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Abstract. The aim of this paper is to collect definitions and resultst@rhain
classes of 2D languages introduced with the attempt of gérierg regular and
context-free string languages and in same time presenonge f their nice
properties. Almost all the models here described are basdies. So we also
summarize some results on Wang tiles and its applications.

1 Introduction

The interest for a robust theory of two-dimensional (2D)glaages (or picture lan-
guages) comes from the increasing relevance of pattergné@mn and image process-
ing. The main attempt of the research in this area is to géperthe richness of the
theory of 1D languages to two dimensions. First focus was efinitions of classes
of picture languages that are the analogue of the classebahgky’s hierarchy for
1D languages, in sense that, restricting to pictures of(dize), picture and string lan-
guages at each level of the hierarchy coincide and that tivedeéinitions for pictures
inherit as many as possible properties from the correspgragfinitions for strings.

Several different approaches were considered in the witelature on the topic.
The generalizations that seem to be the best answers tmpseréquests for the two
lower levels of Chomsky’s hierarchy are essentially basedMang tiles and in this
paper we aim to give a survey of classical and new results @sethicture languages.
Wang tiles, introduced in 1961, are squares whose all edgescéored. A finite set
of Wang tiles admits a valid tiling of the plane if copies oéttiles can be arranged
one by one, without rotations or reflections, to fill the plawethat all shared edges
between tiles have matching colors. In 1966, Berger [8] pdothat the problem of
determining whether a given finite set of Wang tiles can tike plane is undecidable,
and constructed the first example of an aperiodic set of Wiewy f.e. a finite set of
tiles whose all valid tilings have no periodic behavior. &&¥ papers are devoted to the
problem of determining small aperiodic set of Wang tilesregently the main interest
in Wang tiles was motivated by applications which, besidamguter graphics, start
to involve appealing areas in the frameworks of nanoteaugies and so called life
sciences.

* Work partially supported by ESRutomata: from Mathematics to Applications (AutoMathA)
CNR RSTL 760Grammatiche 2D per la descrizione di immagiand by MIUR PRIN project
Mathematical aspects and emerging applications of autaraatl formal languages
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For the ground level of Chomsky’s hierarchy a robust debnitdf recognizable
picture languages was proposed in 1991 by Giammarresi astiV®eT hey defined the
family REC of recognizable picture languag®sprojection of local propertied31].
This class is considerade generalization of the class of regular 1D languages because
it unifies several approaches to define the two dimensiomgunalof regular languages
via finite automata, grammars, logic and regular expression

In 2005 Crespi Reghizzi and Pradella [18] introduced tilangmars, a model of
grammars that extends the context-free (CF) grammars féaiguages to two dimen-
sions. The right hand part of each rule of a tile grammar ist @ftles determining a
local picture language. A rule is applied to the currentyietreplacing a rectangular
subpicture, completely filled by the left hand side of theeywlith an isometric rect-
angle belonging to the local picture language determinetheyight hand part of the
rule. The generative power of these grammars exceeds REQdges. More recently
a simplified version of tiling in the right hand part of theeslwas considered in [15],
giving raise to a new model of grammars called regional tisgmnars. The new model
includes several models of grammars proposed as gendi@iizaf CF 1D grammars,
the membership problem is solved by a polynomial time atorithat naturally ex-
tends the classical CKY algorithm for strings, but it gemesaa family of languages
incomparable with REC.

The first section of the paper contains some basic notionsatares and picture
languages. Then, some information on Wang tiles is giveredosd section, third and
forth sections are devoted to collect results respectiorliREC family and on several
types of grammars proposed as generalization of CF 1D laygguacluded in the fam-
ily generated by tile grammars. In the last section, soma gpeblems and some hints
on different approaches to picture grammars are given.

2 Basic definitions

In this section some standard definitions of pictures, péctanguages and operations
on pictures are recalled.

Let X be a finite alphabet. pictureover X' is a 2D array of elements df called
pixels Thesize|p| of a picturep is the pair(|p|row, |p|cor) Of its number of rows (its
height) and columns (width). The indices grow from top totbot for the rows and
from left to right for the columns. The set of all pictures ove is denoted by ++,
X*is X+ U {\}, where) is the empty picture. Foli, k > 1, XF (resp. X+,

X +F) is the set of all pictures of sizgh, k) (resp. withh rows, with & columns). A
picture languagever X is a subset of**. # ¢ X is used when needed abaundary
symboj p refers to the bordered version of pictureThat is, forp € XF, pis

T
#p(11) ... p(1,k) #
p=io
# p(h, 1) ... plh, k) #
#o# . #
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The domainof a picturep is the setdom(p) = {1,..., [Plrow} X {1, ., |Plcot}
anddom(p) = {0, ..., [plrow + 1} X {0,..., |p|cot + 1} is the domain of the bordered
picturep.

A subdomairof dom(p) is a setd of the form{z,...,2'} x {y,...,y’} where
1<z<2 <|plrow, 1 <y <y <|pleoi; the sizeofdis (z/ —x+ 1,y —y+1).
We will often denote a subdomain by using its top-left anddoatright coordinates,
in the previous case the quadrugle y; 2’,y’) 3. Subdomains oflom(p) are defined
analogously. Each subdomain @m(p) of size (1, 1) is called apositionof p. The
translationof a subdomainl = (xz,y;2’,y’) by displacementa, b) € Z? is the sub-
domaind’ = (z + a,y + b;2’ + a,y’ + b): we will write d’ = transl, 4 (d). Pairs
(0,4), (|p|row + 1,4), (4, 0), (4, [Pleor + 1) With 0 < i < |plear + 1, 0 < j < |plrow + 1,
are callecexternal positionsf p, the other are calleiiternal positionsPositions in the
set{(0,0), (0, [plcot +1), (|Plrow+1,0), (|Plrow +1, [plcot +1)} are calleccorner posi-
tions Given a positior(z, j) with 1 < i < |p|row +1andl < j < |p|.o + 1 its top-left
(¢1- for short) contiguous positions are the positiofisj — 1), (i — 1,7 — 1), (i — 1, 5).
Analogously fortr, b, br wheret, b, [, r are used for top, bottom, left and right respec-
tively. For any internal position, its contiguous positoare all thetl-, ¢tr-, br-, and
bl-ones. Since each sB{n,m) ={0,1...,n+1} x {0,1...,m+ 1} can be seen as
the domain of a bordered pictugewith p of size(n,m), the elements oP(n,m) are
sometimes called positions &f(n, m) as well.

The pixel of the picture at position(, j) of dom(p) is denoted (i, 5). If all pixels
of a picturep over X belong to an alphabet’ C XY, p is called ¥’-homogeneoys
a picture which is{a}-homogeneous for some € X' is called ana-picture, or also
a homogeneous picture. ¢f € X, o* stands for thei-picture in X, while a ™+
stands for the set ef-pictures inX++.

Let p be a picture ove and letd = (x,y;2',y') C dom(p), the subpicture
spic(p, d) associated td is the picture of the same size®$uch thatyi € {1,...,2'—
x4+ 1}andVvj € {1,...,y —y + 1}, spic(p,d)(i,5) = plz +i—1,y+j —1). A
subpicturey of p, writteng < p, is a subpicturepic(p, d) associated to some subdomain
dofp. Ifd = (z,y;2+ h—1,y+ k — 1), then the subpicturg = spic(p, d) is also
called the subpicture of of size (h, k) at position(z, y), writteng <, .y p.Theset of
subpictureof size(h, k) of p is denoted by

Bhi(p) ={q € X" q<p}.

A pictureq € X" is called ascattered subpicturéof p € X+ if there are strictly
monotone functiong : {1,2,...,m} - {n € N | n > 1},9: {1,2,...,n} —
{n € N | n > 1} such thatp(f(i),g(j)) = q(i,5) forall (i,5) € {1,2,...,n} X
{1,2,...,m}.
Now we shortly present main picture-combining and tramsfog operators.
Thecolumn concatenatiom , for all picturesp, ¢ such thatp|,ow = |g|row, Written
p O g, is defined as:

3 Notice that the Cartesian coordinate system is clockwisated of 90 with respect to the
standard one.

4 A scattered subpicture is often called a subpicture, angistulses in our sense are called
blocks.
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p(1,1) ... p(Lplea)  q(1,1) .. q(1,]qleor)
pOa= A
p(|p|mwa 1) cee p(|p|r0wv |p|col) Q(|Q|T0wv 1) ce Q(|Q|T0wv |‘J|col)

The row concatenation for picturesp, ¢, writtenp©gq, is defined analogously (with
p on top). The empty picturg is the neutral element for both concatenation operations.
p*® is the horizontal juxtaposition of copies ofp; p*® is the corresponding closure.
kS and*© are the row analogous.

The projection by mappingr : ¥ — A of a picturep € X7 is a picturep’ €
AT T such thatp| = |p’| andp’ (i, j) = w(p(i, 5)) for every position(i, j) of p.

