 1 or 2 and medium or low complexity, and for
systems having class of integrity 3 or 4 and low complexity
(see boxes with short dashes in Figure 1): in this case the
personal incompatibility is established among the following
set of roles: {specifier}, {software designer, programmer},

{person in charge of the requirement validation and the final
validation, person in charge of the software verification };
e.g., the software designer can be also a programmer, but a
programmer cannot be the person in charge of the
verification of the software. These less restrictive
requirements consider the fact that some small or medium
sized enterprises, though having a project staff of reduced
size, might as well develop high quality software, if they
correctly apply the suggested notations, methods, and tools.

PROJECT HEAD

software requirement specification

software requirement test specification

REQUIREMENTS DEFINITIONS

software requirements verification report

SPECIFIER

PERSON IN CHARGE OF
REQUIREMENTS VALIDATION

AND FINAL VALIDATION

PERSON IN CHARGE
OF INSTALLATION

software quality assurance plan

software configuration management plan

software verification plan

software integration test plan

sw/hw integration test plan

software validation plan

software maintenance plan

SOFTWARE PLANNING

software architecture specification

software design specification

softawre architecture and design verification
report

SOFTWARE DESIGN

data preparation plan

data test plan

software module design specification

software module test specification

software mdoule verification report

DESIGN OF SOFTWARE MODULES

software source code

software source code verification report

CODING

software module test report

TEST OF SOFTWARE MODULES

software integration test report

SOFTWARE INTEGRATION

data test report

software/hardware integration test report

SOFTWARE/HARDWARE INTEGRATION

software validation report

FINAL VALIDATION

software delivery report

DELIVERY

SOFTWARE
DESIGNER

PERSON IN
CHARGE OF SW
VERIFICATION

PROGRAMMER

software maintenance records

MAINTENANCE

software change records

PERSON IN
CHARGE OF

QUALITY

Figure 1: Phases/documents/persons-in-charge associations

B. Requirements Analysis and Specification
Table 1 shows the prescription on specification validation techniques and generation of functional test cases, depending on the
integrity class of the system (class A includes SIL 3 and 4, class B includes SIL 1 and 2), its complexity and its temporal features.
Table 2 illustrates the meaning of the terms used in Table 1.

 System
Prescription

CLASS COMPLEXITY TIME

 A B LOW MED. HIGH INDIP QUAL QUANT

Analysis
Simulation or traces generation YES YES * * YES * YES YES

 Property
proof

no abstraction * YES(3) * * * * * *

 a bstraction * YES * * * * * *
 Generality * YES(3) * * * * * *
 Automation * SEMI * * * * * *
Syntax controls YES YES * YES YES * YES YES
Degree of spec. coverage T T * * * * T(1) T(1)
Validation accuracy degree β γ(2) 0 α β 0 β(1) γ(1)
Notes (see Table 2)
(1) The indicated coverage/accuracy is a minimum requirement for the temporal parts alone.
(2) It is recommendable, but not mandatory at the current state of the art, to use a method with degree of accuracy δ.
(3) It is recommendable, but not mandatory at the current state of the art.
The character * means that there is no recommendation, neither in favor nor against the adoption of this technique.

Table 1 Validation prescriptions.

ANALYSIS The analysis activities are those that make possible th validation of the specification. The important activities for the

validation are listed, except those possible with any notation (such as inspections and walkthroughs).
 Simulation The possibility to simulate/animate, also in interactive and semi-automatic way, the behavior of the system, generating

the events and the actions included in the simulation in chronological order. Values: YES/NO
 Traces generation The possibility to generate (also in semi-automatic way) execution traces of the system according to the specification,

and to verify automatically if the given traces are compatible with the specification. Differently from the simulation,
events and actions are not necessarily generated in chronological order. Values: YES/NO

 Property proof The possibility to prove mathematically (by means of logical demonstrations or exhaustive analysis) that the specified
system possesses suitable properties, e.g. of safety, absence of deadlock, etc. They are classified in the following
according to the degree of certainty and generality.

