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Abstract. The aim of this paper is to collect definitions and results on the main
classes of 2D languages introduced with the attempt of generalizing regular and
context-free string languages and in same time preserving some of their nice
properties. Almost all the models here described are based on tiles. So we also
summarize some results on Wang tiles and its applications.

1 Introduction

The interest for a robust theory of two-dimensional (2D) languages (or picture lan-
guages) comes from the increasing relevance of pattern recognition and image process-
ing. The main attempt of the research in this area is to generalize the richness of the
theory of 1D languages to two dimensions. First focus was on definitions of classes
of picture languages that are the analogue of the classes of Chomsky’s hierarchy for
1D languages, in sense that, restricting to pictures of size(1, n), picture and string lan-
guages at each level of the hierarchy coincide and that the new definitions for pictures
inherit as many as possible properties from the corresponding definitions for strings.

Several different approaches were considered in the whole literature on the topic.
The generalizations that seem to be the best answers to previous requests for the two
lower levels of Chomsky’s hierarchy are essentially based on Wang tiles and in this
paper we aim to give a survey of classical and new results on these picture languages.
Wang tiles, introduced in 1961, are squares whose all edges are colored. A finite set
of Wang tiles admits a valid tiling of the plane if copies of the tiles can be arranged
one by one, without rotations or reflections, to fill the planeso that all shared edges
between tiles have matching colors. In 1966, Berger [8] proved that the problem of
determining whether a given finite set of Wang tiles can tile the plane is undecidable,
and constructed the first example of an aperiodic set of Wang tiles, i.e. a finite set of
tiles whose all valid tilings have no periodic behavior. Several papers are devoted to the
problem of determining small aperiodic set of Wang tiles butrecently the main interest
in Wang tiles was motivated by applications which, besides computer graphics, start
to involve appealing areas in the frameworks of nanotechnologies and so called life
sciences.
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For the ground level of Chomsky’s hierarchy a robust definition of recognizable
picture languages was proposed in 1991 by Giammarresi and Restivo. They defined the
family REC of recognizable picture languagesby projection of local properties, [31].
This class is consideredthegeneralization of the class of regular 1D languages because
it unifies several approaches to define the two dimension analogue of regular languages
via finite automata, grammars, logic and regular expressions.

In 2005 Crespi Reghizzi and Pradella [18] introduced tile grammars, a model of
grammars that extends the context-free (CF) grammars for 1Dlanguages to two dimen-
sions. The right hand part of each rule of a tile grammar is a set of tiles determining a
local picture language. A rule is applied to the current picture replacing a rectangular
subpicture, completely filled by the left hand side of the rule, with an isometric rect-
angle belonging to the local picture language determined bythe right hand part of the
rule. The generative power of these grammars exceeds REC languages. More recently
a simplified version of tiling in the right hand part of the rules was considered in [15],
giving raise to a new model of grammars called regional tile grammars. The new model
includes several models of grammars proposed as generalizations of CF 1D grammars,
the membership problem is solved by a polynomial time algorithm that naturally ex-
tends the classical CKY algorithm for strings, but it generates a family of languages
incomparable with REC.

The first section of the paper contains some basic notions on pictures and picture
languages. Then, some information on Wang tiles is given in second section, third and
forth sections are devoted to collect results respectivelyon REC family and on several
types of grammars proposed as generalization of CF 1D languages included in the fam-
ily generated by tile grammars. In the last section, some open problems and some hints
on different approaches to picture grammars are given.

2 Basic definitions

In this section some standard definitions of pictures, picture languages and operations
on pictures are recalled.

LetΣ be a finite alphabet. ApictureoverΣ is a 2D array of elements ofΣ called
pixels. Thesize|p| of a picturep is the pair(|p|row, |p|col) of its number of rows (its
height) and columns (width). The indices grow from top to bottom for the rows and
from left to right for the columns. The set of all pictures over Σ is denoted byΣ+,+.
Σ∗,∗ is Σ+,+ ∪ {λ}, whereλ is the empty picture. Forh, k ≥ 1, Σh,k (resp.Σh,+,
Σ+,k) is the set of all pictures of size(h, k) (resp. withh rows, withk columns). A
picture languageoverΣ is a subset ofΣ∗,∗. # /∈ Σ is used when needed as aboundary
symbol; p̂ refers to the bordered version of picturep. That is, forp ∈ Σh,k, p̂ is

p̂ =

# # . . . # #
# p(1, 1) . . . p(1, k) #
...

...
. . .

...
...

# p(h, 1) . . . p(h, k) #
# # . . . # #
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The domainof a picturep is the setdom(p) = {1, . . . , |p|row} × {1, . . . , |p|col}
anddom(p̂) = {0, . . . , |p|row + 1}× {0, . . . , |p|col + 1} is the domain of the bordered
picturep̂.

A subdomainof dom(p) is a setd of the form{x, . . . , x′} × {y, . . . , y′} where
1 ≤ x ≤ x′ ≤ |p|row, 1 ≤ y ≤ y′ ≤ |p|col; the size ofd is (x′ − x + 1, y′ − y + 1).
We will often denote a subdomain by using its top-left and bottom-right coordinates,
in the previous case the quadruple(x, y;x′, y′) 3. Subdomains ofdom(p̂) are defined
analogously. Each subdomain ofdom(p̂) of size (1, 1) is called apositionof p. The
translationof a subdomaind = (x, y;x′, y′) by displacement(a, b) ∈ Z2 is the sub-
domaind′ = (x + a, y + b;x′ + a, y′ + b): we will write d′ = transl(a,b)(d). Pairs
(0, i), (|p|row +1, i), (j, 0), (j, |p|col +1) with 0 ≤ i ≤ |p|col +1, 0 ≤ j ≤ |p|row +1,
are calledexternal positionsof p, the other are calledinternal positions. Positions in the
set{(0, 0), (0, |p|col+1), (|p|row +1, 0), (|p|row+1, |p|col+1)} are calledcorner posi-
tions. Given a position(i, j) with 1 ≤ i ≤ |p|row +1 and1 ≤ j ≤ |p|col +1 its top-left-
(tl- for short) contiguous positions are the positions:(i, j− 1), (i− 1, j− 1), (i− 1, j).
Analogously fortr, bl, br wheret, b, l, r are used for top, bottom, left and right respec-
tively. For any internal position, its contiguous positions are all thetl-, tr-, br-, and
bl-ones. Since each setP (n,m) = {0, 1 . . . , n+ 1}× {0, 1 . . . ,m+ 1} can be seen as
the domain of a bordered picturêp with p of size(n,m), the elements ofP (n,m) are
sometimes called positions ofP (n,m) as well.

The pixel of the picturep at position(i, j) of dom(p) is denotedp(i, j). If all pixels
of a picturep overΣ belong to an alphabetΣ′ ⊆ Σ, p is calledΣ′-homogeneous,
a picture which is{a}-homogeneous for somea ∈ Σ is called ana-picture, or also
a homogeneous picture. Ifa ∈ Σ, ah,k stands for thea-picture inΣh,k, while a+,+

stands for the set ofa-pictures inΣ+,+.
Let p be a picture overΣ and letd = (x, y;x′, y′) ⊆ dom(p), the subpicture

spic(p, d) associated tod is the picture of the same size ofd such that,∀i ∈ {1, . . . , x′−
x + 1} and∀j ∈ {1, . . . , y′ − y + 1}, spic(p, d)(i, j) = p(x + i − 1, y + j − 1). A
subpictureq of p, writtenq�p, is a subpicturespic(p, d) associated to some subdomain
d of p. If d = (x, y;x + h − 1, y + k − 1), then the subpictureq = spic(p, d) is also
called the subpicture ofp of size(h, k) at position(x, y), writtenq �(x,y) p.Theset of
subpicturesof size(h, k) of p is denoted by

Bh,k(p) = {q ∈ Σh,k : q � p}.

A pictureq ∈ Σm,n is called ascattered subpicture4 of p ∈ Σ+,+ if there are strictly
monotone functionsf : {1, 2, . . . ,m} → {n ∈ N | n ≥ 1}, g : {1, 2, . . . , n} →
{n ∈ N | n ≥ 1} such thatp(f(i), g(j)) = q(i, j) for all (i, j) ∈ {1, 2, . . . , n} ×
{1, 2, . . . ,m}.

Now we shortly present main picture-combining and transforming operators.
Thecolumn concatenationȅ , for all picturesp, q such that|p|row = |q|row, written

pȅ q, is defined as:

3 Notice that the Cartesian coordinate system is clockwise rotated of 90o with respect to the
standard one.

4 A scattered subpicture is often called a subpicture, and subpictures in our sense are called
blocks.
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pȅ q =

p(1, 1) . . . p(1, |p|col) q(1, 1) . . . q(1, |q|col)
...

. . .
...

...
. . .

...
p(|p|row, 1) . . . p(|p|row, |p|col) q(|q|row, 1) . . . q(|q|row, |q|col)

The row concatenation⊖ for picturesp, q, writtenp⊖q, is defined analogously (with
p on top). The empty pictureλ is the neutral element for both concatenation operations.
pkȅ is the horizontal juxtaposition ofk copies ofp; p∗ȅ is the corresponding closure.
k⊖, and∗⊖ are the row analogous.

Theprojection by mappingπ : Σ → ∆ of a picturep ∈ Σ+,+ is a picturep′ ∈
∆+,+ such that|p| = |p′| andp′(i, j) = π(p(i, j)) for every position(i, j) of p.

The (clockwise)rotationof a picturep, rot(p), is informally described as follows:

rot(p) =

p(|p|row, 1) . . . p(1, 1)
...

. . .
...

p(|p|row, |p|col) . . . p(1, |p|col)

Thepixel-wise Cartesian productof two picturesp ∈ Σ∗,∗
1 , q ∈ Σ∗,∗

2 with |p| = |q|,
is a picturef ∈ (Σ1 ×Σ2)

∗,∗ such that|f | = |p|, andf(i, j) = (p(i, j), q(i, j)) for all
i, j, 1 ≤ i ≤ |p|row, 1 ≤ j ≤ |p|col [50].