The (clockwiseYotation of a picturep, rot(p), is informally described as follows:

p(|p|r0w71) p(l,l)
rot(p) = : :
p(|p|mwa |p|col) ce p(la |p|col)

Thepixel-wise Cartesian productf two picturep € X", ¢ € X5 with [p| = |q/,
is a picturef € (X; x X3)** such that f| = |p|, andf (i, j) = (p(4,7), q(i, 7)) for all
iaja I<i< |plrowa 1 SJ < |p|col [501

Projection, rotation, row and column concatenation, ardlpvise Cartesian prod-
uct can be extended to picture languages as usual. For evegydgd., C X** we set
L0 =[98 =\, L' = [ 0 LU-D® andL*® = L & L~ YS for everyi > 1. Thus,
the row and column closures can be defined as the transitgerds ofp ando:

0 — U Lo, [ = U L,

>0 >0

which can be seen as a sort of 2D Kleene star. In [50] Simptatduced the closure
L**. We omit the detailed definition of Simplot’s operator antfaduce it quite infor-
mally. We sayp € L iff there exists a partition oflom(p) where each subpicture
associated to a subdomain of the partition idin_et L** be the sef. ™ U {\}. For

example:
a/ab K,k
bebd G{aa,lb),bc,zll,e}
bbc

If all the pictures ofZ. have the same size, théh*?)*© = (L*©)*® = [**,

A well-known and widely useful concept in 1D languages isssitilstion, which
assigns languages to letters of the alphabet and natusdiyds to strings and lan-
guages too. In 2D languages, a substitution can be simitifined. Given two fi-
nite alphabetsC’ and A, a substitutionfrom A to X is a mappingr : A — 2577,
But a difficulty hinders the extension of the mapping to pietij because of the so-
called shearing problem of picture languages: a pixel inctupg cannot be replaced
by a larger picture without disrupting the array structure.overcome the problem
in [15] the notion of replacement was introduced.plfg, ¢’ are pictures such that



Picture Languages: from Wang tiles to 2D grammars 5

q < ;) p for some position(i, j) of p, and|q| = |¢|, thenp[q¢'/q]; ;) denotes the
picture obtained by replacing the occurrenceyadt position(i, j) in p with ¢/, i.e.,
pld'/d G (i+r—1,74+y—1) = ¢ (z,y)forall 1 <z < |glrow, 1 <y < |qleor- Then
the notion of substitution was modified as follows. ket A — 2¥ """ be a substitu-
tion. Given a picturey € A™T, a partitionII (dom(p)) = {di,...,d,}, withn > 1,
of dom(p) where each subpictuspic(p, d,,) associated to a subdomaip, of the par-
tition is a b,,,-picture for some,, € A is called ahomogeneous partitioof p. Then
thesubstitution ofp € A*™-* induced bylI (dom(p)) is the language 17 (dom ) (P) =
{plri/spic(p,dr)] ... [rn/spic(p, dn)] | 7m € 0(bm),1 < m < n}.GivenL C X7,
asetll = {(p, II(dom(p)) | p € L}, where eaclI(dom(p)) is a (homogeneous) par-
tition of p € L, is called a (homogeneous) partition setfofif L C At andITl is a
homogeneous partition set bf then thesubstitution ofZ. induced by the homogeneous
partition set/] is the language 7 (L) = {0 z7(dom(p))(P) : P € L}.
Roughly speaking a substitution : A — 2" extends to pictures and to picture
languages by replacingsubpictureg,, at position(i, j), of p with picturesg € o(a)
of the same size. This definition, however, is not equivaietie traditional notion of
substitution when applied to strings.

Now we are in position of introducing families of 2D languagbut since we are
mainly presenting languages based on tiling we remind satiers on Wang tiles.

3 Wangtiles

A Wang tileis a unit square with colored edges. [Z&be a finite set of Wang tiles, which
are not allowed to rotate. A map: Z? — T is called avalid tiling, of the Euclidean
plane, or equivalently” can tile the Euclidean plane, if common edges of any pair of
adjacent tiles have the same color. More formally denot&if), S(t), W (¢), E(t)
the colors of the upper, lower, left and right edges of atilespectively, then is
a valid tiling of the Euclidean plane, iN(7(i,j)) = S(7(i,j + 1)), S(7(i,5)) =
N(r(i,j — 1), W(r(i,5)) = E(r(i — 1,5)), andE(r(i, §)) = W (r(i + 1,5)), for
each(i,j) € Z%. Analogously,T can tile a rectangle of size x m if there is a map
7 : {1,...,m} x {1,...,n} — T such that adjacent tiles agree on the colors of
contiguous edges. In 1961 Wang [53], analyzing the classeofitst order formulas in
prenex normal form whose prefix¥&:3yVz, raised the question
Plane tiling problem given a finite set of Wang tiles establish whether or not it iég&lm
a valid tiling.

The 1D version of this problem admits an easy solution. Ngnteleach finite set
T of unary segments with colored left and right end points care @ssociate a direct
graph where the set of colors is the set of vertices, and thesd ;) are the colors
of left and right endpoints of some segmentiin ObviouslyT admits a valid tiling
if and only if there is a bi-infinite path in the associate dragmd then if and only if
the graph has a loop. Coming back to the 2-dimensional pmgbifehe given finite set
T of Wang tiles has a valid tiling with some vertical periodljcithe plane is covered
by the repetition of some horizontal strip. Then, since #tii has only finitely many
different vertical cross sections, the tiling has peridgglialong two different directions.
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Atiling 7 is calledperiodicif there are two integers, ¢ such thatr (i, j) = 7(i +
p,j), 7(i,5) = 7(i,7+q) forall (4, j) € Z2. Without loss of generality we can assume
p = ¢. By the above argument it follows that if a finite set of Warlggihas a tiling
with a non zero period along one direction then it admits ol tiling.

Wang conjectured that any set of tiles which admits a vdiidgtiof the plane also
admits a periodic tiling and under this assumption he gavelgorithm to solve the
plane tiling problem, based on a compactness-like theorem.

Proposition 1. A finite set of Wang tiles can tile the whole plane iff it caa &tbitrarily
large finite areas of the plane.

In particular a given set of tiles can tile the whole planaifl®nly if it can tile the first
quadrant and so several constraints on the tiling of thediratirant were posed. These
problems were a bit easier to settle than the plane tilindgplpro and were speedily
proved to be undecidable, an overview on these results céoubd in [54]. The plane
tiling problem on the contrary remained unsolved for yebigwever, from the above
discussion it is clear that if the plane tiling problem is anidlable, then there are finite
sets of tiles which admit only non-periodic tilings of thepé.

A finite set of Wang tiles which admits only non-periodic @iiling is saidaperi-
odic. In 1966 Berger [8], proved the following

Theorem 1. The plane tiling problem is undecidable.

His proof is based on encoding the halting problem of TurirecMne in the valid
tiling of an arbitrary large square portion of the plane. Brer, he constructed an
aperiodic set of 20426 Wang tiles that shortly reduced ta 104

Then several well-known scientists from different areagligsrete mathematic,
logic and computer science paid attention to the problemnalirig smaller aperiodic
sets of tiles and simplified proofs of undecidability of pdatiling problem (see for
instance [49]). The smallest aperiodic set of Wang tilesaioletd by geometrical ar-
guments is composed by 16 tile (for a survey, see Chapterad @k of [33]). More
recently Kari, [37], proposed a different approach basedemuential machines that
multiply Beatty sequences of real numbers by rational @nst and produced an ape-
riodic set of Wang tiles with 14 tiles. His method was imprd\s®y Culik, [20], who
built an aperiodic set formed by 13 tiles. This is currently smallest known aperiodic
set of Wang tiles. An expository article describing thiseggeh is [27].

Once proved the existence of aperiodic set of Wang tilesfatewing problem
naturally arises:

Periodic tiling problem given a finite set of Wang tiles determine whether or not it can
tile the plane periodically.

The problem was first studied in 1972 by Gurevich and Korialdwo proved its unde-
cidability [34].

Valid tilings have some quite surprising regularities. lZebe a finite set of Wang
tiles, apatternis a partial map> : P — T from a finite domainP of Z? in T. A pattern
appearsin a tiling 7 : Z2 — T if the tiling is the extension of the image of the pattern
by a shift.
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Avalid tiling 7 : Z? — T is calledquasi-periodidf for each pattern\/ appearing
in 7 there is an integen such that\/ appears in alh x n squares inr. A valid quasi
periodic tiling that is not periodic is callegtrictly quasi-periodic

In [24] Durand proved the following

Theorem 2. Each finite set of Wang tiles admitting a valid tiling admitseasi-periodic
valid tiling.
Thequasi-periodicityfunction for a quasi periodic tiling is the function that associate
to each integer the minimal size: of the squares in which one can find all the patterns
of sizex appearing in the tiling.

This function enables to characterize quasi periodicgdithat are periodic.
Proposition 2. A quasi periodic tiling is periodic if and only if its quasepodicity
function is bounded by — z + ¢, for some constant.

Then, using a counting argument on trees suitably assdciatealid tilings, Durand
obtains the following

Theorem 3. If atile set can be used to form a strictly quasi-periodimtil of the plane,
then it can form an uncountable number of different tilings.

It is important to note that valid tilings could be defined @veral different ways.
For instance one could arrange all edge colors in complemgmairs and ask for
tilings of the plane where common edges of adjacent tiles samplementary colors.
This problem is equivalent to the plane tiling problem. I tiotation is allowed, the
tiling problem with matching colors of contiguous edgegiigally solvable while the
problem with complementary colors remain undecidable.

A generalized simple way for describing variants of tilindes is to consider the
given finite setl’ of Wang tiles as a finite alphabet and a set of local riles 7*. A
tiling 7 satisfies the local rulek if and only if all 2 x 2 patterns appearing in the tiling
areinL. In [26] the authors give via this approach a new short prétfi®existence of
aperiodic tilings.

Besides the strong connections with first order and desmnifpdgics [25] yet aris-
ing from its original motivation, tiling problems have agped in many branches of
physics and mathematics like group theory, topology, gugsials, symbolic dynamics.
More recently Winfree et al. [56] have demonstrated theilidég of creating molecu-
lar tiles made from DNA that can act as Wang tiles introdutiregile assembly model
As pointed out by Brun [13] a tile assembly model is a highbtidbuted parallel model
of computation that may be implemented using molecules)ange computer network
such as the Internet, and this opens several new prospective

In a more applicative and less ambitious context, Wang tile® been proposed as
tool for procedural synthesis of textures, and in generf trave also proved to be very
useful for the creation of large non-periodic texturesnpdiistributions and complex
2D scenes, see for instance [1, 17].

4 Recognizable picture languages

The attempt of transferring definitions and properties fgtring languages to their 2D
analogue is quite successful when one considers the fiedtdéChomsky’s hierarchy.



8 Alessandra Cherubini and Matteo Pradella

The class of picture languages corresponding to regularimensional languages
was intensively studied by several authors with differggpiraaches: finite automata,
logical characterizations, regular expressions and s@pnnifying approach to this
family of picture language was proposed by Giammarresi aestif® via local prop-
erties and projection. They introduced the so calRddC family of picture languages
and collected main properties of this family in the nice syrf81]. Here, besides sum-
marizing the results contained in [31], we add some morenteesults with the aim of
fixing the actual state of art.

4.1 Labeled Wang tiles and Tiling Systems

First, we remind the definition & EC languages based on tiles endowed with labels in
a finite alphabel’.

Definition 1. ([21]) A labeled Wang tileshortly LWT, is a 5-tuple (c1, ¢2, ¢3, ¢4, a)
where for alli, 1 < i < 4, ¢; belongs to a finite sef' of “colors” and a belongs to a
finite sety’ of labels.