 Without
abstraction

The proofs can be executed on the complete specification of the system. They have therefore a total degree of certainty:
the specified system possesses without doubt the proved property. Values: YES/NO

 With
abstraction

The proofs can be executed, except in very simple cases, by introducing suitable approximations (abstractions) of the
original specification, e.g. in the case of model checking when the actual data dealt by the system are ignored.
Abstractions make proofs simpler but reduce the degree of certainty of the result. Values: YES/NO

 Generality The properties to be proved can be chosen by the user in a general and flexible way, using a suitable sufficiently
expressive mathematical notation. Values: YES/NO

 Automation
degree

The support offered by the tools. Values: MAN (manual): proofs are carried out by hand; SEMI (semi-automatic): the
tools support at least the verification that the proof is correct, and possibly prepare a structure of the proof (proof
obligations) and/or automate the trivial parts and sub-proofs, but must be guided from expert users; AUTO: proofs are
completely automatic. Order: MAN<SEMI<AUTO

Syntactic controls Tool support in verifying that a specification is syntactically correct. Values: YES/NO
Specification
coverage degree

Values: T (Total), when all the requirements have the same relevance and must therefore be specified;
P (Partial), when some requirements, identified in unambiguous way and totally isolated from the others, do not have
any influences on safety. Order: P<T.

Accuracy degree of
validation

The degree of accuracy for the validation of the requirements specification to be carried out: it prescribes the available
techniques of validation to be applied in order to catch up an adequate level of confidence. Values: Ο: informal
inspections, walkthrough; α: syntactic controls of type, coherence between definition and use of the entities that
compose the specification, i.e. the typical static controls carried out by the compilers of modern programming
languages; β: at least one of the following: simulation, animation, generation of traces, symbolic analysis, reachability
analysis, proofs of prefixed properties (e.g., absence of deadlock), proof of properties with abstraction; γ: same
techniques as β, but made with a combination of at least two techniques of different nature and adopting suitable
metrics in order to measure the coverage degree of the analyses; δ: statement and proof of general properties. Order:
Ο<α<β<γ<δ.

Table 2 Legend for Table 1.

Finally, Table 3 shows the application of the prescriptions of
Table 1 to a set of widely used formalisms, considering both
language features and current tool support. The analyzed
notations and formal methods are Z [Spi88], TRIO
[GMM90], Statecharts [Har87], SDL [EHS97], UML
[BRG99], LOTOS [EVD89], PN [Mur89], SCADE
[BDS91], B [Abr96]. Table 3 is obtained by comparing, for

each notation and corresponding method and tool
environment, the characteristic features and the tool support
with the requirements expressed in Table 1. It can be noted
that, not surprisingly, the state of the art is still unsatisfactory,
even for the methods and tools hat received the “best score”,
in the case of systems with quantitative timing features (so-
called strict real time systems) and a high level of complexity.

In this case there is no “strongly recommended” method and
tool, the existing ones being only “recommended”. This is
due to the fact the currently available tools for analysis and
verification of formal models are not certified neither
validated by repeated and long-lasting application in an
industrial setting. This is clearly the area where most
significant theoretical and technical advances are needed and
it is in fact a very active research area in the formal method
international community. Table 3 will be subject to periodic
revisions, since tool support may improve over time.

 System

Method

INTE
GRITY

COMPLEXITY TIME

 B A LOW MED. HIG
H

IN QL QT

Z Y N
(1)

Y Y N(1) Y Y N

TRIO N
(1)

N
(1)

Y N
(1)

N
(1)

Y Y Y

STATE
CHART
S

Y Y Y Y Y Y Y Y
(2)

SDL Y Y Y Y Y Y Y Y
(2)

UML N
(3)

N N
(3)

N N Y Y N

PN Y N Y N N Y Y Y
(2)

LOTOS Y N Y Y N Y Y Y
(2)

SCADE Y N
(1)

Y Y Y Y Y Y
(2)

B Y Y Y Y Y Y Y N
Legend: IN = Independent, QL: Qualitative, QT =
Quantitative., Y = YES, N = No
(1) The NO answer derives from the unavailability of tools
with a sufficiently consolidated level, that possess all the
features required for the YES value.
(2) The method is recommendable for systems of class B. For
the class A, this method is acceptable at the current state of
the art, but not strongly recommended.
(3) The method is recommendable only for cases of class B
with SIL=1.

Table 3. Prescriptions on specification methods.