Projection, rotation, row and column concatenation, and pixel-wise Cartesian prod-
uct can be extended to picture languages as usual. For every languageL ⊆ Σ∗,∗ we set
L0ȅ = L0⊖ = λ, Liȅ = Lȅ L(i−1)ȅ andLi⊖ = L ⊖ L(i−1)⊖ for everyi ≥ 1. Thus,
the row and column closures can be defined as the transitive closures ofȅ and⊖:

L∗ȅ =
⋃

i≥0

Liȅ, L∗⊖ =
⋃

i≥0

Li⊖,

which can be seen as a sort of 2D Kleene star. In [50] Simplot introduced the closure
L∗∗. We omit the detailed definition of Simplot’s operator and introduce it quite infor-
mally. We sayp ∈ L++ iff there exists a partition ofdom(p) where each subpicture
associated to a subdomain of the partition is inL. LetL∗∗ be the setL++ ∪ {λ}. For
example:

a a b
b e b
b b c

∈

{
a a ,

b
b
, b c ,

d
d
, e

}∗∗

If all the pictures ofL have the same size, then(L∗ȅ)∗⊖ = (L∗⊖)∗ȅ = L∗∗.
A well-known and widely useful concept in 1D languages is substitution, which

assigns languages to letters of the alphabet and naturally extends to strings and lan-
guages too. In 2D languages, a substitution can be similarlydefined. Given two fi-
nite alphabetsΣ and∆, a substitutionfrom ∆ to Σ is a mappingσ : ∆ → 2Σ+,+

.
But a difficulty hinders the extension of the mapping to pictures, because of the so-
called shearing problem of picture languages: a pixel in a picture cannot be replaced
by a larger picture without disrupting the array structure.To overcome the problem
in [15] the notion of replacement was introduced. Ifp, q, q′ are pictures such that
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q �(i,j) p for some position(i, j) of p, and |q| = |q′|, thenp[q′/q](i,j) denotes the
picture obtained by replacing the occurrence ofq at position(i, j) in p with q′, i.e.,
p[q′/q](i,j)(i+x−1, j+y−1) = q′(x, y) for all 1 ≤ x ≤ |q|row, 1 ≤ y ≤ |q|col. Then

the notion of substitution was modified as follows. Letσ : ∆ → 2Σ+,+

be a substitu-
tion. Given a picturep ∈ ∆+,+, a partitionΠ(dom(p)) = {d1, . . . , dn}, with n ≥ 1,
of dom(p) where each subpicturespic(p, dm) associated to a subdomaindm of the par-
tition is a bm-picture for somebm ∈ ∆ is called ahomogeneous partitionof p. Then
thesubstitution ofp ∈ ∆+,+ induced byΠ(dom(p)) is the languageσΠ(dom(p))(p) =
{p[r1/spic(p, d1)] . . . [rn/spic(p, dn)] | rm ∈ σ(bm), 1 ≤ m ≤ n}. GivenL ⊆ Σ+,+,
a setΠ = {(p,Π(dom(p)) | p ∈ L}, where eachΠ(dom(p)) is a (homogeneous) par-
tition of p ∈ L, is called a (homogeneous) partition set ofL. If L ⊆ ∆+,+ andΠ is a
homogeneous partition set ofL, then thesubstitution ofL induced by the homogeneous
partition setΠ is the languageσΠ(L) = {σΠ(dom(p))(p) : p ∈ L}.

Roughly speaking a substitutionσ : ∆ → 2Σ+,+

extends to pictures and to picture
languages by replacinga-subpicturespa, at position(i, j), of p with picturesq ∈ σ(a)
of the same size. This definition, however, is not equivalentto the traditional notion of
substitution when applied to strings.

Now we are in position of introducing families of 2D languages, but since we are
mainly presenting languages based on tiling we remind some notions on Wang tiles.

3 Wang tiles

A Wang tileis a unit square with colored edges. LetT be a finite set of Wang tiles, which
are not allowed to rotate. A mapτ : Z2 → T is called avalid tiling, of the Euclidean
plane, or equivalentlyT can tile the Euclidean plane, if common edges of any pair of
adjacent tiles have the same color. More formally denote byN(t), S(t), W (t), E(t)
the colors of the upper, lower, left and right edges of a tilet respectively, thenτ is
a valid tiling of the Euclidean plane, ifN(τ(i, j)) = S(τ(i, j + 1)), S(τ(i, j)) =
N(τ(i, j − 1)), W (τ(i, j)) = E(τ(i − 1, j)), andE(τ(i, j)) = W (τ(i + 1, j)), for
each(i, j) ∈ Z2. Analogously,T can tile a rectangle of sizen × m if there is a map
τ : {1, . . . ,m} × {1, . . . , n} → T such that adjacent tiles agree on the colors of
contiguous edges. In 1961 Wang [53], analyzing the class of the first order formulas in
prenex normal form whose prefix is∀x∃y∀z, raised the question
Plane tiling problem given a finite set of Wang tiles establish whether or not it admits
a valid tiling.

The 1D version of this problem admits an easy solution. Namely, to each finite set
T of unary segments with colored left and right end points one can associate a direct
graph where the set of colors is the set of vertices, and the edges(i, j) are the colors
of left and right endpoints of some segment inT . ObviouslyT admits a valid tiling
if and only if there is a bi-infinite path in the associate graph and then if and only if
the graph has a loop. Coming back to the 2-dimensional problem, if the given finite set
T of Wang tiles has a valid tiling with some vertical periodicity, the plane is covered
by the repetition of some horizontal strip. Then, since thisstrip has only finitely many
different vertical cross sections, the tiling has periodicity along two different directions.
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A tiling τ is calledperiodic if there are two integersp, q such thatτ(i, j) = τ(i +
p, j), τ(i, j) = τ(i, j+ q) for all (i, j) ∈ Z2. Without loss of generality we can assume
p = q. By the above argument it follows that if a finite set of Wang tiles has a tiling
with a non zero period along one direction then it admits a periodic tiling.

Wang conjectured that any set of tiles which admits a valid tiling of the plane also
admits a periodic tiling and under this assumption he gave analgorithm to solve the
plane tiling problem, based on a compactness-like theorem.

Proposition 1. A finite set of Wang tiles can tile the whole plane iff it can tile arbitrarily
large finite areas of the plane.

In particular a given set of tiles can tile the whole plane if and only if it can tile the first
quadrant and so several constraints on the tiling of the firstquadrant were posed. These
problems were a bit easier to settle than the plane tiling problem and were speedily
proved to be undecidable, an overview on these results can befound in [54]. The plane
tiling problem on the contrary remained unsolved for years.However, from the above
discussion it is clear that if the plane tiling problem is undecidable, then there are finite
sets of tiles which admit only non-periodic tilings of the plane.

A finite set of Wang tiles which admits only non-periodic valid tiling is saidaperi-
odic. In 1966 Berger [8], proved the following

Theorem 1. The plane tiling problem is undecidable.

His proof is based on encoding the halting problem of Turing Machine in the valid
tiling of an arbitrary large square portion of the plane. Moreover, he constructed an
aperiodic set of 20426 Wang tiles that shortly reduced to 104.

Then several well-known scientists from different areas asdiscrete mathematic,
logic and computer science paid attention to the problem of finding smaller aperiodic
sets of tiles and simplified proofs of undecidability of plane tiling problem (see for
instance [49]). The smallest aperiodic set of Wang tiles obtained by geometrical ar-
guments is composed by 16 tile (for a survey, see Chapters 10 and 11 of [33]). More
recently Kari, [37], proposed a different approach based onsequential machines that
multiply Beatty sequences of real numbers by rational constants, and produced an ape-
riodic set of Wang tiles with 14 tiles. His method was improved by Culik, [20], who
built an aperiodic set formed by 13 tiles. This is currently the smallest known aperiodic
set of Wang tiles. An expository article describing this approach is [27].

Once proved the existence of aperiodic set of Wang tiles, thefollowing problem
naturally arises:
Periodic tiling problem given a finite set of Wang tiles determine whether or not it can
tile the plane periodically.
The problem was first studied in 1972 by Gurevich and Koriakov, who proved its unde-
cidability [34].

Valid tilings have some quite surprising regularities. LetT be a finite set of Wang
tiles, apatternis a partial mapϕ : P → T from a finite domainP of Z2 in T . A pattern
appearsin a tiling τ : Z2 → T if the tiling is the extension of the image of the pattern
by a shift.
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A valid tiling τ : Z2 → T is calledquasi-periodicif for each patternM appearing
in τ there is an integern such thatM appears in alln × n squares inτ . A valid quasi
periodic tiling that is not periodic is calledstrictly quasi-periodic.

In [24] Durand proved the following

Theorem 2. Each finite set of Wang tiles admitting a valid tiling admits aquasi-periodic
valid tiling.

Thequasi-periodicityfunction for a quasi periodic tilingτ is the function that associate
to each integerx the minimal sizen of the squares in which one can find all the patterns
of sizex appearing in the tiling.

This function enables to characterize quasi periodic tilings that are periodic.

Proposition 2. A quasi periodic tiling is periodic if and only if its quasi-periodicity
function is bounded byx→ x+ c, for some constantc .

Then, using a counting argument on trees suitably associated to valid tilings, Durand
obtains the following

Theorem 3. If a tile set can be used to form a strictly quasi-periodic tiling of the plane,
then it can form an uncountable number of different tilings.

It is important to note that valid tilings could be defined in several different ways.
For instance one could arrange all edge colors in complementary pairs and ask for
tilings of the plane where common edges of adjacent tiles have complementary colors.
This problem is equivalent to the plane tiling problem. If tile rotation is allowed, the
tiling problem with matching colors of contiguous edges is trivially solvable while the
problem with complementary colors remain undecidable.

A generalized simple way for describing variants of tiling rules is to consider the
given finite setT of Wang tiles as a finite alphabet and a set of local rulesL ⊆ T 4. A
tiling τ satisfies the local rulesL if and only if all 2 × 2 patterns appearing in the tiling
are inL. In [26] the authors give via this approach a new short proof of the existence of
aperiodic tilings.

Besides the strong connections with first order and description logics [25] yet aris-
ing from its original motivation, tiling problems have appeared in many branches of
physics and mathematics like group theory, topology, quasicrystals, symbolic dynamics.
More recently Winfree et al. [56] have demonstrated the feasibility of creating molecu-
lar tiles made from DNA that can act as Wang tiles introducingthetile assembly model.
As pointed out by Brun [13] a tile assembly model is a highly distributed parallel model
of computation that may be implemented using molecules, or alarge computer network
such as the Internet, and this opens several new prospectives.

In a more applicative and less ambitious context, Wang tileshave been proposed as
tool for procedural synthesis of textures, and in general they have also proved to be very
useful for the creation of large non-periodic textures, point-distributions and complex
2D scenes, see for instance [1, 17].

4 Recognizable picture languages

The attempt of transferring definitions and properties fromstring languages to their 2D
analogue is quite successful when one considers the first level of Chomsky’s hierarchy.
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The class of picture languages corresponding to regular one- dimensional languages
was intensively studied by several authors with different approaches: finite automata,
logical characterizations, regular expressions and so on.An unifying approach to this
family of picture language was proposed by Giammarresi and Restivo via local prop-
erties and projection. They introduced the so calledREC family of picture languages
and collected main properties of this family in the nice survey [31]. Here, besides sum-
marizing the results contained in [31], we add some more recent results with the aim of
fixing the actual state of art.

4.1 Labeled Wang tiles and Tiling Systems

First, we remind the definition ofREC languages based on tiles endowed with labels in
a finite alphabetΣ.

Definition 1. ([21]) A labeled Wang tile, shortlyLWT, is a 5-tuple (c1, c2, c3, c4, a)
where for alli, 1 ≤ i ≤ 4, ci belongs to a finite setC of “colors” and a belongs to a
finite setΣ of labels.
A Wang system(WS) is a triple (C,Σ, T ) whereT ⊆ C4 ×Σ is a finite set ofLWT’s.
LetB ∈ C be a special color and letr be a picture of size(n,m) on the alphabetT , r
is a tiling overT if

– r(1, 1) ∈ {(B,B, c3, c4, a) | c3, c4 ∈ C\{B}, a ∈ Σ},r(1, n) ∈ {(c1, B,B, c4, a) |
c1, c4 ∈ C \ {B}, a ∈ Σ}, r(m,n) ∈ {(c1, c2, B,B, a) | c1, c2 ∈ C \ {B}, a ∈
Σ},r(m, 1) ∈ {(B, c2, c3, B, a) | c2, c3 ∈ C \ {B}, a ∈ Σ};

– for all i, 1 < i < n, r(1, i) ∈ {(c1, B, c3, c4, a) | c1, c3, c4 ∈ C \ {B}, a ∈ Σ},
r(m, i) ∈ {(c1, c2, c3, B, a) | c1, c2, c3 ∈ C \ {B}, a ∈ Σ};

– for all i, 1 < i < m, r(i, 1) ∈ {(B, c2, c3, c4, a) | c2, c3, c4 ∈ C \ {B}, a ∈ Σ},
r(i, n) ∈ {(c1, c2, B, c4, a) | c1, c2, c4 ∈ C \ {B}, a ∈ Σ};

– for all (i, j), 1 ≤ i ≤ m, 1 ≤ j ≤ n, r(j, i) ∈ {(c1, c2, c3, c4, a) | c1, c2, c3, c4 ∈
C \ {B}, a ∈ Σ}; moreover letr(i, j) = (e, n, w, s, a), then if i > 1, r(i −
1, j) ∈ {(c1, c2, c3, n, a′) | c1, c2, c3 ∈ C, a′ ∈ Σ}, if j > 1, r(i, j − 1) ∈
{(c1, c2, e, c4, a′) | c1, c2, c4 ∈ C, a′ ∈ Σ}.