AWang systenfWS) is a triple (C, X, T') whereT C C* x X is a finite set oL WT'’s.
Let B € C be a special color and let be a picture of sizén, m) on the alphabeT”, r
is atiling overT if

- r(1,1) € {(B,B,c3,c4,a) | c3,c4 € C\{B},a € Z},r(1,n) € {(c1, B, B,c4,0a) |
c1,¢4 € C\{B},a € X}, r(m,n) € {(c1,¢2,B,B,a) | c1,c2 € C\ {B},a €
Xr(m,1) € {(B,ca,c3,B,a) | ca,c3 € C\{B},a € X}

—foralli, 1 <i<n,r(l,i) € {(c1, B,c3,ca,0a) | ¢c1,c3,¢4 € C\ {B},a € X},
r(m,i) € {(c1,c2,¢3,B,a) | c1,c2,c3 € C\{B},a € X};

—foralli, 1 <i<m,r(i,1) € {(B,ca,c3,cq,a) | ca,c3,¢4 € C\ {B},a € X},
r(i,n) € {(c1,¢2, B,cg,a) | c1,c2,c4 € C\{B},a € X};

—forall (i,5), 1 <i<m,1 <j<m,r(ji) € {(c1,ca,c3,c4,a) | c1,C2,¢3,¢4 €
C\ {B},a € X}; moreover letr(i,j) = (e,n,w,s,a), thenifi > 1, r(i —
1,7) € {(c1,¢2,¢5,n,a") | c1,c0,¢c3 € Cya’ € X}, ifj > 1,r(i,j — 1) €
{(c1,¢2,€,c4,a’) | c1,¢2,c4 € C,a’ € I}

Thelabel||r|| of a tiling r is a picture overX of size|r| defined by
[rll(é,5) = a < (i, j) = (c1,c2,c3,¢4,a)

for somecy, co, 3, ¢4 € C. The set of the labels of all the tilings oVEris the language
L(WS) generated by the Wang systaW. A languagel generated by a Wang system
is calledWang recognizable

ForeacHWT ¢ = (c1, 2, c3, ¢4, a) ina Wang systeriVS, consider the non labeled
versiont = (c1, ¢z, 3, ¢4). Roughly speaking the above definition says that the map
p:{1,...,m} x{1,...,n} — T defined ap(h, k) = r(n+1— h, k) is a valid tiling
oftheregion{1,...,m} x{1,...,n} bythe selWS of the non labeled versions of tiles
in WS such that the boundary of the tilingss colored by the special cold® that does

not occur in inner edges.
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The same family of picture languages is also introduced hyrmdlism based on
the local rules introduced in Section 3.

Forp € X+ let [p] be the set of subpictures of size (2,2)p0f In the sequel the
concepts ofile, andlocal languageare central.

Definition 2. A tile is a square picture of size (2,2). A languageC X** is local if
there exists a finite sé? of tiles over the alphabef' U {#} such thatl, = {p € X** |
[5] € ©}. We will refer to such language aOC(6).

Notice thafLOC(©) is the set of finite rectangles of Euclidean plane with boupnda
colored by# that admit a valid tiling agreeing also with the boundaryocol'he set
of local languages, shortly denoted by)C, is the natural extension of string local
languages and so the following definition extends one of &faitions of regular 1D
languages.

Definition 3. ([31]) A tiling system(TS) is the 4-tupl€” = (X, I', ©, 7r), where:

X’ and I are two finite alphabets,

m: ' — X'is amapping,

O is afinite set oR x 2 tiles over the alphabel' U {#}.

The languagd.(T) = 7(LOC(O)) is thelanguage defined by the T&

The languages over finite alphabets defined by tiling systemstitute the familREC
of TS-recognizable languages X'

The familyREC is considered the correct answer to the quest of a naturptatitan
of the class of regular word languages for pictures. Nantighy,in the 1D caseREC
languages can be equivalently characterized by severablams. We shortly remind
some of them, and we mainly refer to [31] for more information

First, one can modify the size of tiles. In this way the deifimitof domino systems
arises where® is a finite set ofl x 2 and2 x 1 pictures over the alphabét U {#}
andLOC(0) = {p € X** | B12(p) U B21(p) C O}. Alocal language of this type
is calledhv-local language The family of hv-local languages is properly included in
LOC.

Moreover, one can consider the connection between Warsggtild local rules.

Lastly, a characterization &t EC in term of regular string languages can be given
using the so calletdbw-column combinationf two string language®& andC, i.e. the
languagesR @ C of the pictures all whose rows, thought as strings, are and whose
all columns, seen as string from top to bottom, ar€'in

Theorem 4. ([50, 21]) Let L be a picture languages. The following are equivalent.

1. LisTS-recognizable,

2. L is recognizable by some domino system,

3. Lis Wang recognizable,

4. there exist two regular string languagésand C' and a projectiont such that
L=Ra&C.

% In the rest of the paper, we will use this notation insteadeb (p) for brevity.
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Other generalizations of local languages given in 1D casdeaxtended to picture
languages.

Let h, k be two positive integers. Two picturpsr € X** are related in the equiv-
alence relatior2;, ;, if and only if their corresponding bordered versions haeestime
set of subpictures of sizg, k). A picture language i®cally testablef it is union of
&), p-equivalence classes for some positive integers.

Letp be a picture. Foh, k, ¢t positive integer and for a pictugee (X' U { L})** of
size(h, k) let ocey(q) the number of subdomaimsof dom(p), such thaspic(p, d) is a
translation ofy and letocc}, (¢) = min(t, occ,(q)). Let=j , be the equivalence relation
on X** defined byp =] , rif and only if occl,(¢) = occl.(q) forall g € (Y U{L})"*
of size(h, k) .

A picture language ifocally threshold testablé it is union of = , -equivalence
classes for some positive integérsk andt.

Above picture languages are proper subclass&gss.

Proposition 3. The family LT of locally testable languages is properly included in
the family LTT of locally threshold testable languages, which in turn isgerly con-
tained inREC. Moreover every language ib7T is a projection of a locally testable
language.

The family REC inherits several closure properties of regular string leaggs.
NamelyREC is closed under intersection, union, projection, row arldrom concate-
nation, closure operations, Cartesian product, and Singdsure operatot*. More-
overREC is closed under substitution of language®RiEC induced by homogeneous
partition sets, and also under by substitutions of langsi@agBEC induced by the set
of all homogeneous partitions of each picture [15].

However, fundamental properties of regular string langsdgil inREC.

Proposition 4. REC is not closed under complement.
The membership problem for each langudge REC is NP-complete.
The emptiness and universe problemsE&iC are undecidable.

It is important to remark that in spite of its NP-completenabe parsing prob-
lem for REC languages can be successfully tackled encoding the proibkenSAT.
Namely, in [45] a recognizer/generator for pictures defibgda tiling system is im-
plemented in a very attractive, unconventional way, by m@rgg for a picturep and
eacha € X the statemenp(i,j) = a as a propositional variable of the SAT prob-
lem and transforming the tiling problem into a Boolean $itslity one, then using an
efficient off-the-shelf SAT-solver. The prototype is fasibeigh to experiment on rea-
sonably sized samples, and has the bonus of being able tdet@magpartial picture, by
assigning to unknown pixels some values which satisfy tbeim specification.

Another difference between regular string languagesiE@ arises considering
the following modified definition of local testability. Lét, & be two positive integers.
Two pictures are related in the equivalence relatioyy, if and only if they have the
same set of scattered subpictures of $ize).

A picture language ipiecewise locally testabli it is union of ~, -equivalence
classes for some positive integérs k. The languag€e ORNERS of picturesp over
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{a, b} such that whenever(i, j) = p(i’,j) = p(i,j’) = bthen alsop(i’,j') = bis
piecewise testable, but does not belon&ioC.

4.2 Unambiguous and deterministic classes of recognizalphécture languages

The definition of recognizability in terms of local languaged projections is implic-
itly nondeterministic, moreover sindREC family is not closed under complement,
each attempt to overcome its non-determinism gives snfalteities of languages, dif-
ferently of what happens for regular string languages.

We remind the definition of unambiguoR$:C languages given in [30].

Definition 4. A quadruple(X, I', ©, 7) is anunambiguous tiling systeffor a 2D lan-
guageL C X** if and only if for any picturep € L there exists a unique local picture
q € LOC(O©) such thatp = 7(q), i.e. the extension of to a map from/™* to X** is
injective onLOC(O).
L € REC is anunambiguous picture languad@nd only if it admits an unambiguous
tiling system X, I, ©, 7).
The family of all unambiguouBREC picture languages is denoted BREC.

The language of pictures with at least two equal columns REC, but not in
UREC. Hence

Theorem 5. ([5]) UREC is strictly included inREC.

The notion of determinism for tiling systems has to be re&f@éto a direction, like
in 1D case. The considered direction is one of the four magctions from a corner to
another ¢2c¢).

Definition 5. A tiling system(X, I', ©, ) is tIl2br-deterministi€ if for any~;, v, 73 €
I'U{#} ando € X there exists at most one titec © with¢ = 72 72, andn(v4) = 0.
Similarly d-deterministic tiling systems for any directidne c2c¢ are defined.

L € REC is adeterministic picture languageand only if it admits a deterministic
tiling system for someé € c2c.

The family of all deterministiR EC picture languages is denoted BREC.

DREC is properly included ilJREC and there are some classes of languages that
strictly separat®REC from UREC. In [3] the classes aofow-UREC andcol-UREC
are introduced (see also [29]) where four side-to-sidersiogrdirections, namely left-
to-right (12r) and vice versarl), top-to-bottom {2b) and vice versab@t), are consid-
ered.

Definition 6. A tiling system X, I', ©, ) is [2r-unambiguoud for any columncol €
™ty {#}™! | and picturep € X™!, there exists at most one local columui’ €
I'™!suchthatr(col’) = pand [{#}2 & (col @ col’) & {#}'?] C ©. Similar prop-
erties definel-unambiguous tiling systems, for any side-to-side diognfl

A language ixolumn-unambiguoui§ it is recognized by al-unambiguous tiling sys-
tem for somel € {i2r,72(} and it is row-unambiguousdf it is recognized by al-
unambiguous tiling system for somies {¢2b, b2t}. Col-UREC is the class of column-
unambiguous languages afdw-UREC the class of row-unambiguous languages.

& t12br means from the top left to the bottom right corner.
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Proposition 5. ([3]) DREC ¢ (Col-UREC NRow-UREC) C
C (Col-UREC U Row-UREC) C UREC.