C. Design, Coding, and Testing
Concerning the phases of high-level and detailed design the
criterion was adopted to leave as much as possible to the
supplier the choice of the notation and tools for performing
and documenting the design steps, with the strong provision
that all development steps be thoroughly documented.
Adoption of UML notations, such as class diagrams,
structure diagrams, deployment diagrams, was suggested, but
also the use of more traditional, function-based rather than
object based or object-oriented methods was admitted.
A much greater attention was devoted to the choice of the
programming language adopted for the coding phase. A
comprehensive investigation (also supported by the analysis
of [Sto96]) led us to the conclusion that two languages are
technically suitable for the development of critical software

in the railway transportation field, namely Modula-2 and
Ada. The former, however, suffers from a lack of suitable
development tools and of a very quite limited industrial
adoption. Hence the recommendation to use Ada for coding
this category of computer based critical applications. We also
had to consider the reluctance of many suppliers to adopt
Ada, due to the perceived intricacies of the language and to
the unavailability of professional programmers, and their
preference for the C language. Therefore the use of the
language C was also admitted, as a “second choice”, subject
to the adoption of a set of strict coding standards and to the
use of industrial strength tools for static verification of C
programs (like PC-lint and QA C). The coding standards are
meant to enforce a use of the C language in an “object
oriented fashion”, and enclose the programming techniques,
reported in [Hat95], concerning the major, well-known
problematic features of the C language, i.e., unspecified
behavior, undefined behavior, implementation-dependent
behavior, and local behavior.
Recommendations on testing enclose the adoption of well-
known techniques for white-box testing (coverage of
statements, conditions, branches, paths, etc.) and for black
box (i.e., functional) testing. We emphasize that functional
testing must, at least in part, be based on test cases derived
from formal specifications of the system and software
requirements, thus exploiting the well known fact that formal
models can be used for the two complementary and synergic
operations of requirements validation and production of
artifacts (e.g., functional test cases) to plan and support the
verification process..
Functional, specification-based testing is also considered as
complementary to structural testing, in that the degree of
achieved structural coverage of the testing process, to be
measured with the support of suitable software tools
supporting the testing process, can also be reached by the
application of functional test cases.

III. METHODS AND TOOLS: A COMPARISON
The last step of the joint project consisted of an experimental
activity of comparison of two well-known methods and tools,
namely the SDL tool suite by Telelogic and the Statemate
tool suite by I-Logix. RFI provided both a natural language
description of the adopted case study, a railway crossing
signaling system, and a high-level schema. Very briefly, the
analyzed system is in charge of checking the railway crossing
current status and sending the suitable signals both to the
station and to the train.
The experimental comparison was carried as follows. In a
first meeting, trained engineers from RFI, supported by
instructors from I-Logix, built a Statemate specification of
the system, and then validated it using a simulator. A similar
setting was arranged for the SDL tools. Afterwards, the
authors performed some analyses, both qualitative (e.g.
readability, ease of use), and quantitative (e.g. automatic
proofs of a simple but critical properties, automatic test case
generation) on the two different specifications. The analyses
were carried out using the tools provided by Telelogic and I-
Logix.

The results of the comparison, based on the elements defined
in Table 4, have been summarized with reference to three
main aspects: 1) naturalness and clarity of the notation; 2)
availability of adequate validation and verification tools; 3)
engineering level and documentation of the suite.

readability

scalability

composability

coverage

temporal aspects

Specification

traceability

simulation / traces

test cases

Validation &
Verification

proof of properties

integration with O.S. / robusteness

notation completeness

ease of use

syntactic/
semantic checks

validation and verification
efficiency

internal integration

Tools

documentation

Table 4. Methods and tools comparison elements

Both SDL and Statemate were adequate with respect to point
3, with a slight advantage for SDL. As far as point 1 is
concerned, the SDL notation resulted more cumbersome
compared with Statemate. The RFI engineers found quite
harder to express the system in SDL, while Statemate
resulted more “natural” and easy to understand, and then to
manage during the validation activity. On the opposite side,
the quality of the tools (point 2) was at the time much better
for SDL, while Statemate tools were incomplete and unable
to effectively perform all the requested validation and
verification activities. Nonetheless, we were able to test a
really promising final prototype of a Statemate-based analysis
tool, expected to be made available to the market in a few
months.