Thelabel‖r‖ of a tiling r is a picture overΣ of size|r| defined by

‖r‖(i, j) = a⇔ r(i, j) = (c1, c2, c3, c4, a)

for somec1, c2, c3, c4 ∈ C. The set of the labels of all the tilings overT is the language
L(WS) generated by the Wang systemWS. A languageL generated by a Wang system
is calledWang recognizable.

For eachLWT t = (c1, c2, c3, c4, a) in a Wang systemWS, consider the non labeled
versiont̃ = (c1, c2, c3, c4). Roughly speaking the above definition says that the map
ρ : {1, . . . ,m}× {1, . . . , n} → T defined asρ(h, k) = r(n+ 1− h, k) is a valid tiling
of the region{1, . . . ,m}×{1, . . . , n} by the set̃WS of the non labeled versions of tiles
in WS such that the boundary of the tilingr is colored by the special colorB that does
not occur in inner edges.
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The same family of picture languages is also introduced by a formalism based on
the local rules introduced in Section 3.

Forp ∈ Σ+,+ let JpK be the set of subpictures of size (2,2) ofp.5 In the sequel the
concepts oftile, andlocal languageare central.

Definition 2. A tile is a square picture of size (2,2). A languageL ⊆ Σ∗,∗ is local if
there exists a finite setΘ of tiles over the alphabetΣ ∪ {#} such thatL = {p ∈ Σ∗,∗ |
Jp̂K ⊆ Θ}. We will refer to such language asLOC(Θ).

Notice thatLOC(Θ) is the set of finite rectangles of Euclidean plane with boundary
colored by# that admit a valid tiling agreeing also with the boundary color. The set
of local languages, shortly denoted byLOC, is the natural extension of string local
languages and so the following definition extends one of the definitions of regular 1D
languages.

Definition 3. ([31]) A tiling system(TS) is the 4-tupleT = (Σ,Γ,Θ, π), where:
Σ andΓ are two finite alphabets,
π : Γ → Σ is a mapping,
Θ is a finite set of2 × 2 tiles over the alphabetΓ ∪ {#}.
The languageL(T ) = π(LOC(Θ)) is thelanguage defined by the TST .
The languages over finite alphabets defined by tiling systemsconstitute the familyREC
of TS-recognizable languagesonΣ.

The familyREC is considered the correct answer to the quest of a natural adaptation
of the class of regular word languages for pictures. Namely,like in the 1D case,REC
languages can be equivalently characterized by several formalisms. We shortly remind
some of them, and we mainly refer to [31] for more information.

First, one can modify the size of tiles. In this way the definition of domino systems
arises whereΘ is a finite set of1 × 2 and2 × 1 pictures over the alphabetΓ ∪ {#}
andLOC(Θ) = {p ∈ Σ∗∗ | B1,2(p̂) ∪ B2,1(p̂) ⊆ Θ}. A local language of this type
is calledhv-local language. The family ofhv-local languages is properly included in
LOC.

Moreover, one can consider the connection between Wang tiles and local rules.
Lastly, a characterization ofREC in term of regular string languages can be given

using the so calledrow-column combinationof two string languagesR andC, i.e. the
languagesR⊕C of the pictures all whose rows, thought as strings, are inR and whose
all columns, seen as string from top to bottom, are inC.

Theorem 4. ([50, 21]) LetL be a picture languages. The following are equivalent.

1. L is TS-recognizable,
2. L is recognizable by some domino system,
3. L is Wang recognizable,
4. there exist two regular string languagesR andC and a projectionπ such that
L = R ⊕ C.

5 In the rest of the paper, we will use this notation instead ofB2,2(p) for brevity.
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Other generalizations of local languages given in 1D case can be extended to picture
languages.

Let h, k be two positive integers. Two picturesp, r ∈ Σ∗,∗ are related in the equiv-
alence relation∼=h,k if and only if their corresponding bordered versions have the same
set of subpictures of size(h, k). A picture language islocally testableif it is union of
∼=h,k-equivalence classes for some positive integersh, k.

Let p be a picture. Forh, k, t positive integer and for a pictureq ∈ (Σ ∪ {⊥})∗,∗ of
size(h, k) let occp(q) the number of subdomainsd of dom(p), such thatspic(p, d) is a
translation ofq and letocctp(q) = min(t, occp(q)). Let∼=t

h,k be the equivalence relation
onΣ∗,∗ defined byp ∼=t

h,k r if and only if occtp(q) = occtr(q) for all q ∈ (Σ ∪ {⊥})∗,∗

of size(h, k) .
A picture language islocally threshold testableif it is union of ∼=t

h,k-equivalence
classes for some positive integersh, k andt.

Above picture languages are proper subclasses ofREC.

Proposition 3. The familyLT of locally testable languages is properly included in
the familyLTT of locally threshold testable languages, which in turn is properly con-
tained inREC. Moreover every language inLTT is a projection of a locally testable
language.

The family REC inherits several closure properties of regular string languages.
NamelyREC is closed under intersection, union, projection, row and column concate-
nation, closure operations, Cartesian product, and Simplot closure operator∗∗. More-
overREC is closed under substitution of languages inREC induced by homogeneous
partition sets, and also under by substitutions of languages in REC induced by the set
of all homogeneous partitions of each picture [15].

However, fundamental properties of regular string languages fail inREC.

Proposition 4. REC is not closed under complement.
The membership problem for each languageL in REC is NP-complete.
The emptiness and universe problems forREC are undecidable.

It is important to remark that in spite of its NP-completeness, the parsing prob-
lem for REC languages can be successfully tackled encoding the probleminto SAT.
Namely, in [45] a recognizer/generator for pictures definedby a tiling system is im-
plemented in a very attractive, unconventional way, by considering for a picturep and
eacha ∈ Σ the statementp(i, j) = a as a propositional variable of the SAT prob-
lem and transforming the tiling problem into a Boolean satisfiability one, then using an
efficient off-the-shelf SAT-solver. The prototype is fast enough to experiment on rea-
sonably sized samples, and has the bonus of being able to complete a partial picture, by
assigning to unknown pixels some values which satisfy the picture specification.

Another difference between regular string languages andREC arises considering
the following modified definition of local testability. Leth, k be two positive integers.
Two pictures are related in the equivalence relation∼h,k if and only if they have the
same set of scattered subpictures of size(h, k).

A picture language ispiecewise locally testableif it is union of ∼h,k-equivalence
classes for some positive integersh, k. The languageCORNERS of picturesp over
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{a, b} such that wheneverp(i, j) = p(i′, j) = p(i, j′) = b then alsop(i′, j′) = b is
piecewise testable, but does not belong toREC.

4.2 Unambiguous and deterministic classes of recognizablepicture languages

The definition of recognizability in terms of local languages and projections is implic-
itly nondeterministic, moreover sinceREC family is not closed under complement,
each attempt to overcome its non-determinism gives smallerfamilies of languages, dif-
ferently of what happens for regular string languages.

We remind the definition of unambiguousREC languages given in [30].

Definition 4. A quadruple(Σ,Γ,Θ, π) is anunambiguous tiling systemfor a 2D lan-
guageL ⊆ Σ∗,∗ if and only if for any picturep ∈ L there exists a unique local picture
q ∈ LOC(Θ) such thatp = π(q), i.e. the extension ofπ to a map fromΓ ∗,∗ toΣ∗,∗ is
injective onLOC(Θ).
L ∈ REC is anunambiguous picture languageif and only if it admits an unambiguous
tiling system(Σ,Γ,Θ, π).

The family of all unambiguousREC picture languages is denoted byUREC.
The language of pictures with at least two equal columns is inREC, but not in

UREC. Hence

Theorem 5. ([5]) UREC is strictly included inREC.

The notion of determinism for tiling systems has to be referred to a direction, like
in 1D case. The considered direction is one of the four main directions from a corner to
another (c2c).

Definition 5. A tiling system(Σ,Γ,Θ, π) is tl2br-deterministic6 if for anyγ1, γ2, γ3 ∈
Γ ∪{#} andσ ∈ Σ there exists at most one tilet ∈ Θ with t = γ1 γ2

γ3 γ4
, andπ(γ4) = σ.

Similarlyd-deterministic tiling systems for any directiond ∈ c2c are defined.
L ∈ REC is a deterministic picture languageif and only if it admits a deterministic
tiling system for somed ∈ c2c.

The family of all deterministicREC picture languages is denoted byDREC.
DREC is properly included inUREC and there are some classes of languages that

strictly separateDREC from UREC. In [3] the classes ofrow-UREC andcol-UREC
are introduced (see also [29]) where four side-to-side scanning directions, namely left-
to-right (l2r) and vice versa (r2l), top-to-bottom (t2b) and vice versa (b2t), are consid-
ered.

Definition 6. A tiling system(Σ,Γ,Θ, π) is l2r-unambiguousif for any columncol ∈
Γm,1 ∪ {#}m,1 , and picturep ∈ Σm,1, there exists at most one local columncol′ ∈
Γm,1 such thatπ(col′) = p and

q
{#}1,2 ⊖ (col ȅ col′) ⊖ {#}1,2

y
⊆ Θ. Similar prop-

erties defined-unambiguous tiling systems, for any side-to-side directiond.
A language iscolumn-unambiguousif it is recognized by ad-unambiguous tiling sys-
tem for somed ∈ {l2r, r2l} and it is row-unambiguousif it is recognized by ad-
unambiguous tiling system for somed ∈ {t2b, b2t}. Col-UREC is the class of column-
unambiguous languages andRow-UREC the class of row-unambiguous languages.

6 tl2br means from the top left to the bottom right corner.
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Proposition 5. ([3]) DREC ⊂ (Col-UREC∩Row-UREC) ⊂
⊂ (Col-UREC∪ Row-UREC) ⊂ UREC.

More recently, Lonati and Pradella [38] introduced a new kind of determinism for
tiles: given(Σ,Γ,Θ, π), the pre-image of a picturep ∈ Σ∗,∗ is built by scanningpwith
a boustrophedonic strategy, that is a natural scanning strategy used by many algorithms
on pictures and 2D arrays. More precisely, it starts from thetop-left corner, scans the
first row of p rightwards, then scans the second row leftwards, and so on.

Definition 7. A tiling system(Σ,Γ,Θ, π) is snake-deterministic ifΓ andΘ can be
partitioned asΓ = Γ1 ∪ Γ2, Θ = Θ1 ∪Θ2, where

– (Σ,Γ,Θ1, π) is tl2br-deterministic and for each tilet ∈ Θ1, t(i, j) ∈ Γ3−i ∪ {#},
– (Σ,Γ,Θ2, π) is tr2bl-deterministic and for each tilet ∈ Θ2, t(i, j) ∈ Γi ∪ {#}

and not botht(1, 1), t(1, 2) are#.