More recently, Lonati and Pradella [38] introduced a newdkif determinism for
tiles: given(X, I', ©, ), the pre-image of a pictupee X** is built by scanning with
a boustrophedonic strategy, that is a natural scanningggtrased by many algorithms
on pictures and 2D arrays. More precisely, it starts fromttigeleft corner, scans the
first row of p rightwards, then scans the second row leftwaadd so on.

Definition 7. A tiling system(X, I, ©, ) is snake-deterministic if’ and © can be
partitioned asl” = I'; U I, © = ©; U O,, where

— (X, 1,61, ) is tI2br-deterministic and for each titkee 61, ¢(i, j) € I's_; U{#},
— (X, 1,0, ) is tr2bl-deterministic and for each tile € O, t(i,j) € I; U {#}
and not botht(1,1),¢(1, 2) are #.

The closure under rotation of languages recognized by sdaterministic tiling-systems
is denotednake-DREC.

Proposition 6. ([38]) Snake-DREC = Col-UREC U Row-UREC.

UREC is closed under projection, disjoint union, intersectiol aotation, and it
is not closed under row and column concatenation and undeamd column closures.
An open problem is whethd@fREC family is closed under complementation, it is also
conjectured that if ®REC language is not iREC then its complementis not REC.
Some recent results in this direction by Anselmo and Madanéaincluded in this
volume. The familyDREC is closed under complement but it is not closed under union
and intersection. Moreover by Definition 6 it immediatelyidavs that it is decidable
whether a given tiling system isdeterministic foil € c2c. Itis also decidable whether
a tiling system is column- or row-unambiguous while it is anodlable whether it is
unambiguous.

We would like also remark thatin [6] a new model of recognlegdicture languages
without frames surrounding the pictures was introduced,tha changes of properties
under the framed vs unframed approaches were consideratlyrf@iusing on deter-
minism and unambiguity. It turns out that the frame surrangdhe blocks provides
additional memory that, besides enforcing size and cormtethte recognized pictures,
produces unframed ambiguous languages that are unambkiguRi C.

4.3 Models of 2-dimensional finite automata

A tile system(X, I, ©,7) is a natural generalization of non deterministic finite au-
tomata to the 2D case. To underlying the analogies, Matzdhqddggested to consider
I' = ¥ x @ for some finite set), and the projection map as the mapr(a,q) = ¢

for eacha € ¥, ¢ € Q. He callsQ) decoration set to point out that element@fdo
not correspond to the intuition behind the word “state”. e see the tile system as
an automaton one could imagine to simultaneously “decbesteh pixel of the input
picturep and to check the decorated input for local compatibilityhwtite transition re-
lation ©. Also in [21] some analogies between Wang systems and finitereata were
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indicated. However neither tile systems nor Wang systemsspond to an effective
procedure of recognition, namely when the membership of@Ep to a givenREC
language has to be checked, no scanning procedure of theegds proposed.
Several operational models have been proposed to recogitzee languages.
Here we remind only four of them and we refer to [36] for a syree different models
of finite automata recognizing picture languages.
The first model, called-way finite automatqgrshortly4FA, was proposed in 1967 by
Blum and Hewitt [10]. It is an extension of 2-way finite autamnéor strings and allows
the finite automaton to move in four directiorisb, [, » (top, bottom, left, and right).

Definition 8. ([31]) A 4FA isa7-tuple A = (¥, Q,{¢t,b,1,7}, 90, Ga; gr, 9), WhereX

is the input alphabetQ) is the set of statesy, q,, ¢ are three distinguished states,
called initial, accepting and rejecting states; (Q \ {qa, ¢, }) x X — 2(@x{tblr}) jg
the transition function.

A can be seen as a finite controldhreading the input picture. f¢’, d) € §(q, a)
for somed € {t,b,1,r}, the automaton goes from the actual statend the actual
position (7, j) with p(i,j) = a to the state;’, and moves the reading head by one
position according to the directiah The automaton halts when it reaches either the
stateq, or the statey,.. It recognizes a picturg € X** if starting from the position
(1,1) in the statey, it eventually reaches the stafg it is not needed that it reads all
the pixels ofp.

The2-dimensional on-line tessellation automat{@vTA) is a restricted type of 2-
dimensional cellular automata, i.e. an array of cells alh@pén some state at any given
time and operating in a sequence of discrete time stefX)TA each cell changes its
state depending on the top and left neighbors. This modeintasiuced by Inoue and
Nakamura in 1977 [35]. Here we remind the definition giverd][

Definition 9. A20TA is a5-tupled = (X, Q, I, F, §), whereX' is the input alphabet,
Q is the set of states] C Q, FF C @ are the sets of initial and final states, :
Q x Q x ¥ — 2% is the transition function.

A run of A over a picturep € X** associates a state to each positiorpoft
timet = 0 a stategy € I is associated to all positions of the first row and column of
p, then moving diagonally across the array, at titne &, states are simultaneously
associated to each position ;) of the picture withi + j — 1 = k, according ta). The
picturep is recognized by if there is a run of4 associating a final state to the position
(IPlrow, |pleot)-

In 2007 Anselmo and al. [4] proposéting automata(TA for short) as an effective
computational device whose transitions are given by agtiimstem with a scanning
strategy that uses a next-step function and a data strutummember some of the
local symbols associated to the already scanned positibtteednput picture. It is
evident that to handle the borders, the next-step functipedds also from the size of
the input picture.

Definition 10. Letn,m € NandP(n,m) = {0,1,...,n+ 1} x {0,1,...,m + 1}.
A next-position functiorfor pictures is a computable partial functioh : N* — N?
associating to a quadruplg, j,n, m), with (i, j) € P(n,m) a pair (i, j') € P(n,m).
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Letvy(n,m) = (ig, jo) € P(n,m) and putv, (n,m) = f(vn—1(n,m),n,m), thenthe
sequencéd’; . (n,m) = {vi(n,m),v2(n,m)...,vk_1(n,m)} is called the sequence
of visited positiondy f at stepk with starting position(i, jo)-

A scanning strategis a next-position functioi® such that for any(n, m) € N? the
SequUEeNCE’s, (n42)(m+2)+1(n,m) = {vi(n,m),v2(n,m) ..., Vny2)(m+2)(n,m)} of
visited positions bys at step(n + 2)(m + 2) + 1 starting from a corner position of
P(n, m) satisfies:

1) Vs (nt2)(m+2)+1(n, m) is a permutation o (n, m).
2) foranyk = 2,...,(n + 2)(m + 2), thetl- (or ¢r-, or bl-, or br- resp.) contiguous
positions ofvx (n, m) (when defined) are all ifs, (,4-2)(m+2)+1 (1, m).

Moreover if Ssatisfies condition

3) foranyk =2,..., (n+2)(m+2), vy (n, m) is a contiguous position af,_, (n, m)
provided thatv,_1(n,m) is an internal position, otherwise ify_1(n,m) is an
external position alsey (n, m) is an external position;

it is called acontinuousscanning strategy; if satisfies condition
4) V(nt2)(m+2)(n,m) is @ corner position,
it is called anormalizedscanning strategy.

For each next-position function there is at most one stgtorner, verifying con-
ditions 1 and 2 of Definition 10. Moreover property 3 avoidatttwo non-contiguous
regions of a picture are both scanned during a scanning gs@rel together with prop-
erty 4 forbids the existence of holes in the picture durirgygbanning process. In [4]
several examples of continuous normalized scanning gtest@are given, showing the
richness of possibilities in 2D case, and they produce,ddable data structures, dif-
ferent definitions of tiling automata. Here we introduce arfal definition of tiling
automata with a scanning strategy that follows a madr-directed strategy, i.e. a
strategy such that for any,, m) € N2 and for anyk with 1 < k < (n + 2)(m + 2)
contains the (definedj-contiguous positions afy (n, m) in the set of visited position
at stepk starting from positior{0, 0).

Definition 11. ([4]) A tiling automatonof typeti2br is a4-tuple A = (7, S, Dy, )
whereT = (X, I',0,n) is a tiling systemSis at{2br-directed scanning strateg)o
is the initial content of a data structure that supports ai@msstate; (D), states (D),
states(D), update(D,~), fory € I' U {#}, andd : (I' U {#})® x (Z U {#}) —
2(I'U{#}) is a relation such thaty € 6(y1,72,73,0) if 7(74) =cand J; 22 € 6.

Tiling automata of type for each corner to cornerdc) directiond are similarly
defined.

The initial configuration of the tiling automatad is (p, i, j, Do), wherep is a
picture of size(n, m) and(i, j) = v1(n, m). From a configuratiofip, h, k, D), h,k €
N, the automaton moves to the configuratign’’, k', D) if S(h, k,n, m) is defined,
v4 € O(state; (D), states(D), states(D), p(h, k)) forsomey, € TU{#}, (R, k') =
S(h, k,n,m) andD’ is the content of the data structure after callinglate(D, v4). If
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S(h, k,n,m) is defined, and there is np, € I" U {#} such thaty, € é(state;(D),
statea(D), states(D), p(h,k)), A stops without accepting, while &h, k,n,m) is
not defined,A stops accepting.

It is important to remind that this definition 11 refers to lang automaton with a
given scanning strategy (of type tl2br), another scannirajegy produces a different
type of tiling automaton, nevertheless the class of reasghianguages is the same.

Another family of automata for dealing witREC family of languages was intro-
duced in 2005 by Bozapalidis and Grammatikopoulou [12].iiTdhefinition is in terms
of doubly ranked monoid#A doubly ranked semigroup (DR-semigroup for short) is
a doubly ranked set/ = (M, ,) endowed with two associative operatiofis :
My X My — My pin, @nd® @ My, n X My — Myyqm p, called re-
spectively horizontal and vertical multiplications, ttee compatible to each other,
i.e. (a®@a)W(bOY) = (aWb)®(a’WY'), for all a,a’,b, b’ of suitable ranks. A DR-
semigroupM with two sequences = (e,,,) and f = (f,,), withe,,, € M, 0, fn €
Moy, suchthaty = fo, enWen, = emin, f®fn = fintn, ande,,Ma = a®e,, =
a, Wb = bW f, = B forall a,b of suitable rank is called a doubly ranked monoid;
e, f are called respectively the horizontal and vertical unfts\b. Given a doubly
ranked alphabeX the free DR-monoid generated By is calledpict(X).