IV. CONCLUSIONS
Various lessons have been learned during the project and
among them we mention the following:
1. formal methods for specification and verification are––

slowly and with difficulties––reaching some
appreciation and use in the industrial environment: there
are many notations, methods, and (prototypal) tools
originating from the academia, which however lack
industrial strength in terms of tool stability,
documentation and user support; on the other hand,
there are very few technically sound methods and tools
coming from the industry;

2. thorough verification of complex, hard real-time systems
is still infeasible in practice using the (industrial
strength) tools available at the time of the project; the
verification technology is however rapidly evolving;

3. international standards like EN50128 [EN01] can have a
positive role in promoting the adoption of systematic
and technically sound development methods, but can
also be technically outdated, obscure, ambiguous or too
accommodating.

Based on the results of the project, the re-engineering of the
specification of a large body signaling devices, that were
historically developed based on electrical technology, can be
done using the formal methods; applications can be
developed by industry starting from the new specifications
and applying the suggested new procedures; it also expected
that the results of the joint project between Politecnico di
Milano and FS - RFI can contribute to the planned
upgrading of Cenelec EN 50128 standard..
A pilot application of the procedure defined in this project
will start soon in RFI. This application, concerns the
development of a new RFI Automatic Block System for train
spacing. The procedure will be applied to the whole software
lifecycle and its effectiveness will be carefully evaluated.
Those parts of the procedure for which the pilot application
evidences criticalities will be modified. The procedure,
adequately finalized, will be proposed for the Cenelec EN
50128 upgrading process. The new Automatic Block System
for train spacing is currently specified by a set of user
requirements, expressed in textual form, concerning the main
functions (train detection, train spacing, block orientation
management, transmission to the on board cab signal of the
signals aspect, recording of alarms and others juridical data),
the performances (RAMS requirements) and the constraints
(required level of E M Immunity, etc). The first action will be
the formalization of the informal user requirements
specification. The obtained formal requirements will be
validated by simulation and the validated formal
requirements will be the input for the following development
phases, that also will be managed applying the defined
procedure and adequately using the formal methods.

References
[Abr96] J. R. Abrial, The B-Book, Cambridge University

Press, October 1996, ISBN: 0521496195.
[BDS91] Frédéric Boussinot, Robert De Simone, The Esterel

Language. Another Look at Real Time Programming, Proc.
of the IEEE, vol. 79, pp 1293-1304, 1991.

[BRG99] G. Booch, J. Rumbaugh, I. Jacobson, The Unified
Modeling Language User uide. Addison-Wesley, 1999

[EHS97] Ellsberger, J.; Hogrefe, D.; Sarma, A., SDL -
Formal Object-oriented Language for Communicating
Systems, Prentice Hall Europe, 1997, ISBN 0-13-621384-
7.

[EN01] EN 50128 Railway applications – Software for
railway control and protection systems, CENELEC - 2001.

[EVD89] P. H. J. van Eijk, C. A. Vissers, M. Diaz (editors)
[GMM90] Ghezzi C., Mandrioli D., Morzenti A. TRIO a

Logic Language for Executable Specifications of Real-time
Systems, Journal of Systems and Software, June 1990.

[Har87] Harel, D. 1987. Statecharts: A visual formalism for
complex systems. Science of Computer Programming 8,
231-274. Preliminary version: Tech. Report CS84-05, The
Weizmann Institute of Science, Rehovot, Israel, February
1984.

[Hat95] Les Hatton, SAFER C: developing software for high-
integrity and safety-critical systems, McGraw-Hill, London,
1995.

[Mur89] T. Murata, Petri Nets: Properties, Analysis and
Applications Proceedings of the IEEE, Vol. 77, No 4,
April, 1989, pp. 541-580.

[NASA95] NASA Office of Safety and Mission Assurance:
Formal Methods Specification and Verification Guidebook
for SW and Computer Systems. Vol I.-II. NASA GB 002-
95, Washington 1995

[SM01] A/Morzenti, P. San Pietro, “Technical Specification:
Software Life Cycle for Safety-Critical Signalig systems,
http://www.elet.polimi.it/upload/sanpietr/pubs/rfi.pdf, or
http://www.rfi.it/direzionetecnicainternet/specificheis/techS
pecSafeSignalSw.pdf.

[Spi88] J. M. Spivey, Introducing Z: a Specification
Language and its Formal Semantics, Cambridge University
Press, Cambridge, 1988.

[Sto96] N. Storey, Safety-critical computer systems, Addison
Wesley Longman, Edimburg, UK, 1996.

The formal description technique LOTOS Elsevier Science
Publishers B.V., 1989.