The closure under rotation of languages recognized by snakedeterministic tiling-systems
is denotedSnake-DREC.

Proposition 6. ([38]) Snake-DREC = Col-UREC∪Row-UREC.

UREC is closed under projection, disjoint union, intersection and rotation, and it
is not closed under row and column concatenation and under row and column closures.
An open problem is whetherUREC family is closed under complementation, it is also
conjectured that if aREC language is not inUREC then its complement is not inREC.
Some recent results in this direction by Anselmo and Madoniaare included in this
volume. The familyDREC is closed under complement but it is not closed under union
and intersection. Moreover by Definition 6 it immediately follows that it is decidable
whether a given tiling system isd-deterministic ford ∈ c2c. It is also decidable whether
a tiling system is column- or row-unambiguous while it is undecidable whether it is
unambiguous.

We would like also remark that in [6] a new model of recognizable picture languages
without frames surrounding the pictures was introduced, and the changes of properties
under the framed vs unframed approaches were considered mainly focusing on deter-
minism and unambiguity. It turns out that the frame surrounding the blocks provides
additional memory that, besides enforcing size and contentof the recognized pictures,
produces unframed ambiguous languages that are unambiguous inREC.

4.3 Models of 2-dimensional finite automata

A tile system(Σ,Γ,Θ, π) is a natural generalization of non deterministic finite au-
tomata to the 2D case. To underlying the analogies, Matz in [42] suggested to consider
Γ = Σ × Q for some finite setQ, and the projection mapπ as the mapπ(a, q) = q
for eacha ∈ Σ, q ∈ Q. He callsQ decoration set to point out that element ofQ do
not correspond to the intuition behind the word “state”. Then to see the tile system as
an automaton one could imagine to simultaneously “decorate” each pixel of the input
picturep and to check the decorated input for local compatibility with the transition re-
lationΘ. Also in [21] some analogies between Wang systems and finite automata were
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indicated. However neither tile systems nor Wang systems correspond to an effective
procedure of recognition, namely when the membership of a picturep to a givenREC
language has to be checked, no scanning procedure of the picturep is proposed.

Several operational models have been proposed to recognizepicture languages.
Here we remind only four of them and we refer to [36] for a survey on different models
of finite automata recognizing picture languages.
The first model, called4-way finite automaton, shortly4FA, was proposed in 1967 by
Blum and Hewitt [10]. It is an extension of 2-way finite automata for strings and allows
the finite automaton to move in four directions:t, b, l, r (top, bottom, left, and right).

Definition 8. ([31]) A 4FA is a 7-tupleA = (Σ,Q, {t, b, l, r}, q0, qa, qr, δ), whereΣ
is the input alphabet,Q is the set of states,q0, qa, qr are three distinguished states,
called initial, accepting and rejecting states,δ : (Q \ {qa, qr})×Σ → 2(Q×{t,b,l,r}) is
the transition function.

A can be seen as a finite control inQ reading the input picture. If(q′, d) ∈ δ(q, a)
for somed ∈ {t, b, l, r}, the automaton goes from the actual stateq and the actual
position (i, j) with p(i, j) = a to the stateq′, and moves the reading head by one
position according to the directiond. The automaton halts when it reaches either the
stateqa or the stateqr. It recognizes a picturep ∈ Σ∗,∗ if starting from the position
(1, 1) in the stateq0, it eventually reaches the stateqa, it is not needed that it reads all
the pixels ofp.

The2-dimensional on-line tessellation automaton(2OTA) is a restricted type of 2-
dimensional cellular automata, i.e. an array of cells all being in some state at any given
time and operating in a sequence of discrete time steps. In2OTA each cell changes its
state depending on the top and left neighbors. This model wasintroduced by Inoue and
Nakamura in 1977 [35]. Here we remind the definition given in [31].

Definition 9. A 2OTA is a5-tupleA = (Σ,Q, I, F, δ), whereΣ is the input alphabet,
Q is the set of states,I ⊆ Q, F ⊆ Q are the sets of initial and final states,δ :
Q×Q×Σ → 2Q is the transition function.

A run of A over a picturep ∈ Σ∗,∗ associates a state to each position ofp. At
time t = 0 a stateq0 ∈ I is associated to all positions of the first row and column of
p̂, then moving diagonally across the array, at timet = k, states are simultaneously
associated to each position(i, j) of the picture withi+ j − 1 = k, according toδ. The
picturep is recognized byA if there is a run ofA associating a final state to the position
(|p|row, |p|col).

In 2007 Anselmo and al. [4] proposedtiling automata(TA for short) as an effective
computational device whose transitions are given by a tiling system with a scanning
strategy that uses a next-step function and a data structureto remember some of the
local symbols associated to the already scanned positions of the input picture. It is
evident that to handle the borders, the next-step function depends also from the size of
the input picture.

Definition 10. Letn,m ∈ N andP (n,m) = {0, 1, . . . , n+ 1} × {0, 1, . . . ,m+ 1}.
A next-position functionfor pictures is a computable partial functionf : N4 → N2

associating to a quadruple(i, j, n,m), with (i, j) ∈ P (n,m) a pair (i′, j′) ∈ P (n,m).
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Letv1(n,m) = (i0, j0) ∈ P (n,m) and putvh(n,m) = f(vh−1(n,m), n,m), then the
sequenceVf,k(n,m) = {v1(n,m), v2(n,m) . . . , vk−1(n,m)} is called the sequence
of visited positionsbyf at stepk with starting position(i0, j0).
A scanning strategyis a next-position functionS such that for any(n,m) ∈ N2 the
sequenceVS,(n+2)(m+2)+1(n,m) = {v1(n,m), v2(n,m) . . . , v(n+2)(m+2)(n,m)} of
visited positions byS at step(n + 2)(m + 2) + 1 starting from a corner position of
P (n,m) satisfies:

1) VS,(n+2)(m+2)+1(n,m) is a permutation ofP (n,m).
2) for anyk = 2, . . . , (n+ 2)(m+ 2), thetl- (or tr-, or bl-, or br- resp.) contiguous

positions ofvk(n,m) (when defined) are all inVS,(n+2)(m+2)+1(n,m).

Moreover ifS satisfies condition

3) for anyk = 2, . . . , (n+2)(m+2), vk(n,m) is a contiguous position ofvk−1(n,m)
provided thatvk−1(n,m) is an internal position, otherwise ifvk−1(n,m) is an
external position alsovk(n,m) is an external position;

it is called acontinuousscanning strategy; ifS satisfies condition

4) v(n+2)(m+2)(n,m) is a corner position,

it is called anormalizedscanning strategy.

For each next-position function there is at most one starting corner, verifying con-
ditions 1 and 2 of Definition 10. Moreover property 3 avoids that two non-contiguous
regions of a picture are both scanned during a scanning process and together with prop-
erty 4 forbids the existence of holes in the picture during the scanning process. In [4]
several examples of continuous normalized scanning strategies are given, showing the
richness of possibilities in 2D case, and they produce, for suitable data structures, dif-
ferent definitions of tiling automata. Here we introduce a formal definition of tiling
automata with a scanning strategy that follows a maintl2br-directed strategy, i.e. a
strategy such that for any(n,m) ∈ N2 and for anyk with 1 ≤ k ≤ (n + 2)(m + 2)
contains the (defined)tl-contiguous positions ofvk(n,m) in the set of visited position
at stepk starting from position(0, 0).

Definition 11. ([4]) A tiling automatonof typetl2br is a 4-tupleA = (T ,S, D0, δ)
whereT = (Σ,Γ,Θ, π) is a tiling system,S is a tl2br-directed scanning strategy,D0

is the initial content of a data structure that supports operationsstate1(D), state2(D),
state3(D), update(D, γ), for γ ∈ Γ ∪ {#}, andδ : (Γ ∪ {#})3 × (Σ ∪ {#}) →
2(Γ∪{#}) is a relation such thatγ4 ∈ δ(γ1, γ2, γ3, σ) if π(γ4) = σ and γ1 γ2

γ3 γ4
∈ Θ.

Tiling automata of typed for each corner to corner (c2c) directiond are similarly
defined.

The initial configuration of the tiling automatonA is (p, i, j,D0), wherep is a
picture of size(n,m) and(i, j) = v1(n,m). From a configuration(p, h, k,D), h, k ∈
N, the automaton moves to the configuration(p, h′, k′, D) if S(h, k, n,m) is defined,
γ4 ∈ δ(state1(D), state2(D), state3(D), p(h, k)) for someγ4 ∈ Γ ∪{#} , (h′, k′) =
S(h, k, n,m) andD′ is the content of the data structure after callingupdate(D, γ4). If



Picture Languages: from Wang tiles to 2D grammars 15

S(h, k, n,m) is defined, and there is noγ4 ∈ Γ ∪ {#} such thatγ4 ∈ δ(state1(D),
state2(D), state3(D), p(h, k)), A stops without accepting, while ifS(h, k, n,m) is
not defined,A stops acceptingp.

It is important to remind that this definition 11 refers to a tiling automaton with a
given scanning strategy (of type tl2br), another scanning strategy produces a different
type of tiling automaton, nevertheless the class of recognized languages is the same.

Another family of automata for dealing withREC family of languages was intro-
duced in 2005 by Bozapalidis and Grammatikopoulou [12]. Their definition is in terms
of doubly ranked monoids. A doubly ranked semigroup (DR-semigroup for short) is
a doubly ranked setM = (Mm,n) endowed with two associative operationsh© :
Mm,n × Mm,n′ → Mm,n+n′ , and v© : Mm,n × Mm′,n → Mm+m′,n, called re-
spectively horizontal and vertical multiplications, thatare compatible to each other,
i.e. (a h©a′) v©(b h©b′) = (a v©b) h©(a′ v©b′), for all a, a′, b, b′ of suitable ranks. A DR-
semigroupM with two sequencese = (em) andf = (fn), with em ∈ Mm,0, fn ∈
M0,n such thate0 = f0, em v©en = em+n, fm h©fn = fm+n, andem h©a = a h©em =
a, fn v©b = b v©fn = B for all a, b of suitable rank is called a doubly ranked monoid;
e, f are called respectively the horizontal and vertical units of M . Given a doubly
ranked alphabetX the free DR-monoid generated byX is calledpict(X).

Given a non empty setQ a quadripolic relationoverQ of rank (m,n) is an el-
ement of2Qm×Qn×Qm×Qn

and the set of all quadripolic relations overQ of rank
(m,n) is denoted by4Relm,n(Q). The doubly ranked set4Rel(Q) = (4Relm,n(Q))
can be structured as aDR-monoid, by defining the horizontal multiplication as fol-
lows: for eachR ∈ 4Relm,n(Q) andS ∈ 4Relm,n′(Q), R h©S = {(w1, w2, w3, w4)|

∃u ∈ Qm, v2, v4 ∈ Qn, z2, z4 ∈ Qn′

: w2 = v2z2, w4 = v4z4, (w1, v2, u, v4) ∈
R, (u, z2, w3, z4) ∈ S} and in dual way for the vertical multiplication. LetM and
M ′ be twoDR-monoids. AmorphismfromM to M ′ is a family of functionsϕm,n :
Mm,n → M ′

m,n, m, n ∈ N, compatible with horizontal and vertical multiplication and
units. Now we are in position of remind the following

Definition 12. ([12]) Let X be a finite doubly ranked set. A quadripolic automaton
overX is a 5-tupleA = (Q, δ, FWest, FSud, FEst, FNorth) whereQ is a finite set of
states,FWest, FSud, FEst, FNorth are subsets ofQ, called the four poles of acceptance
for A, δ is a family of mapsδm,n : Xm,n → 4Relm,n(Q).