Given a non empty sap a quadripolic relationover @ of rank (m,n) is an el-
ement of2@" xQ"xQ"xQ" gnd the set of all quadripolic relations ovér of rank
(m,n) is denoted bylRel,, »(Q). The doubly ranked seltRel(Q) = (4Relm n(Q))
can be structured as @ R-monoid, by defining the horizontal multiplication as fol-
lows: for eachR € 4Rel,, »(Q) andS € 4Rely, »/(Q), ROS = {(w1, we, ws, wy)|
Ju € Q™ va,v4 € QU 20,24 € Q”, D Wy = V2o, W4 = U424, (W1,V2,u,v4) €
R, (u,z2,ws,24) € S} and in dual way for the vertical multiplication. Lét/ and
M’ be two D R-monoids. Amorphismfrom M to M’ is a family of functionsp,y, , :
My — M/, ., m,n € N, compatible with horizontal and vertical multiplicationd

m,n’

units. Now we are in position of remind the following

Definition 12. ([12]) Let X be a finite doubly ranked set. A quadripolic automaton
overX is a 5-tupled = (Q, 8, Fwest, Fsud, Frst, Fnortn) WhereQ is a finite set of
statesFyest, Fsud, FEst, Fnoren, @re subsets af), called the four poles of acceptance
for A, § is a family of map$,, ., : Xm n — 4Relm n(Q).

Letd : pict(X) — 4Rel(Q) be the morphism ob R-monoids uniquely extending
dandletF, ,, = Fif,o X F&,a X Fisy X FN o Apicturep € pict,, »(X) is accepted
by Aifand only if §,, . (p) N Fin n, # 0. L(QA) denotes the family of languages recog-
nized by a quadripolic automaton. It is clear that quadigalitomata are related to the
description oREC via labeled Wang tiles. This allows an algebraic approachdog-
nizable languages that is presented in a paper by Bozapalidi Grammatikopoulou
included in the present volume.

The following theorem clarifies the reason behind the nRi€ given to the family
of T'S-recognizable languages.

Theorem 6. ([31,4, 12]) LetL be a picture language. The following are equivalent:
1. L € REC;
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2. L € L(20TA);
3. L € L(TA);
4. L e L(QA).

On the other hand, the family of 4-way automata is not enouyepful to define
REC.

Proposition 7. ([31]) L£(4FA) is strictly included inREC. Moreover£(4FA) is not
closed under row and column concatenation and closure djmers, but it is closed
under union and intersection.

Some attempts of increasing the power of 4-way automata égveing them with
a bounded queue or a bounded stack did not produce satisfaesults [7].

The unambiguous versions of on-line tessellatidUQOTA, for short) and tilings
automata A, for short), i.e. 2-dimensional on-line tessellation ailidds automata
such that for any picture there is at most one accepting ctatipo, recogniz& REC
family.

Automata described in Definitions 8, 9, 11 admit also thetedministic counter-
parts. In the sequelDFA, 2DOTA, DTA denote the families of deterministic 4-way,
2-dimensional on-line tessellation and tiling automathey are less powerful than
the corresponding non-deterministic automata. In therdetéstic case the family of
languages recognized by tiling automata depends on thesplszmnning strategy, so
L(DTA) denotes the set of all languages recognized by a determidi$iling au-
tomata for each scanning strategy in any directioa c2c andDREC = L(DTA).
Moreover the familyL(4DFA) of languages recognized by a deterministic 4-way au-
tomaton and the family2 (2DOTA) recognized by some automaton2®TA are not
comparable as shown by examples in [35].

4.4 Regular expressions

One of the main results on regular string languages is Kle¢neorem that character-
izes the family of languages recognized by finite automataiim of regular expres-
sions. Such expressions can be analogously defined forpietoguages.

Definition 13. ([31]) A regular expressioan the alphabet’ is defined recursively as
follows:

1. # and eachu € X are regular expressions;
2. if a and 3 are regular expressions, alsoU 3, aN G, o, a © B, a © 3, a*?, a*©
are so.

Each regular expression oveY denotes a picture languagé: anda € X denote
respectively the empty language and the language formelebyriique picture of size
(1,1)withp(1,1) = a,aUB, aNf , a®S, a6 5, denote the union, intersection, row and
column concatenation of languagesand 3; o, o*®, o*© denote the complement,
and Kleene's closures of language

A languagel C X** is regularif it is generated by a regular expression over
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It is an immediate consequence of the non closufBC under complement that
REC does not coincide with the clag§RE) of the languages denoted by regular ex-
pressions. Then itis quite natural to consider restricttsl af operators to be iteratively
applied starting from empty language and languages formeddingle picture of size
(1,2).

In [31] the following sets of operators are considerRd:= {U,N, ©,,*® *© 1,
Ro = {U,N,C, 0,8} and in [42] the seRs = {U, ©, &,*? ,*© } was added.

Regular expressions containing only operator®kinare calledcomplement-free
andL(CFRE) is the class of languages generated by complement-fretaregpres-
sions. Regular expressions using only operatoRsjare calledstar-freeandL(SFRE)
is the class of languages they denaf¢CFRE) properly contains the family ofv-
local languages, hence giving a Kleene-like theorem faupédanguages modulo pro-
jection.

Theorem 7. A picture languagd. is in REC if and only if it is the projection of a
language inL(CFRE).

Also the classL(SFRE), being closed under complement, does not coincide with
REC. In [41] Matz proved that the languag®RNERS belongs tof (SFRE) whereas
itis notinREC so showing that (SFRE), and more in general the family of languages
denoted by regular expressions, dRHC are incomparable. This results answers to
some open problems in [31], Section 8.4. In [55] it is provedt the languag€ROSS

of all pictures ovefa, b} containing s b % as subpicture is piecewise testable but does

not belongs toZ(SFRE) and obvionIfE(SFRE) is not contained in the family?T
of piecewise locally testable languages because the inaldgils for the analog string
languages.

The family of languages denoted by a regular expressioragdng only operators
in Rs, butn, is calledREG in [42]. It is a proper subfamily oZ(CFRE) and, in
spite of its low expressive power, some arguments (simyplisdlynomial membership
problem, polynomial emptiness problem) suggesting thaiuid be a better analog of
regular string languages, are sketched.

In [39] Matz proposed a more powerful type of regular expoessfor picture lan-
guages, calledegular expressions with operatofBor instance, he considered the col-
umn concatenation of a given pictur#o the left and to the right like individual objects:
r@ and®r. He call this kind of objects operators and allows iteratigar combinations
of operators. If unrestricted, these operators can be awedlio generate languages not
in REC (e.gab((a®)(Db))* denotes the languade’b’|i > 0}); but under the natural
constraints that an operator working on the left (resp. temever juxtaposed, united
or intersected with an operator working on the right (resytdm), he showed that the
power of these expressions does not exceed the fdRiil and is enough to denote
the language of square. It remains an open problem whetbelareexpressions with
operators exhauREC-family.

More recently Anselmo and al. [2] proposed some new opeTrsim pictures and
picture languages with the aim of looking for a homogeneauton of regular ex-
pressions that could extend more naturally the conceptgilae expression of 1D
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languages. They focus on regular expressions on one-Hftbabet but, as they re-
mark, this is a necessary and meaningful case to start gicoerésponds to study the
“shapes” of pictures: if a picture language is in REC theressarily the language of its
shapes isin REC. First they introduadidgonal concatenatioof pictures, that starting
from two picturesp, ¢ over a one-letter alphabét }, respectively of siz¢n, m) and
(n',m'), produces the picture ové¢u} of size(n+n',m+m’), so enabling to express
some relationship between the dimensions of the picturtes.régular expressions al-
lowing only union, diagonal concatenation and its closweperators, and the empty
set, empty picture, and empty row and column as atomic egiores denote a fam-
ily of languages ovefa}, called £(D). It coincides with the languages ofpictures
whose dimensions belongs to some rational relation or atgrily can be recognized
by some4FA automaton that moves only right and dowd{D) properly contains the
class of languages over one letter alphabet belongif@FRE) and is closed under
intersection and complement. Then they consider the fanfilgnguages over one let-
ter alphabet denoted by regular expressions whose opseitoontains union, column,
row and diagonal concatenations and their closures, gettiiain a family properly
included iNnREC. So, in the attempt of capture all the shapes allowed byRHIL
languages, they defined new types of iteration operatiaikedadvanced starsthat
result much more powerful than the classical stars and alsmdo constitute a more
reasonable approach to the general case because the diedioitadvanced stars admit
obvious generalizations on larger alphabets.

4.5 Logic formulas

Let X be a finite set and consider the signat{ise, Sz, { P, }.c s}, whereP, are unary
andsS;, i = 1,2 binary relation symbols. Monadic second-order (shakilyO) for-
mulas on this signature using first-order variahbleg, z, ... and second order vari-
ablesX,Y, Z ..., are inductively built from atomic formulas= y, S1(x,y), S2(z, y),
P,(x), X (x) using Boolean connectives and quantifiers applicable tbdird second
order variables. AISO formula where no second order variable is quantified is dalle
a first-order FO) formula. An existential monadic second ordBMSO) is a formula
of the form3X;3X,...3X,¢ whereg is a first-order formula.

A picture p over X can be represented by the structpre= (dom(p), Sp,1,5p,2,
{Py.a}acx) Wheredom(p) = {1,..., |Plrow} {1, ..., |Plcor}s Sp,1, Sp,2 C dom(p) x
dom(p) are two successor relations definedby) S, 1 (i+1, ) for1 <4 < [plrow, 1 <
i < |pleor @nd (4,5)Sp2(i,7 + 1) for 1 < i < |plrow,1 < j < |Pleor, || and
P, =A{(i,7)Ip@3,5) = a}, with a € X' gives the set of positions labeled by

Let (X1, Xo, ..., X;) be a formula where at mo&;, X, ..., X; are free variables
and letQ, Qo, . . ., Q; be subsets alom(p). Consider the interpretation with domain
dom(p), where first order variables are positions and second ormtéghles are sets
of positions indom(p), and in particulai); is the interpretation of(; for 1 < i <
t, the predicates$ (z, y), S2(z,y), P,(z), X (x) are seen agr,y) € Sp1, (x,y) €
Sp2, © € Ppq,x € X.Then

(27@17@27 .. '7Qt) ': ¢(X1;X27 "'7Xt)

means thap satisfiesp in the above interpretation.
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A sentence is a formula without free variables. ke sentence on the signature
{81, S2,{P,}aecx}, the picture language defined byy is the set of all pictureg such
thatp |= ¢. A characterization oREC in term of logic formulas is the following

Theorem 8. A picture languagéd. is in REC if and only if it is definable by aRMSO
formula in the signaturé Sy, Sa, { Pa}acs}-

Matz in [41] enforces the above result showing that everfupéclanguage ilREC
is definable by aftMSO formula of the formBX ¢(X) whereg is afirst order formula.

Also, the families of languages with some kind of local tb#ity admit logi-
cal characterization. In fact, a language is locally thoddhestable iff it is defin-
able by a first-order formula in the signatuf®,, Sa, { P.}eex} ([32]), while is lo-
cally testable if and only if it is definable by a first-orderdwla in the signature
{51, 82, {P.}acs, left, right, top, bottom}, wherele ft, right, top, bottom are unary
predicates saying that a position is at the respective b{40¢

4.6 Summary

Inclusions of the families introduced in above sectiongapeesented by the following
diagram:

UIjE (4NFA) L(RE)
Snake-DREC = Co|I-URELC£Row-UREC L(4 FA) /
L(SFRE)

Col- UREO’]ROW-UREC

FlEC
L(DOTA)

LO L(CFRE)

hv-languages

4.7 Necessary conditions for recognizability

An useful tool to prove whether a language is recognizabl&Dncase is pumping
lemma for regular languages. An analog of pumping lemma eastdied for languages
in REC provided that they contain pictures whose number of colufrows) is suffi-
ciently larger than the number of rows (columns).

Lemma 1. (Horizontal iteration lemma, [31]) LeL € REC. Then there is a function
¢ : N — Nsuchthatifp € L and|p|coi > ¢(|p|row), there exist some picturesy, g
with |z @ qlcot < @(|Plrow) @Nd|ylecor > 1 s0 thatp = 2 © ¢ ® y and for alli > 0
x © q¢'® Oy € L. Moreovery(n) < |I'|™ for any local alphabet used to represet
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Analogously can be statedvartical iteration lemma

Another necessary condition for a language beinBKC uses the notion of syn-
tactic equivalence modulo a languafieFor a languagé, € X** two isometric pic-
turesp, ¢ are calledsyntactically equivalent modulb (in symbols,p ~, q) if for all
x1,%2,Y1,y2 € X** of suitable sizesg; @ (y1 © p © y2) © z2 € L if and only if
21 O (y1 © ¢ © y2) © 22 € L. The functionfr(|plrow, [P|cot) gives the number of
~1-equivalence classes B** of size (|p|row, |P|col)-

Lemma 2. (Syntactic equivalence lemma, [31]) LBt REC. Then there exists a
positive integer: such thatf,(n, m) < ¢"*™ for all positive integers:, m.

Lemma 3. ([40]) Let L € REC over X. For each positive integer let {M,,} be a
sequence such that

1. M, C Xt x st
2.Y(p,q) € Myy,pD g€ L;
3.Y(p,q),(0,d') € Mn,{pDd,p ©q} L L.

Then|M,,| is 29",

The question of the existence of some language not in RECHahwthe above lemma
fails to prove the non recognizability was posed. The lageuaf squares ovefa, b}
with as manyu’s asb’'s was proposed as candidate. However, from a result in j49],
follows that the above language is recognizable.

4.8 Recognizable picture languages on one-letter alphabet

Pictures over a one-letter alphabet, as already remark&edtion 4.4, are a special
but meaningful case to consider. Only the shape of the gidturelevant, whence a
unary picture is simply identified by a pair of positive integrepresenting its size. So a
picture language over one letter alphabet can be studigéhigto the corresponding set
of integer pairs, and the definition of recognizability cadxtended from languages to
functions fromN to N saying that a functiorf : N — N is recognizable if its associate
languagel ; = {p € {a}** | |pcot] = f(|Prowl|)} is recognizable. In [31] it is shown
that recognizable functions cannot grow quicker than amegptial function or slower
than a logarithmic one.

In 2007 Bertoni and al. [9] present&C languages over one-letter alphabet via
a characterization of strings encoding the pictures of #mgliage. Namely they as-
sociate to each picturg € {a}** the string¢(p) € {a,h,v}* defined as follows:
d(p) = alPlrow halPleor=IPlrow =1 "if |p|,. 00 < [pleot;
o(p) = alPlrow, if |plrow = |pleot;
d(p) = alPleotyglPlrow=Iplear=1 "~ jf 1Dlcot < |Plrow-
Definition of ¢ obviously extends to languages by puttin@’) = {¢(p)| p € L} C
{a,h,v}*,for L C {a}**.

Theorem 9. Let L C {a}**. Lis in REC if and only if (L) is a string language
that can be recognized bylatape non-deterministic Turing machines working, for any
inputz € {a, h,v}*, within || space and executing at mq$t:| head reversals, where
«|7| is the length of the longest prefixein a™.
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Languages on one-letter alphabet were considered alsceferal of the afore-
defined subclasses BffEC languages.

5 Grammars for generating pictures

We did not consider generating grammarsikatC family: in literature, 2D grammars
are mainly considered as a way to introduce an analog of Qikgd@inguages, and
several different models of grammars were proposed. Theressentially two main
categories of picture grammars: one category imposes th&treant that the left and
right parts of a rewriting rule must be isometric arrays, serooming the inherent
problem of shearing (which pops up while substituting a stthipe in a host picture).
The other one relies with several variations on notions @raflons among pictures.
More recently, to overcome the shearing problem and in gépeoblems arising from
the non flexibility of pixels in a picture, a picture deforriwat theory was introduced
by Bozapalidis in [11]. A family of pixels:("*) is associated to any pixe} called the
(r, s)-deformed pixels of, wherer, s range over a semiring. The deformationp(™*)
of a picturep is obtained by replacing all pixels pfby their(r, s)-deformations and is
a picture where only the dimensionspére changed.

In the following section a grammar model specified by a seewiriting rules is
presented with isometric rules. Then some properties aftbeel that seem to support
the claim that the model is a good generalization of CF 1D Uaggs are stated, and
some relations with other well-known models of picture gnaans are discussed.

5.1 Tile grammars

Tile grammars were defined in [18] with the name of tile reingtgrammars, then a
normal form for those grammars was given in [14]. Here we hgenbrmal form as
basic definition because it is simpler to handle.

First we need to introduce the notiongifong homogeneous partitiowe say that
the domain of a picturg admits a strong homogeneous partition if there is a homoge-
neous partition oflom(p) so that subpictures gfassociated to contiguous subdomains
have different labels. It is clear that each picture adntitsiast one strong homoge-
neous partition.

Definition 14. ATile grammar (TG)s a 4-tuple(X, N, S, R), whereX' is theterminal
alphabet,V is a set ohonterminabymbolsS € N is thestarting symbqlR is a set of
rules LetA € N. There are two kinds of rules:

Fixed size: A — t, wheret € X; (1)
Variable size: A — w, wis asetoftiles oveN U {#}. (2)

The nonterminal symbal in the left part of a variable size rule denotes 4n
homogeneous picture. The right part of a variable size mike picture of a local lan-
guage over nonterminal symbols. Thus a variable size ridesiheme defining a pos-
sibly unbounded number of isometric pairs: left picturghtipicture. In addition there
are rules whose right part is a single terminal.
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Notice that tile grammars may be viewed as extending CF grammifnom one to
two dimensions: the argument that such grammars in one dimeare essentially CF
grammars allowing a local regular expression in right paftsiles is in [18].

The derivation process of a picture starts frorf-picture. Picture derivation is a
relation between partitioned pictures.

Definition 15. Consider a grammati = (X, N, S, R), letp,p’ € (X U N)"* be
pictures of identical size. Let = {d1, ..., d,} be homogeneous partition dbm(p).
We say thatp’, ') derives in one stefltom (p, 7), written

(p7 7T) =a (p/7 7TI)

iff, for someA € N and for some rulep € R with left part A, there exists int an
A-homogeneous subdomain= (z,y;z’,y’), calledapplication areasuch that:

— p’ is obtained substitutingpic(p, d;) in p with a pictures, defined as follows:

o if pis of type (1), ther = ¢;
o if pis of type (2), thes € LOC(w) and admits a strong homogeneous parti-
tion I1(s)
— «’ is a homogeneous partition dbm(p) into the subdomains

(7 \ {di}) U transl 1,1 (1 (5))

wheretransl,_1 ,_1)(/I(s)) is the translation by displaceme(t — 1,y — 1) (intu-
itively, the position ofl; in p) of the subdomains df (s).

We say thatq, 7’) derives from(p, 7) in n steps, written(p, 7) ==¢ (¢, '), iff
p = qandw = 7/, whenn = 0, or there are a picture and a homogeneous partition
7" such that(p, 7) L= (r,7") and (r,7") =¢ (q,7'). We use the abbreviation
(p, 7) =>¢ (¢, ') for a derivation with a finite number of steps.

Roughly speaking at each step of the derivationdAamomogeneous subpicture is
replaced with an isometric picture of the local languagéinge by the right part of
aruleA — ... that admits a strong homogeneous partition. The processnates
when all nonterminals have been eliminated from the cupittre.

Definition 16. Thepicture languagdefined by a grammag (written L(G)) is the set
of p € X+ such that

(S|p|, dom(p)) = (p,7),

whereZ denotes the partition oflom(p) defined by single pixels. For short we also
write S = ¢ p. L(TG) denote the family of languages generated by some tile gramma

Example 1. One row and one columnb.
The set of pictures such that there is one row and one columih (ot at the
border) that hold’s, and the remainder of the picture is filled witls is defined by the
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tile grammar (we remind the reader tfja] stands for the set of all subpictures of size
(2,2) of p):

[# # # # # # #]
#Al Al VlAQ AQ#
# AL AL Vi Ax A #
S — ||# H1 Hi Vi Hy Hy #
# Az Az Vo Ay Ag #
# As Az Vo Ay As #
| # # H# H A H A

ISR
—
F F 3
FH =<3k
FH =<3k
F F 3

N,for1<i<4

.

B
l
=

I H I
el
$2 2 <k
I H I

- H; —

|=l:ﬁ:
B

>

l
S
SR S
S ENE S
SRS
3 <3k
3 H 3
* Tk
SSESNE S
3 3

N|b,for1<i<2

A—a, B—b V;— | b, forl <i<2.