Let δ : pict(X) → 4Rel(Q) be the morphism ofDR-monoids uniquely extending
δ and letFm,n = Fm

West×F
n
Sud×F

m
Est×F

n
North. A picturep ∈ pictm,n(X) is accepted

byA if and only if δm,n(p)∩Fm,n 6= ∅.L(QA) denotes the family of languages recog-
nized by a quadripolic automaton. It is clear that quadripolic automata are related to the
description ofREC via labeled Wang tiles. This allows an algebraic approach torecog-
nizable languages that is presented in a paper by Bozapalidis and Grammatikopoulou
included in the present volume.

The following theorem clarifies the reason behind the nameREC given to the family
of TS-recognizable languages.

Theorem 6. ([31, 4, 12]) LetL be a picture language. The following are equivalent:

1. L ∈ REC;
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2. L ∈ L(2OTA);
3. L ∈ L(TA);
4. L ∈ L(QA).

On the other hand, the family of 4-way automata is not enough powerful to define
REC.

Proposition 7. ([31]) L(4FA) is strictly included inREC. MoreoverL(4FA) is not
closed under row and column concatenation and closure operations, but it is closed
under union and intersection.

Some attempts of increasing the power of 4-way automata by endowing them with
a bounded queue or a bounded stack did not produce satisfactory results [7].

The unambiguous versions of on-line tessellation (2-UOTA, for short) and tilings
automata (UTA, for short), i.e. 2-dimensional on-line tessellation and tilings automata
such that for any picture there is at most one accepting computation, recognizeUREC
family.

Automata described in Definitions 8, 9, 11 admit also their deterministic counter-
parts. In the sequel4DFA, 2DOTA, DTA denote the families of deterministic 4-way,
2-dimensional on-line tessellation and tiling automata. They are less powerful than
the corresponding non-deterministic automata. In the deterministic case the family of
languages recognized by tiling automata depends on the chosen scanning strategy, so
L(DTA) denotes the set of all languages recognized by a deterministic d-tiling au-
tomata for each scanning strategy in any directiond ∈ c2c andDREC = L(DTA).
Moreover the familyL(4DFA) of languages recognized by a deterministic 4-way au-
tomaton and the familyL(2DOTA) recognized by some automaton in2OTA are not
comparable as shown by examples in [35].

4.4 Regular expressions

One of the main results on regular string languages is Kleene’s theorem that character-
izes the family of languages recognized by finite automata interm of regular expres-
sions. Such expressions can be analogously defined for picture languages.

Definition 13. ([31]) A regular expressionon the alphabetΣ is defined recursively as
follows:

1. ∅ and eacha ∈ Σ are regular expressions;
2. if α andβ are regular expressions, alsoα∪ β, α∩ β, αC , αȅ β, α⊖ β, α∗ȅ, α∗⊖

are so.

Each regular expression overΣ denotes a picture language:∅ and a ∈ Σ denote
respectively the empty language and the language formed by the unique picture of size
(1, 1) withp(1, 1) = a,α∪β,α∩β ,αȅβ,α⊖β, denote the union, intersection, row and
column concatenation of languagesα andβ; αC , α∗ȅ, α∗⊖ denote the complement,
and Kleene’s closures of languageα.
A languageL ⊆ Σ∗,∗ is regularif it is generated by a regular expression overΣ.
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It is an immediate consequence of the non closure ofREC under complement that
REC does not coincide with the classL(RE) of the languages denoted by regular ex-
pressions. Then it is quite natural to consider restricted sets of operators to be iteratively
applied starting from empty language and languages formed by a single picture of size
(1,1).

In [31] the following sets of operators are considered:R1 = {∪,∩,ȅ,⊖,∗ȅ ,∗⊖ },
R2 = {∪,∩,C ,ȅ,⊖} and in [42] the setR3 = {∪,ȅ,⊖,∗ȅ ,∗⊖ } was added.

Regular expressions containing only operators inR1 are calledcomplement-free
andL(CFRE) is the class of languages generated by complement-free regular expres-
sions. Regular expressions using only operators inR2 are calledstar-freeandL(SFRE)
is the class of languages they denote.L(CFRE) properly contains the family ofhv-
local languages, hence giving a Kleene-like theorem for picture languages modulo pro-
jection.

Theorem 7. A picture languageL is in REC if and only if it is the projection of a
language inL(CFRE).

Also the classL(SFRE), being closed under complement, does not coincide with
REC. In [41] Matz proved that the languageCORNERS belongs toL(SFRE) whereas
it is not inREC so showing thatL(SFRE), and more in general the family of languages
denoted by regular expressions, andREC are incomparable. This results answers to
some open problems in [31], Section 8.4. In [55] it is proved that the languageCROSS

of all pictures over{a, b} containing
a b a
b b b
a b a

as subpicture is piecewise testable but does

not belongs toL(SFRE) and obviouslyL(SFRE) is not contained in the familyPT
of piecewise locally testable languages because the inclusion fails for the analog string
languages.

The family of languages denoted by a regular expression containing only operators
in R3, but ∩, is calledREG in [42]. It is a proper subfamily ofL(CFRE) and, in
spite of its low expressive power, some arguments (simplicity, polynomial membership
problem, polynomial emptiness problem) suggesting that itcould be a better analog of
regular string languages, are sketched.

In [39] Matz proposed a more powerful type of regular expressions for picture lan-
guages, calledregular expressions with operators. For instance, he considered the col-
umn concatenation of a given picturer to the left and to the right like individual objects:
rȅ andȅr. He call this kind of objects operators and allows iterationover combinations
of operators. If unrestricted, these operators can be combined to generate languages not
in REC (e.gab((aȅ)(ȅb))∗ denotes the language{aibi|i > 0}); but under the natural
constraints that an operator working on the left (resp. top)is never juxtaposed, united
or intersected with an operator working on the right (resp. bottom), he showed that the
power of these expressions does not exceed the familyREC and is enough to denote
the language of square. It remains an open problem whether regular expressions with
operators exhaustREC-family.

More recently Anselmo and al. [2] proposed some new operations on pictures and
picture languages with the aim of looking for a homogeneous notion of regular ex-
pressions that could extend more naturally the concept of regular expression of 1D
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languages. They focus on regular expressions on one-letteralphabet but, as they re-
mark, this is a necessary and meaningful case to start since it corresponds to study the
“shapes” of pictures: if a picture language is in REC then necessarily the language of its
shapes is in REC. First they introduceddiagonal concatenationof pictures, that starting
from two picturesp, q over a one-letter alphabet{a}, respectively of size(n,m) and
(n′,m′), produces the picture over{a} of size(n+n′,m+m′), so enabling to express
some relationship between the dimensions of the pictures. The regular expressions al-
lowing only union, diagonal concatenation and its closure as operators, and the empty
set, empty picture, and empty row and column as atomic expressions denote a fam-
ily of languages over{a}, calledL(D). It coincides with the languages ofa-pictures
whose dimensions belongs to some rational relation or equivalently can be recognized
by some4FA automaton that moves only right and down.L(D) properly contains the
class of languages over one letter alphabet belonging toL(CFRE) and is closed under
intersection and complement. Then they consider the familyof languages over one let-
ter alphabet denoted by regular expressions whose operatorset contains union, column,
row and diagonal concatenations and their closures, getting again a family properly
included inREC. So, in the attempt of capture all the shapes allowed by 1DREC
languages, they defined new types of iteration operations, called advanced stars, that
result much more powerful than the classical stars and also seem to constitute a more
reasonable approach to the general case because the definitions of advanced stars admit
obvious generalizations on larger alphabets.

4.5 Logic formulas

LetΣ be a finite set and consider the signature{S1, S2, {Pa}a∈Σ}, wherePa are unary
andSi, i = 1, 2 binary relation symbols. Monadic second-order (shortlyMSO) for-
mulas on this signature using first-order variablesx, y, z, . . . and second order vari-
ablesX,Y, Z . . ., are inductively built from atomic formulasx = y, S1(x, y), S2(x, y),
Pa(x), X(x) using Boolean connectives and quantifiers applicable to first and second
order variables. AMSO formula where no second order variable is quantified is called
a first-order (FO) formula. An existential monadic second order (EMSO) is a formula
of the form∃X1∃X2 . . . ∃Xrφ whereφ is a first-order formula.

A picturep overΣ can be represented by the structurep = (dom(p), Sp,1, Sp,2,
{Pp,a}a∈Σ) wheredom(p) = {1, . . . , |p|row}×{1, . . . , |p|col},Sp,1, Sp,2 ⊂ dom(p)×
dom(p) are two successor relations defined by(i, j)Sp,1(i+1, j) for 1 ≤ i < |p|row, 1 ≤
i ≤ |p|col and (i, j)Sp,2(i, j + 1) for 1 ≤ i ≤ |p|row, 1 ≤ j < |p|col, |Σ| and
Pp,a = {(i, j)|p(i, j) = a}, with a ∈ Σ gives the set of positions labeled bya.

Letφ(X1, X2, ..., Xt) be a formula where at mostX1, X2, ..., Xt are free variables
and letQ1, Q2, . . . , Qt be subsets ofdom(p). Consider the interpretation with domain
dom(p), where first order variables are positions and second order variables are sets
of positions indom(p), and in particularQi is the interpretation ofXi for 1 ≤ i ≤
t, the predicatesS1(x, y), S2(x, y), Pa(x), X(x) are seen as(x, y) ∈ Sp,1, (x, y) ∈
Sp,2, x ∈ Pp,a, x ∈ X . Then

(p,Q1, Q2, . . . , Qt) |= φ(X1, X2, ..., Xt)

means thatp satisfiesφ in the above interpretation.
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A sentence is a formula without free variables. Letφ a sentence on the signature
{S1, S2, {Pa}a∈Σ}, the picture languageL defined byφ is the set of all picturesp such
thatp |= φ. A characterization ofREC in term of logic formulas is the following

Theorem 8. A picture languageL is in REC if and only if it is definable by anEMSO
formula in the signature{S1, S2, {Pa}a∈Σ}.

Matz in [41] enforces the above result showing that every picture language inREC
is definable by anEMSO formula of the form∃Xφ(X) whereφ is a first order formula.

Also, the families of languages with some kind of local testability admit logi-
cal characterization. In fact, a language is locally threshold testable iff it is defin-
able by a first-order formula in the signature{S1, S2, {Pa}a∈Σ} ([32]), while is lo-
cally testable if and only if it is definable by a first-order formula in the signature
{S1, S2, {Pa}a∈Σ, left, right, top, bottom}, whereleft, right, top, bottom are unary
predicates saying that a position is at the respective border [40].

4.6 Summary

Inclusions of the families introduced in above sections arerepresented by the following
diagram:

REC

UREC L(4NFA) L(RE)

Snake-DREC = Col-UREC∪Row-UREC L(4DFA)

Col-UREC∩Row-UREC LTT PT L(SFRE)

DREC LT

L(DOTA)

LOC L(CFRE)

hv-languages

4.7 Necessary conditions for recognizability

An useful tool to prove whether a language is recognizable in1D case is pumping
lemma for regular languages. An analog of pumping lemma can be stated for languages
in REC provided that they contain pictures whose number of columns(rows) is suffi-
ciently larger than the number of rows (columns).