HHEE
SSwHk HEF*
HFHEE B

BES
BES
BSS

Here is an example of derivation, with partitions outlinedlietter readability:

SSSSS A1 Ay V1| Ax Ao
SSSSS H:1 H,1 V1| Ho H»
S$SSSS|T[As As Vol As A
$S5SSS| |As As Vel As Ay

A1 Ay (V1| A As A1 Ay (V1| A Ao
H, H, V4| Hy Ho N Hy Hy V1| H2 Ho
X X Vol Ay Ay A | X Vol Ay Ay
mVQ A4 A4 As AS V2 A4 A4

AlAl‘/lAQAQ AlAl‘/lAQAQ alalbla|a
:>H1H1V1H2H2:>H1H1V1H2H2;>bbbbb
A |a [Vo| Ay Ay a |a (Vo Ay Ay ala|blala
Az Az |Vo| Ay Ay As As (Vo Ay As ala|blala

The family £(TG) of TG-languages is closed w.r.t. union, column/row contate
tion, column/row closure operations, rotation, alphabetapping ([18]).

We remark that this family as well as all families presentedhie sequel, which
exactly define CF string languages if restricted to one dsiwem are not closed w.r.t.
intersection and complement. Namely, since they are afledaw.r.t. union, the same
arguments as string CF grammars can be used to prove thgseries.
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5.2 Tile grammars and tiling systems
Proposition 8. ([18]) REC C L(TG).

In fact, for a tiling systen?" = (X, I,©, ), it is quite easy to define a TG’ such
thatL(T") = L(T). Informally, the idea is to take the tile-setand add two markers,
e.g.{b, w} in a “chequerboard-like” fashion to build up a tile-set abie for the right
part of the variable size starting rule; other straightfamivfixed size rules are used to
encode the projection. We show the construction on a simple example. The intateste
reader may refer to [18] for details.

Example 2.The following TS defines square pictures«s.

# A AN

FFH I I
coc o~
coro
o oo
—o oo
FFH I I

# A A

An equivalent tile grammar is the following:

#AHHF A AN *AHHFAH

# 1p Oy Op Oy # # 1y Op Oy Op #
S — #Owlbowob# U #Oblwobow#
#Ob Ow 1b Ow# #Ow Ob 1u7 Ob #
#Ow Ob Ow 1b # #Ob O'w Ob 1111#

#AHHF A AN #AHHFAH

1y, —a, 1y —a, 0y, —a, 0y — a.

To see that the inclusion is proper, one can restrict togtanguages.
From above it immediately follows that the parsing problem TG-languages is
NP-hard, but in [44] it is proved that it is in NP, so

Proposition 9. The parsing problem fo£(TG) is NP-complete.

In [15] some restrictions on tile grammars guaranteeintgttfeagenerated language
isin REC are given. These restrictions are the analog of the ra@stnthat one dimen-
sional CF grammars have to satisfy in order of defining redataguages.

LetG = (X, N, S, R) be a tile grammar, a non termindl € N is non recursive
if and only if there is no derivation of the for¥, IT) =* (q, II") with spic(p,d) €
AT for some subdomaid of II’. Two non terminalsd,, A, € N are mutually
recursiveif and only if for eachi = 1,2 there are derivation§A;, I1;) =* (¢, II])
with spic(g;, d;) € {As_;}** for some subdomaid; of II.. A tile grammar all whose
non terminal are non recursive is calledn recursive tile grammar

Proposition 10. ([15]) The family of languages generated by non-recursileegram-
mars coincides witlREC.
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One can define a 2D analogous of a 1D grammar where self-enmgeddnever
allowed.

Definition 17. Atile grammarG = (X, N, S, R) is a corner grammar if there exists a
partition of N in setsNy, No, N3, Ny, and N such that:

1. N is the set of non-recursive nonterminalgef

2. foreveryi # j, 1 <1i,j < 4,foreachA € N;, B € N;, AandB are not mutually
recursive;

3. forevery:;, 1 <i < 4,foreachA € N; if A =* pthenp has a subpicture atth
corner inN;”* and the remainder pixels i&' U (N \ N;), where the-th corner is
ltfori=1,rtfori=2,rbfori=3,bfori=4.

In other words, in every non-corner position of a picturdydarminals or those nonter-
minals that cannot give rise to recursions are allowed,emtigjoint (possibly empty)
nonterminal alphabets are considered for the four cor@esrly, a non-recursive tile
grammar is a special case of corner grammar (With= () for everyi, 1 <17 < 4). A
corner grammar is also a generalization of right-linearefirlinear grammars for the
1D case.

Proposition 11. ([15]) The family of languages generated by a corner gransra-
incides withREC.

Notice that checking whether a tile grammar is recursivéibis a corner grammar
is not decidable.

5.3 Regional tile grammars

We now introduce the central conceptsredional languageThe adjective “regional”
is a metaphor of geographical political maps, such thaedfiit regions are filled with
different colors. Of course, regions are rectangles.

Definition 18. A homogeneous partition regional(HR) iff distinct subdomains have
distinct labels. We will call a picture regionalif it admits a HR partition.
A language isegionalif all its pictures are so.

Definition 19. ([14]) A regional tile grammar (RTGis a tile grammar (see Defini-
tion 14), in which every variable size rulé — w is such thalLOC(w) is aregional
language

We note that Example 1 is regional, while the picture languyargsented in Exam-
ple 2 is not.

For languages generated by regional tile grammars a pakjogthm generalizing
the CKY algorithm is given. A subpicture is convenientlyidifed by its subdomain
as in original algorithm a substring is identified by the piosis of its first and last
characters.

Theorem 10. ([14]) The parsing problem foRTG has polynomial time complexity.
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Analyzing the algorithm, one derives that the complexitypafsing for a picture
of size(n, m) is O(um*n*) where constant depends on parameters of the grammar.
The property of having polynomial time complexity for picturecognition, together
with the remark that pictures with palindromic rules areindR EC immediately give
the following results:

Proposition 12. ([14]) L(RTG) C £L(TG). L(RTG) is incomparable wittREC.

Moreover, the polynomial parsing united with the rather @gnand intuitively
pleasing form of RTG rules, should make them a worth additithe series of ar-
ray rewriting grammar models conceived in past years. Iséfigiel we prove or recall
some inclusion relations between grammar models and gameking language fami-
lies.

5.4 Pri8a’s grammars
The following definitions are taken and adapted from [46, 47]

Definition 20. A 2D CF Piisa grammarPG) is a tuple(X, N, R, S), whereX is the
finite set oterminalsymbols, disjoint from the sét of nonterminakymbolsS € N is
thestartsymbol, and? C N x (N U X))t T is the set ofules

Definition 21. LetG = (X, N, R, S) be a PG. We define a picture languabé=, A)
overX foreveryA € N. The definition is given by the following recursive desaips:

(i) f A—wisin R, andw € X, thenw € L(G, A).
(i) Let A — w be a production iR, w = (N U X)(™") for somem,n > 1. Letp; j,
with1 <i <m,1 < j <n, be pictures such that:
1. ifw(i,j) € X, thenp; ; = w(i, j);
2. ifw(i,j) € N, thenp; ; € L(G,w(1, 5));
3. for1 <i<m,1<j<n,|pijleot = |Pit1,jlcot; 100 Py = pr1 Opra®@--- O
Phn,@NdP =P O P © - © Py,
ThenP € L(G, A).

The setL(G, A) contains just all the pictures that can be obtained by apygya
finite sequence of rules (i) and (ii). The langudgg) generated by the grammét is
defined as the languade(G, S).

Informally, rules can either be terminal rules, which aredi® generate the pictures
which constitute the right parts of rules, or have a pictgraght part. In this latter case,
the right part is seen as a “grid”, where nonterminals carepaced by other pictures,
but maintaining its grid-like structure.

Example 3.The following grammar generates the language of picturdls @re row
and one column df's in a background o#’s (see Example 1).

AV A
S— HbH, A-AM|M, M —
AV A

a,

a
!



Picture Languages: from Wang tiles to 2D grammars 27

V—>3|b7 H — bH | b.

It is easy to see that PrliSa grammars admit a Nonterminahhld-orm:

Definition 22. A Prisa grammaiG = (X, N, R, S), is in Nonterminal Normal Form
iff every rule inR has the form eithed — ¢, or A — w, whereA € N,w € NTT,
andt € X.

To compare Priisa’s grammars with tile grammars, we mustthat the two models
are differentin their derivations. Tile grammars startiira picture made of’s having
a fixed size, and being every derivation step isometric, ¢ésalting picture, if any, has
the same size. On the other hand, PG’s start from a sisighgmbol, and then “grow”
the picture derivation step by derivation step, obtainihgny, a usually larger picture.

Proposition 13. ([14]) L(PG) C L(RTG).

Remark 1.Essentially, Priisa grammars can be seen as RTG’s wittdttitianal con-
straint that tiles used in the right parts of rules must nethane of these forms:

AB AC ccC CA
cc)>’\BC)’"\AB)’>\CB
with A, B, C all different.

5.5 Kolam grammars

Pri3a introduced his model with the attempt of gaining s@®nerative capacity with
respect the class of Kolam grammars. This class of gramnzerdéen introduced by
Siromoney et al. [52] under the name “Array grammars”, latgramed “Kolam Array
grammars” in order to avoid confusion with Rosenfeld’s hograous model. Much
later Matz reinvented the same model [39] (considering @Hyules). Here the histor-
ical name, CF Kolam grammar€FKG) is kept, the more succinct definition of Matz
is used.

Definition 23. A sentential fornover an alphabeV is a non-empty well-parenthesized
expression using the two concatenation operaterand @, and symbols taken from
V. SF(V) denotes the set of all sentential forms oVerA sentential formp defines
either one picture oveV denoted by{¢), or none.

For exampleg; = ((a © b) © (b ® a)) € SF({a,b}) and(¢1) is the pictureg °.
On the other hand: = ((a © b) © a) denotes no picture, since the two arguments of
theo operator have different column numbers.

CF Kolam grammars are defined analogously to CF string grasirieerivation
is similar: a sentential form over terminal and nontermisyhbols results from the
preceding one by replacing a nonterminal with some cormedipg right hand side of
a rule. The end of a derivation is reached when the sentdotia does not contain
any nonterminal symbols. If this resulting form denotesd@pk, then that picture is
generated by the grammar.
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Definition 24. A CF Kolam grammar({FKG) is a tupleG = (¥, N, R, S), whereX
is the finite set oferminalsymbols, disjoint from the sé¥ of nonterminalsymbols;
S € N is thestartingsymbol; andR C N x SF(N U X) is the set ofules A rule
(A, ¢) € R will be written asA — ¢.