Lemma 1. (Horizontal iteration lemma, [31]) LetL ∈ REC. Then there is a function
ϕ : N → N such that ifp ∈ L and |p|col > ϕ(|p|row), there exist some picturesx, y, q
with |x ȅ q|col ≤ ϕ(|p|row) and |y|col > 1 so thatp = x ȅ q ȅ y and for all i ≥ 0
xȅ qiȅ ȅ y ∈ L. Moreover,ϕ(n) ≤ |Γ |n for any local alphabet used to representL.
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Analogously can be stated avertical iteration lemma.
Another necessary condition for a language being inREC uses the notion of syn-

tactic equivalence modulo a languageL. For a languageL ∈ Σ∗,∗ two isometric pic-
turesp, q are calledsyntactically equivalent moduloL (in symbols,p ≈L q) if for all
x1, x2, y1, y2 ∈ Σ∗,∗ of suitable sizes,x1 ȅ (y1 ⊖ p ⊖ y2) ȅ x2 ∈ L if and only if
x1 ȅ (y1 ⊖ q ⊖ y2) ȅ x2 ∈ L. The functionfL(|p|row, |p|col) gives the number of
≈L-equivalence classes inΣ∗,∗ of size(|p|row, |p|col).

Lemma 2. (Syntactic equivalence lemma, [31]) LetL ∈ REC. Then there exists a
positive integerc such thatfL(n,m) ≤ cn+m for all positive integersn,m.

Lemma 3. ([40]) Let L ∈ REC overΣ. For each positive integern let {Mn} be a
sequence such that

1. Mn ⊆ Σn,+ ×Σn,+;
2. ∀(p, q) ∈Mn, pȅ q ∈ L;
3. ∀(p, q), (p′, q′) ∈Mn, {pȅ q′, p′ ȅ q} * L.

Then|Mn| is 2O(n).

The question of the existence of some language not in REC for which the above lemma
fails to prove the non recognizability was posed. The language of squares over{a, b}
with as manya’s asb’s was proposed as candidate. However, from a result in [49],it
follows that the above language is recognizable.

4.8 Recognizable picture languages on one-letter alphabet

Pictures over a one-letter alphabet, as already remarked inSection 4.4, are a special
but meaningful case to consider. Only the shape of the picture is relevant, whence a
unary picture is simply identified by a pair of positive integers representing its size. So a
picture language over one letter alphabet can be studied looking to the corresponding set
of integer pairs, and the definition of recognizability can be extended from languages to
functions fromN to N saying that a functionf : N → N is recognizable if its associate
languageLf = {p ∈ {a}∗,∗ | |pcol| = f(|prow|)} is recognizable. In [31] it is shown
that recognizable functions cannot grow quicker than an exponential function or slower
than a logarithmic one.

In 2007 Bertoni and al. [9] presentedREC languages over one-letter alphabet via
a characterization of strings encoding the pictures of the language. Namely they as-
sociate to each picturep ∈ {a}∗,∗ the stringφ(p) ∈ {a, h, v}∗ defined as follows:
φ(p) = a|p|rowha|p|col−|p|row−1 , if |p|row < |p|col;
φ(p) = a|p|row , if |p|row = |p|col;
φ(p) = a|p|colva|p|row−|p|col−1, if |p|col < |p|row.
Definition of φ obviously extends to languages by puttingφ(L) = {φ(p)| p ∈ L} ⊆
{a, h, v}∗ , for L ⊆ {a}∗,∗.

Theorem 9. Let L ⊆ {a}∗,∗. L is in REC if and only if φ(L) is a string language
that can be recognized by a1-tape non-deterministic Turing machines working, for any
inputx ∈ {a, h, v}∗, within |x| space and executing at mosta|x| head reversals, where
a|x| is the length of the longest prefix ofx in a+.
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Languages on one-letter alphabet were considered also for several of the afore-
defined subclasses ofREC languages.

5 Grammars for generating pictures

We did not consider generating grammars forREC family: in literature, 2D grammars
are mainly considered as a way to introduce an analog of CF string languages, and
several different models of grammars were proposed. There are essentially two main
categories of picture grammars: one category imposes the constraint that the left and
right parts of a rewriting rule must be isometric arrays, so overcoming the inherent
problem of shearing (which pops up while substituting a subpicture in a host picture).
The other one relies with several variations on notions of operations among pictures.
More recently, to overcome the shearing problem and in general problems arising from
the non flexibility of pixels in a picture, a picture deformation theory was introduced
by Bozapalidis in [11]. A family of pixelsx(r,s) is associated to any pixelx, called the
(r, s)-deformed pixels ofx, wherer, s range over a semiringA. The deformationp(r,s)

of a picturep is obtained by replacing all pixels ofp by their(r, s)-deformations and is
a picture where only the dimensions ofp are changed.

In the following section a grammar model specified by a set of rewriting rules is
presented with isometric rules. Then some properties of themodel that seem to support
the claim that the model is a good generalization of CF 1D languages are stated, and
some relations with other well-known models of picture grammars are discussed.

5.1 Tile grammars

Tile grammars were defined in [18] with the name of tile rewriting grammars, then a
normal form for those grammars was given in [14]. Here we use the normal form as
basic definition because it is simpler to handle.

First we need to introduce the notion ofstrong homogeneous partition. We say that
the domain of a picturep admits a strong homogeneous partition if there is a homoge-
neous partition ofdom(p) so that subpictures ofp associated to contiguous subdomains
have different labels. It is clear that each picture admits at most one strong homoge-
neous partition.

Definition 14. A Tile grammar (TG)is a 4-tuple(Σ,N, S,R), whereΣ is theterminal
alphabet,N is a set ofnonterminalsymbols,S ∈ N is thestarting symbol,R is a set of
rules. LetA ∈ N . There are two kinds of rules:

Fixed size: A→ t, wheret ∈ Σ; (1)

Variable size:A→ ω, ω is a set of tiles overN ∪ {#}. (2)

The nonterminal symbolA in the left part of a variable size rule denotes anA-
homogeneous picture. The right part of a variable size rule is a picture of a local lan-
guage over nonterminal symbols. Thus a variable size rule isa scheme defining a pos-
sibly unbounded number of isometric pairs: left picture, right picture. In addition there
are rules whose right part is a single terminal.
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Notice that tile grammars may be viewed as extending CF grammars from one to
two dimensions: the argument that such grammars in one dimension are essentially CF
grammars allowing a local regular expression in right partsof rules is in [18].

The derivation process of a picture starts from aS-picture. Picture derivation is a
relation between partitioned pictures.

Definition 15. Consider a grammarG = (Σ,N, S,R), let p, p′ ∈ (Σ ∪ N)h,k be
pictures of identical size. Letπ = {d1, . . . , dn} be homogeneous partition ofdom(p).
We say that(p′, π′) derives in one stepfrom (p, π), written

(p, π) ⇒G (p′, π′)

iff, for someA ∈ N and for some ruleρ ∈ R with left partA, there exists inπ an
A-homogeneous subdomaindi = (x, y;x′, y′), calledapplication area, such that:

– p′ is obtained substitutingspic(p, di) in p with a pictures, defined as follows:

• if ρ is of type (1), thens = t;
• if ρ is of type (2), thens ∈ LOC(ω) and admits a strong homogeneous parti-

tionΠ(s)

– π′ is a homogeneous partition ofdom(p) into the subdomains

(π \ {di}) ∪ transl(x−1,y−1)(Π(s))

wheretransl(x−1,y−1)(Π(s)) is the translation by displacement(x − 1, y − 1) (intu-
itively, the position ofdi in p) of the subdomains ofΠ(s).

We say that(q, π′) derives from(p, π) in n steps, written(p, π)
n

=⇒G (q, π′), iff
p = q andπ = π′, whenn = 0, or there are a picturer and a homogeneous partition

π′′ such that(p, π)
n−1
=⇒G (r, π′′) and (r, π′′) ⇒G (q, π′). We use the abbreviation

(p, π)
∗

=⇒G (q, π′) for a derivation with a finite number of steps.

Roughly speaking at each step of the derivation, anA-homogeneous subpicture is
replaced with an isometric picture of the local language, defined by the right part of
a ruleA → . . . that admits a strong homogeneous partition. The process terminates
when all nonterminals have been eliminated from the currentpicture.

Definition 16. Thepicture languagedefined by a grammarG (writtenL(G)) is the set
of p ∈ Σ+,+ such that (

S|p|, dom(p)
)

∗
⇒G (p, I),

whereI denotes the partition ofdom(p) defined by single pixels. For short we also
writeS

∗
⇒G p.L(TG) denote the family of languages generated by some tile grammar.

Example 1. One row and one column ofb’s.
The set of pictures such that there is one row and one column (both not at the

border) that holdb’s, and the remainder of the picture is filled witha’s is defined by the
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tile grammar (we remind the reader thatJpK stands for the set of all subpictures of size
(2,2) ofp):

S →

u

w

w

w

w

w

w

w

w

v

# # # # # # #
# A1 A1 V1 A2 A2 #
# A1 A1 V1 A2 A2 #
# H1 H1 V1 H2 H2 #
# A3 A3 V2 A4 A4 #
# A3 A3 V2 A4 A4 #
# # # # # # #

}

�

�

�

�

�

�

�

�

~

Ai →

u

w

w

w

w

v

# # # #
# X X #
# Ai Ai #
# Ai Ai #
# # # #

}

�

�

�

�

~

|

u

v

# # # #
# X X #
# # # #

}

~ , for 1 ≤ i ≤ 4

X →

u

v

# # # # #
# A X X #
# # # # #

}

~ | a; Hi →

u

v

# # # # #
# B Hi Hi #
# # # # #

}

~ | b, for 1 ≤ i ≤ 2

A → a; B → b; Vi →

u

w

w

w

w

v

# # #
# B #
# Vi #
# Vi #
# # #

}

�

�

�

�

~

| b, for 1 ≤ i ≤ 2.

Here is an example of derivation, with partitions outlined for better readability:

S S S S S

S S S S S

S S S S S

S S S S S

⇒

A1 A1 V1 A2 A2

H1 H1 V1 H2 H2

A3 A3 V2 A4 A4

A3 A3 V2 A4 A4

⇒

⇒

A1 A1 V1 A2 A2

H1 H1 V1 H2 H2

X X V2 A4 A4

A3 A3 V2 A4 A4

⇒

A1 A1 V1 A2 A2

H1 H1 V1 H2 H2

A X V2 A4 A4

A3 A3 V2 A4 A4

⇒

⇒

A1 A1 V1 A2 A2

H1 H1 V1 H2 H2

A a V2 A4 A4

A3 A3 V2 A4 A4

⇒

A1 A1 V1 A2 A2

H1 H1 V1 H2 H2

a a V2 A4 A4

A3 A3 V2 A4 A4

+
⇒

a a b a a

b b b b b

a a b a a

a a b a a

The familyL(TG) of TG-languages is closed w.r.t. union, column/row concatena-
tion, column/row closure operations, rotation, alphabetic mapping ([18]).

We remark that this family as well as all families presented in the sequel, which
exactly define CF string languages if restricted to one dimension, are not closed w.r.t.
intersection and complement. Namely, since they are all closed w.r.t. union, the same
arguments as string CF grammars can be used to prove these properties.
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5.2 Tile grammars and tiling systems

Proposition 8. ([18]) REC ⊂ L(TG).

In fact, for a tiling systemT = (Σ,Γ,Θ, π), it is quite easy to define a TGT ′ such
thatL(T ′) = L(T ). Informally, the idea is to take the tile-setΘ and add two markers,
e.g.{b, w} in a “chequerboard-like” fashion to build up a tile-set suitable for the right
part of the variable size starting rule; other straightforward fixed size rules are used to
encode the projectionπ. We show the construction on a simple example. The interested
reader may refer to [18] for details.

Example 2.The following TS defines square pictures ofa’s.

Θ =

u
wwwwwwv

# # # # # #
# 1 0 0 0 #
# 0 1 0 0 #
# 0 0 1 0 #
# 0 0 0 1 #
# # # # # #

}
������~
, π(0) = a, π(1) = a

An equivalent tile grammar is the following:

S →

u
wwwwwwv

# # # # # #
# 1b 0w 0b 0w #
# 0w 1b 0w 0b #
# 0b 0w 1b 0w #
# 0w 0b 0w 1b #
# # # # # #

}
������~
∪

u
wwwwwwv

# # # # # #
# 1w 0b 0w 0b #
# 0b 1w 0b 0w #
# 0w 0b 1w 0b #
# 0b 0w 0b 1w #
# # # # # #

}
������~

1w → a, 1b → a, 0w → a, 0b → a.

To see that the inclusion is proper, one can restrict to string languages.
From above it immediately follows that the parsing problem for TG-languages is

NP-hard, but in [44] it is proved that it is in NP, so

Proposition 9. The parsing problem forL(TG) is NP-complete.

In [15] some restrictions on tile grammars guaranteeing that the generated language
is in REC are given. These restrictions are the analog of the restrictions that one dimen-
sional CF grammars have to satisfy in order of defining regular languages.

Let G = (Σ,N, S,R) be a tile grammar, a non terminalA ∈ N is non recursive
if and only if there is no derivation of the form(A,Π) ⇒∗ (q,Π ′) with spic(p, d) ∈
A+,+ for some subdomaind of Π ′. Two non terminalsA1, A2 ∈ N are mutually
recursiveif and only if for eachi = 1, 2 there are derivations(Ai, Πi) ⇒∗ (qi, Π

′
i)

with spic(qi, di) ∈ {A3−i}∗,∗ for some subdomaindi of Π ′
i. A tile grammar all whose

non terminal are non recursive is callednon recursive tile grammar.

Proposition 10. ([15]) The family of languages generated by non-recursive tile gram-
mars coincides withREC.
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One can define a 2D analogous of a 1D grammar where self-embedding is never
allowed.

Definition 17. A tile grammarG = (Σ,N, S,R) is a corner grammar if there exists a
partition ofN in setsN1, N2, N3, N4, andN such that:

1. N is the set of non-recursive nonterminals ofG;
2. for everyi 6= j, 1 ≤ i, j ≤ 4, for eachA ∈ Ni,B ∈ Nj ,A andB are not mutually

recursive;
3. for everyi, 1 ≤ i ≤ 4, for eachA ∈ Ni if A ⇒∗ p thenp has a subpicture ati-th

corner inN∗,∗
i and the remainder pixels inΣ ∪ (N \Ni), where thei-th corner is

lt for i = 1, rt for i = 2, rb for i = 3, lb for i = 4.

In other words, in every non-corner position of a picture, only terminals or those nonter-
minals that cannot give rise to recursions are allowed, while disjoint (possibly empty)
nonterminal alphabets are considered for the four corners.Clearly, a non-recursive tile
grammar is a special case of corner grammar (withNi = ∅ for everyi, 1 ≤ i ≤ 4). A
corner grammar is also a generalization of right-linear or left-linear grammars for the
1D case.

Proposition 11. ([15]) The family of languages generated by a corner grammars co-
incides withREC.

Notice that checking whether a tile grammar is recursive or if it is a corner grammar
is not decidable.

5.3 Regional tile grammars

We now introduce the central concepts ofregional language. The adjective “regional”
is a metaphor of geographical political maps, such that different regions are filled with
different colors. Of course, regions are rectangles.

Definition 18. A homogeneous partition isregional(HR) iff distinct subdomains have
distinct labels. We will call a picturep regionalif it admits a HR partition.

A language isregionalif all its pictures are so.

Definition 19. ([14]) A regional tile grammar (RTG)is a tile grammar (see Defini-
tion 14), in which every variable size ruleA → ω is such thatLOC(ω) is a regional
language.

We note that Example 1 is regional, while the picture language presented in Exam-
ple 2 is not.

For languages generated by regional tile grammars a parsingalgorithm generalizing
the CKY algorithm is given. A subpicture is conveniently identified by its subdomain
as in original algorithm a substring is identified by the positions of its first and last
characters.

Theorem 10. ([14]) The parsing problem forRTG has polynomial time complexity.
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Analyzing the algorithm, one derives that the complexity ofparsing for a picture
of size(n,m) is O(µm4n4) where constantµ depends on parameters of the grammar.
The property of having polynomial time complexity for picture recognition, together
with the remark that pictures with palindromic rules are notin REC immediately give
the following results:

Proposition 12. ([14]) L(RTG) ⊂ L(TG). L(RTG) is incomparable withREC.

Moreover, the polynomial parsing united with the rather simple and intuitively
pleasing form of RTG rules, should make them a worth additionto the series of ar-
ray rewriting grammar models conceived in past years. In thesequel we prove or recall
some inclusion relations between grammar models and corresponding language fami-
lies.

5.4 Průša’s grammars

The following definitions are taken and adapted from [46, 47].

Definition 20. A 2D CF Pr̊uša grammar (PG) is a tuple(Σ,N,R, S), whereΣ is the
finite set ofterminalsymbols, disjoint from the setN of nonterminalsymbols,S ∈ N is
thestartsymbol, andR ⊆ N × (N ∪Σ)+,+ is the set ofrules.

Definition 21. LetG = (Σ,N,R, S) be a PG. We define a picture languageL(G,A)
overΣ for everyA ∈ N . The definition is given by the following recursive descriptions:

(i) If A→ w is inR, andw ∈ Σ+,+, thenw ∈ L(G,A).
(ii) Let A→ w be a production inR, w = (N ∪Σ)(m,n), for somem,n ≥ 1. Letpi,j ,

with 1 ≤ i ≤ m, 1 ≤ j ≤ n, be pictures such that:
1. if w(i, j) ∈ Σ, thenpi,j = w(i, j);
2. if w(i, j) ∈ N , thenpi,j ∈ L(G,w(i, j));
3. for 1 ≤ i < m, 1 ≤ j ≤ n, |pi,j |col = |pi+1,j |col; let Pk = pk,1 ȅ pk,2 ȅ · · ·ȅ
pk,n, andP = P1 ⊖ P2 ⊖ · · · ⊖ Pm.

ThenP ∈ L(G,A).

The setL(G,A) contains just all the pictures that can be obtained by applying a
finite sequence of rules (i) and (ii). The languageL(G) generated by the grammarG is
defined as the languageL(G,S).

Informally, rules can either be terminal rules, which are used to generate the pictures
which constitute the right parts of rules, or have a picture as right part. In this latter case,
the right part is seen as a “grid”, where nonterminals can be replaced by other pictures,
but maintaining its grid-like structure.

Example 3.The following grammar generates the language of pictures with one row
and one column ofb’s in a background ofa’s (see Example 1).

S →
A V A
H b H
A V A

, A→ AM |M, M →
a
M

| a,
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V →
b
V

| b, H → bH | b.

It is easy to see that Průša grammars admit a Nonterminal Normal Form:

Definition 22. A Průša grammarG = (Σ,N,R, S), is in Nonterminal Normal Form
iff every rule inR has the form eitherA → t, or A → w, whereA ∈ N , w ∈ N+,+,
andt ∈ Σ.

To compare Průša’s grammars with tile grammars, we must note that the two models
are different in their derivations. Tile grammars start from a picture made ofS’s having
a fixed size, and being every derivation step isometric, the resulting picture, if any, has
the same size. On the other hand, PG’s start from a singleS symbol, and then “grow”
the picture derivation step by derivation step, obtaining,if any, a usually larger picture.

Proposition 13. ([14]) L(PG) ⊂ L(RTG).

Remark 1.Essentially, Průša grammars can be seen as RTG’s with the additional con-
straint that tiles used in the right parts of rules must not have one of these forms:

(
A B
C C

)
,

(
A C
B C

)
,

(
C C
A B

)
,

(
C A
C B

)

with A,B,C all different.

5.5 Kolam grammars

Průša introduced his model with the attempt of gaining some generative capacity with
respect the class of Kolam grammars. This class of grammars has been introduced by
Siromoney et al. [52] under the name “Array grammars”, laterrenamed “Kolam Array
grammars” in order to avoid confusion with Rosenfeld’s homonymous model. Much
later Matz reinvented the same model [39] (considering onlyCF rules). Here the histor-
ical name, CF Kolam grammars (CFKG) is kept, the more succinct definition of Matz
is used.

Definition 23. A sentential formover an alphabetV is a non-empty well-parenthesized
expression using the two concatenation operators,⊖ andȅ, and symbols taken from
V . SF(V ) denotes the set of all sentential forms overV . A sentential formφ defines
either one picture overV denoted byLφM, or none.

For example,φ1 = ((aȅ b) ⊖ (bȅ a)) ∈ SF({a, b}) andLφ1M is the picturea b
b a .

On the other handφ2 = ((aȅ b) ⊖ a) denotes no picture, since the two arguments of
the⊖ operator have different column numbers.

CF Kolam grammars are defined analogously to CF string grammars. Derivation
is similar: a sentential form over terminal and nonterminalsymbols results from the
preceding one by replacing a nonterminal with some corresponding right hand side of
a rule. The end of a derivation is reached when the sententialform does not contain
any nonterminal symbols. If this resulting form denotes a picture, then that picture is
generated by the grammar.
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Definition 24. A CF Kolam grammar (CFKG) is a tupleG = (Σ,N,R, S), whereΣ
is the finite set ofterminalsymbols, disjoint from the setN of nonterminalsymbols;
S ∈ N is thestartingsymbol; andR ⊆ N × SF(N ∪ Σ) is the set ofrules. A rule
(A, φ) ∈ R will be written asA→ φ.

For a grammarG, we define thederivation relation⇒G on the sentential forms
SF(N ∪ Σ) byψ1 ⇒G ψ2 iff there is some ruleA→ φ, such thatψ2 results fromψ1

by replacing an occurrence ofA byφ. As usual,
∗
⇒G denotes the reflexive and transitive

closure of⇒G. Notice that the derivation thus defined rewrites strings, not pictures.
From the derived sentential form, one obtains the denoted picture. The picture lan-

guage generated byG is the set

L(G) = {LψM | ψ ∈ SF(Σ), S
∗
⇒G ψ}.

With a slight abuse of notation, we will often writeA
∗
⇒G p, with A ∈ N, p ∈ Σ∗,∗,

instead of∃φ : A
∗
⇒G φ, LφM = p.

CF Kolam grammars admit a normal form with exactly two or zerononterminals in
the right part of a rule [39].

Definition 25. A grammarG = (Σ,N,R, S), is in Chomsky Normal Formiff every
rule in R has the form eitherA → t, or A → B ⊖ C, or A → B ȅ C, where
A,B,C ∈ N , andt ∈ Σ.

We know from [39] that for every CFKGG, if L(G) does not contain the empty
picture, there exists a CFKGG′ in Chomsky Normal Form, such thatL(G) = L(G′).
Also, the classical algorithm to translate a string grammarinto Chomsky Normal Form
can be easily adapted to CFKGs.

Example 4.The following Chomsky Normal Form grammarG defines the set of pic-
tures such that each column is a palindrome:
S → V ȅ S | A1 ⊖A2 | B1 ⊖B2 | a | b;
V → A1 ⊖A2 | B1 ⊖B2 | a | b;
A2 → V ⊖A1 | a;
B2 → V ⊖B1 | b;
A1 → a;
B1 → b.