For a grammaxa, we define thelerivationrelation=-¢ on the sentential forms
SF(N U X) by =¢ 1. iff there is some ruled — ¢, such thatp, results fromy),
by replacing an occurrence dfby ¢. As usual = denotes the reflexive and transitive
closure of=-¢. Notice that the derivation thus defined rewrites strings pictures.
From the derived sentential form, one obtains the denotedng. The picture lan-
guage generated lty is the set

L(G) ={W) | ¥ € SF(2),8 =¢ ¥}

With a slight abuse of notation, we will often writé = p, with A € N,p € X**,
instead 0f¢ : A =S¢ ¢, (¢) = p.

CF Kolam grammars admit a normal form with exactly two or zesaterminals in
the right part of a rule [39].

Definition 25. A grammarG = (X, N, R, S), is in Chomsky Normal Forniff every
rule in R has the form eithed — t,or A — Bo C,or A — B O C, where
A, B,C € N,andt € X.

We know from [39] that for every CFKG, if L(G) does not contain the empty
picture, there exists a CFKG’ in Chomsky Normal Form, such tha{G) = L(G’).
Also, the classical algorithm to translate a string gramimi@r Chomsky Normal Form
can be easily adapted to CFKGs.

Example 4.The following Chomsky Normal Form grammaf defines the set of pic-
tures such that each column is a palindrome:
SHV®S|A1@A2|B1@BQ|a|b;

VHA1@A2|B1@BQ|G,|Z7,

A2 - Ve Al | a,

By - Vo B | b;

Al —a;

Bl — b.

Proposition 14. ([14]) L(CFKG) C L(PG).
Namely, rulesA — B @ C of a CF Kolam gramma¢r in CNF are equivalent to RTG

rules:

G i
#BBCCH#
#BBCCH#

9+ A A

and similarly an equivalent form can be stated for rules> Bo C. This is compatible
with the constraint of PriSa grammars given in Remark 1smntbr each CF Kolam

A—
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grammar there exists an equivalent Prli3a’s grammar. Adiesion is proper because
the language of Example 1 cannot be generated by a CF Kolanmgga

The time complexity of picture recognition problem for CFI&m grammars in
CNF has been recently proved [19] to ®¢m?n?(m + n)). The significant difference
with the time complexity of parsing for RTG grammars dependshe fact that in the
right part of a rule of a CF Kolam grammars in CNF there are astnwo distinct
nonterminals. So, checking if a rule is applicable has cexipl which is linear with
respect to the picture width or height.

5.6 Context-free Matrix grammars

The early model of CF Matrix grammars [51] is a very limitechdtiof CF Kolam
grammars. The following definition is taken and adapted f[4&j.

Definition 26. Let M = (G,G’) whereG = (N, T, P, S) is a string grammar, where
N is the set of nonterminal$; is a set of productions§ is the starting symboll" =
{A1,Aq, -+ Ak}, G = {G1,G2,- - ,Gi} where eachy; is the starting symbol of
string grammarG;. The grammars ir?’ are defined over an alphabét, which is the
alphabet ofAf. A grammar)/ is said to be &CF Matrix Gramma{CFMG) iff G and
all G; are CF grammars.

Letp € X, p =i Dea @+ Oy p € L(M) iff there exists a string
A Az, - Ag, € L(G) such that every columsy, seen as a string, is i (G, ), 1 <
j < n.ThestringA,, A, --- A, is said to be anntermediatestring derivingp.

If GandG; forall i, 1 <1i < k are regular grammars then/ is called a 2D right
linear grammar.

Informally, the grammaé is used to generate an horizontal string of starting sym-
bols for the “vertical grammars;,1 < j < k. Then, the vertical grammars are used
to generate the columns of the picture. If every column hasstime height, then the
generated picture is defined, and iif\/).

It is trivial to show that the class dfFMG languages is a proper subset of CF
Kolam languages. Intuitively, it is possible to conside #tring sub-grammars, and
G}, of a CF Matrix gramman/, all in Chomsky Normal Form. This means that we can
define an equivalen’’ CF Kolam grammar, in which rules corresponding to those of
G use only theD operator, while rules corresponding to thoseCgfuse only thes
operator.

Also, it is easy to adapt classical string parsing methodgddtrix grammars, see
e.g. [48].

It is also well known that the family of languages generatg®D right linear
grammars is strictly included in the family of languagesogrtzed by deterministic
4-way finite automata.

5.7 Grid grammars

Grid grammars are an interesting formalism defined by Dr¢22<3]. Grid grammars
are based on an extension of quadtrees [28], in which the auoiiquadrants” is not
limited to four, but can b&?2, with & > 2 (thus forming a square “grid”).
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Following the tradition of quadtrees, and differently frdine other formalisms pre-
sented here, grid grammars generate pictures which aresese of points on the “unit
square” delimited by the points (0,0), (0,1), (1,0), (1,8)e Cartesian plane.

To compare such model, in which a picture is in the unit sqaatemono-chromatic
(i.e. black and white), with the ones presented in this waskjntroduce a different but
basically compatible formalization, in which the genedapéctures are square arrays
of symbols, and the terminal alphabet is not limited to blaoll white. Our approach
([44]) is similar to the one used for Kolam grammars.

Definition 27. A sentential formover an alphabet/ is either a symbok € V, or
[t1,15 st ks -5 1y - - - ti k], With & > 2, and everyt; ; being a sentential form.
SF (V) denotes the set of all sentential forms oVer

A sentential formp defines a set of picturdg):

— (a), with a € V, represents the sdt}(™™, n > 1 of all a-homogeneous square
pictures;

= ([t11s-- s t1ks-- -5t -- - thi]), represents the set of all square grid pictures
where everyt; ;) has the same size x n, forn > 1, and(¢,,1) is at the bottom-
left corner, ... (t1,x) is at the bottom right corner, ..., anfdy ;) is at the top right
corner.

For example, consider the sentential fopra- [[a, b, [a, b, b, a], ¢], a, B, [b, a, a, b]], the
smallest picture irff¢) is

BBBBaabbd
BBBBaabbd
BBBBbbaa
BBBBbbaa
baccaaaa
abccaaaa
aabdbaaaa
aabbaaaa

Definition 28. A Grid grammar (GG)s a tupleG = (X, N, R, S), where X is the
finite set ofterminalsymbols, disjoint from the s&f of nonterminakymbols;S € N
is thestartingsymbol; andR C N x SF(N U X)) is the set ofules Arule (A, ¢) € R
will be written asA — ¢.

For a grammalr=, we define thederivationrelation=-¢ on the sentential forms
SF(N U X) by =¢ 1, iff there is some ruled — ¢, such thatp, results fromy),
by replacing an occurrence dfby ¢.

From the derived sentential form, one then obtains the @enaitture. The picture
language generated loyis the set

L(G) = {the smallest picture ifi)) | ¥ € SF(X),S =g 1}

With a slight abuse of notation, we will often writé = p, with A € N,p € I**,
instead 08¢ : A =¢ 6, (¢) = p.

In literature, parameteék is fixed for a Grid gramma€, i.e. all the right parts of
rules are either terminal dr x & grids. This constraint could be relaxed, by allowing
differentk for different rules: the results that are shown next stildhfor this general-
ization.

It is trivial to see that grid grammars admit a Nonterminathial Form:
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Definition 29. A grid grammarG = (X, N, R, S), is in Nonterminal Normal Form
(NNF) iff every rule inR has the form eithed — ¢, or A — [B11,..., Bik,-
Bii,...,Bri), whered, B; ; € N, andt € X.

cey

Example 5.Here is a simple example of a grid grammar in NNF.

S —[S,B,S,B,B,B,S,B,S], S—a, B—b

The generated language is that of “recursive” crossés af a field ofa’s.
An example picture:

ababbbaaa
bbbbbbaaa
ababbbaaa
bbbbbbbbbd
bbbbbbbbbd
bbbbbbbbb
ababbbaaa
bbbbbbaaa
ababbbaaa

First, we note that this is the only 2D grammatical model pnésd in this paper
which cannot generate string languages, since all the gttepictures, if any, have
the same number of rows and columns by definition.

Itis easy to see that the class of languages generated bgrgritmars are a proper
subset of the one of CF Kolam grammars.

Proposition 15. ([44]) £L(GG) C L(CFKG). L(CFMG) and £L(GG) are incompa-
rable.

By definition, grid grammars can generate only square mstand on the other hand,
it is impossible to define CF Matrix grammars generating @qjyare pictures.

5.8 Summary

We finish with a synopsis of the previous language familyusins.

L(TG)\
R c/ (RTG)

L(PG)
L(CFKG)
L(4DFA) aee% CILMG)
\(ZRG)/

6 Conclusion

First of all we want to remark that there are several diffeveays to generate or recog-
nize picture languages that are not considered in this guevg. [16], [43].
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SinceREC is a robust notion, we believe that it is a necessary stapaigt for a
tutorial on picture languages. If one assumes BRiac€ is the right answer to the quest
of a analog for regular string languages then, to maintareinchy, TG grammars is the
notion corresponding to context-free grammars. This is whyhoose to describe this
model among the others.

RTG preserves some nice properties of context free string gesiand includes
several well known models usually introduced as a genet#iz of context free gram-
mars. So, a question naturally arisesRIFG is the right model for generating context
free picture languages, what about the right model for mggtring languages? Some
criticisms on the fact thaREC recognizes a too wide class to be considered the right
model in spite of its robustness was posed for instance ip [@&uld be interesting to
consider which languages are defined by non recuBiv@& grammars in order to ver-
ify whether that family can also be proposed as the analogmflar string languages.

Moreover, few attention was paid to study the generalipaiiotwo dimensions of
push-down automata. For instance how can be defined autoewignizing all the
families of languages generated by grammars describedsisuhvey? And finally are
there more promising grammatical approaches to “cont@d*fpicture languages?

In conclusion, in our opinion the very idea of defining a Chiayshierarchy anal-
ogous, moving from one to two dimensions, is probably dootoguhrtial unsuccess.
2D structures and formalisms, albeit maintaining somelarities with their 1D coun-
terparts, often exhibit very different formal propertiesldassues which are not present
or trivial in string languages.

Acknowledgments.We thank Achille Frigeri for his valuable comments.
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