Proposition 14. ([14]) L(CFKG) ⊂ L(PG).

Namely, rulesA → B ȅ C of a CF Kolam grammarG in CNF are equivalent to RTG
rules:

A→

u
wwv

# # # # # #
# B B C C #
# B B C C #
# # # # # #

}
��~

and similarly an equivalent form can be stated for rulesA→ B⊖C. This is compatible
with the constraint of Průša grammars given in Remark 1 andso for each CF Kolam
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grammar there exists an equivalent Průša’s grammar. The inclusion is proper because
the language of Example 1 cannot be generated by a CF Kolam grammar.

The time complexity of picture recognition problem for CF Kolam grammars in
CNF has been recently proved [19] to beO(m2n2(m+ n)). The significant difference
with the time complexity of parsing for RTG grammars dependson the fact that in the
right part of a rule of a CF Kolam grammars in CNF there are at most two distinct
nonterminals. So, checking if a rule is applicable has complexity which is linear with
respect to the picture width or height.

5.6 Context-free Matrix grammars

The early model of CF Matrix grammars [51] is a very limited kind of CF Kolam
grammars. The following definition is taken and adapted from[48].

Definition 26. LetM = (G,G′) whereG = (N,T, P, S) is a string grammar, where
N is the set of nonterminals,P is a set of productions,S is the starting symbol,T =
{A1, A2, · · · , Ak}, G′ = {G1, G2, · · · , Gk} where eachAi is the starting symbol of
string grammarGi. The grammars inG′ are defined over an alphabetΣ, which is the
alphabet ofM . A grammarM is said to be aCF Matrix Grammar(CFMG) iff G and
all Gi are CF grammars.

Let p ∈ Σ+,+, p = c1 ȅ c2 ȅ · · · ȅ cn. p ∈ L(M) iff there exists a string
Ax1

Axn
· · ·Axn

∈ L(G) such that every columncj , seen as a string, is inL(Gxj
), 1 ≤

j ≤ n. The stringAx1
Axn

· · ·Axn
is said to be anintermediatestring derivingp.

If G andGi for all i, 1 ≤ i ≤ k are regular grammars thenM is called a 2D right
linear grammar.

Informally, the grammarG is used to generate an horizontal string of starting sym-
bols for the “vertical grammars”Gj , 1 ≤ j ≤ k. Then, the vertical grammars are used
to generate the columns of the picture. If every column has the same height, then the
generated picture is defined, and is inL(M).

It is trivial to show that the class ofCFMG languages is a proper subset of CF
Kolam languages. Intuitively, it is possible to consider the string sub-grammarsG, and
Gj , of a CF Matrix grammarM , all in Chomsky Normal Form. This means that we can
define an equivalentM ′ CF Kolam grammar, in which rules corresponding to those of
G use only theȅ operator, while rules corresponding to those ofGj use only the⊖
operator.

Also, it is easy to adapt classical string parsing methods toMatrix grammars, see
e.g. [48].

It is also well known that the family of languages generated by 2D right linear
grammars is strictly included in the family of languages recognized by deterministic
4-way finite automata.

5.7 Grid grammars

Grid grammars are an interesting formalism defined by Drewes[22, 23]. Grid grammars
are based on an extension of quadtrees [28], in which the number of “quadrants” is not
limited to four, but can bek2, with k ≥ 2 (thus forming a square “grid”).
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Following the tradition of quadtrees, and differently fromthe other formalisms pre-
sented here, grid grammars generate pictures which are seenas set of points on the “unit
square” delimited by the points (0,0), (0,1), (1,0), (1,1) of the Cartesian plane.

To compare such model, in which a picture is in the unit squareand mono-chromatic
(i.e. black and white), with the ones presented in this work,we introduce a different but
basically compatible formalization, in which the generated pictures are square arrays
of symbols, and the terminal alphabet is not limited to blackand white. Our approach
([44]) is similar to the one used for Kolam grammars.

Definition 27. A sentential formover an alphabetV is either a symbola ∈ V , or
[t1,1, . . . , t1,k, . . . , tk,1, . . . , tk,k], with k ≥ 2, and everyti,j being a sentential form.
SF(V ) denotes the set of all sentential forms overV .

A sentential formφ defines a set of picturesLφM:
– LaM, with a ∈ V , represents the set{a}(n,n), n ≥ 1 of all a-homogeneous square

pictures;
– L[t1,1, . . . , t1,k, . . . , tk,1, . . . , tk,k]M, represents the set of all square grid pictures

where everyLti,jM has the same sizen × n, for n ≥ 1, andLt1,1M is at the bottom-
left corner, . . . ,Lt1,kM is at the bottom right corner, . . . , andLtk,kM is at the top right
corner.

For example, consider the sentential formφ = [[a, b, [a, b, b, a], c], a, B, [b, a, a, b]], the
smallest picture inLφM is

B B B B a a b b
B B B B a a b b
B B B B b b a a
B B B B b b a a
b a c c a a a a
a b c c a a a a
a a b b a a a a
a a b b a a a a

Definition 28. A Grid grammar (GG)is a tupleG = (Σ,N,R, S), whereΣ is the
finite set ofterminalsymbols, disjoint from the setN of nonterminalsymbols;S ∈ N
is thestartingsymbol; andR ⊆ N ×SF(N ∪Σ) is the set ofrules. A rule(A, φ) ∈ R
will be written asA→ φ.

For a grammarG, we define thederivation relation⇒G on the sentential forms
SF(N ∪ Σ) byψ1 ⇒G ψ2 iff there is some ruleA→ φ, such thatψ2 results fromψ1

by replacing an occurrence ofA by φ.
From the derived sentential form, one then obtains the denoted picture. The picture

language generated byG is the set

L(G) = {the smallest picture inLψM | ψ ∈ SF(Σ), S
∗
⇒G ψ}.

With a slight abuse of notation, we will often writeA
∗
⇒G p, with A ∈ N, p ∈ Σ∗,∗,

instead of∃φ : A
∗
⇒G φ, LφM = p.

In literature, parameterk is fixed for a Grid grammarG, i.e. all the right parts of
rules are either terminal ork × k grids. This constraint could be relaxed, by allowing
differentk for different rules: the results that are shown next still hold for this general-
ization.

It is trivial to see that grid grammars admit a Nonterminal Normal Form:
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Definition 29. A grid grammarG = (Σ,N,R, S), is in Nonterminal Normal Form
(NNF) iff every rule inR has the form eitherA → t, or A → [B1,1, . . . , B1,k, . . . ,
Bk,1, . . . , Bk,k], whereA,Bi,j ∈ N , andt ∈ Σ.

Example 5.Here is a simple example of a grid grammar in NNF.

S → [S,B, S,B,B,B, S,B, S], S → a, B → b.

The generated language is that of “recursive” crosses ofb’s in a field ofa’s.
An example picture:

a b a b b b a a a
b b b b b b a a a
a b a b b b a a a
b b b b b b b b b
b b b b b b b b b
b b b b b b b b b
a b a b b b a a a
b b b b b b a a a
a b a b b b a a a

First, we note that this is the only 2D grammatical model presented in this paper
which cannot generate string languages, since all the generated pictures, if any, have
the same number of rows and columns by definition.

It is easy to see that the class of languages generated by gridgrammars are a proper
subset of the one of CF Kolam grammars.

Proposition 15. ([44]) L(GG) ⊂ L(CFKG). L(CFMG) andL(GG) are incompa-
rable.

By definition, grid grammars can generate only square pictures and on the other hand,
it is impossible to define CF Matrix grammars generating onlysquare pictures.

5.8 Summary

We finish with a synopsis of the previous language family inclusions.

L(TG)

REC L(RTG)

L(PG)

L(CFKG)

L(4DFA) L(GG) L(CFMG)

L(2RGL)

6 Conclusion

First of all we want to remark that there are several different ways to generate or recog-
nize picture languages that are not considered in this survey, e.g. [16], [43].
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SinceREC is a robust notion, we believe that it is a necessary startingpoint for a
tutorial on picture languages. If one assumes thatREC is the right answer to the quest
of a analog for regular string languages then, to maintain hierarchy, TG grammars is the
notion corresponding to context-free grammars. This is whywe choose to describe this
model among the others.

RTG preserves some nice properties of context free string languages and includes
several well known models usually introduced as a generalization of context free gram-
mars. So, a question naturally arises: ifRTG is the right model for generating context
free picture languages, what about the right model for regular string languages? Some
criticisms on the fact thatREC recognizes a too wide class to be considered the right
model in spite of its robustness was posed for instance in [42]. It could be interesting to
consider which languages are defined by non recursiveRTG grammars in order to ver-
ify whether that family can also be proposed as the analog of regular string languages.

Moreover, few attention was paid to study the generalization to two dimensions of
push-down automata. For instance how can be defined automatarecognizing all the
families of languages generated by grammars described in this survey? And finally are
there more promising grammatical approaches to “context-free” picture languages?

In conclusion, in our opinion the very idea of defining a Chomsky’s hierarchy anal-
ogous, moving from one to two dimensions, is probably doomedto partial unsuccess.
2D structures and formalisms, albeit maintaining some similarities with their 1D coun-
terparts, often exhibit very different formal properties and issues which are not present
or trivial in string languages.

Acknowledgments.We thank Achille Frigeri for his valuable comments.
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33. B. Grünbaum and G. C. Shephard.Tilings and Patterns. W.H. Freeman and Company, New
York, 1987.

34. Y. S. Gurevich and I. O. Koriakov. Remarks on Berger’s paper on the domino problem.
Siberian Mathematical Journal, 13(2):319–321, 1972.

35. K. Inoue and A. Nakamura. Some properties of two-dimensional on-line tessellation accep-
tors. Information Sciences, 13:95–121, 1977.

36. K. Inoue and I. Takanami. A survey of two-dimensional automata theory. Information
Sciences, 55(1-3):99–121, 1991.

37. J. Kari. A small aperiodic set of Wang tiles.Discrete Mathematics, 160(1-3):259–264, 1996.
38. V. Lonati and M. Pradella. Snake-deterministic tiling systems.MFCS 2009, To appear.
39. O. Matz. Regular expressions and context-free grammarsfor picture languages. In R. Reis-

chuk and M. Morvan, editors,STACS 1997, volume 1200 ofLecture Notes in Computer
Science, pages 283–294. Springer, 1997.

40. O. Matz. On piecewise testable, starfree, and recognizable picture languages. In M. Nivat,
editor,FoSSaCS 1998, volume 1378 ofLecture Notes in Computer Science, pages 203–210.
Springer, 1998.

41. O. Matz. One quantifier will do in existential monadic second-order logic over pictures. In
L. Brim, J. Gruska, and J. Zlatuska, editors,MFCS 1998, volume 1450 ofLecture Notes in
Computer Science, pages 751–759. Springer, 1998.

42. O. Matz. Recognizable vs. regular picture languages. InS. Bozapalidis and G. Rahonis,
editors,CAI 2007, volume 4728 ofLecture Notes in Computer Science, pages 112–121.
Springer, 2007.

43. M. Nivat, A. Saoudi, K. G. Subramanian, R. Siromoney, andV. Rajkumar Dare. Puzzle
grammars and context-free array grammars.International Journal of Pattern Recognition
and Artificial Intelligence, 5:663–676, 1991.

44. M. Pradella, A. Cherubini, and S. Crespi Reghizzi. A unifying approach to context-free
picture languages. Submitted, 2009.

45. M. Pradella and S. Crespi Reghizzi. A SAT-based parser and completer for pictures specified
by tiling. Pattern Recognition, 41(2):555–566, 2008.
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