A Formal Description of a Practical Agent for
E-Commerce

Matteo Pradella and Marco Colombetti

Dipartimento di Elettronica e Informazione,
Politecnico di Milano
P.za Leonardo da Vinci, 32,
20133 Milano, Italia
tel. +39-02-2399-{3666, 3686}
fax. +39-02-2399-3411
{pradella, colombet}@elet.polimi.it

Abstract. Software agents are starting to play a significant role in the
field of electronic commerce. Particularly, as mediators they must be
completely trusted by the user. This paper tackles this subject by propos-
ing a practically tailored formal model, based on BDI. This model is
tested on the ground, firstly, by describing an existing agent for electronic
commerce; then, by proving some useful trading properties fulfilled by
the specification.

1 Introduction

Software agents are mainly programs to which one can delegate a task. Their
quality of (semi)-autonomy is especially useful for the increasingly complex en-
vironment of electronic commerce. There is little doubt that software agents will
play an increasing variety of roles as mediators in this sensitive field. This roles
could be risky: think about an agent delegated to buy, e.g., a car. Somehow a
delegating person needs to be confident about the automated agent’s correct-
ness. This should be an effective stimulus towards the creation and spreading
of a truly automated electronic market. It’s a strong motivation for the use of
clearly written formal specifications for software agents: agents with great powers
should be carefully designed and analyzed.

A formal language is a fundamental tool to describe and analyze the behavior
of a software agent. So far some well-founded and interesting formal languages
have been proposed, suited to describe and to reason about fairly complex agent
environments.

This work consists of a practical application of one of these languages and
formal tools in the field of agent-based e-commerce. We used one of the most
promising of these languages to specify a practical, implemented software agent,
namely a variant of a MIT’s Kasbah-based selling agent. We then simplified the
chosen language and the chosen set of axioms, just to cover what is needed by
our agent.

Kasbah turned to be a quite interesting testing ground: in fact it is one of the
more interesting implemented software agent environment for agent-mediated e-
commerce (see [7,9,6,5] for recent surveys of the field).

2 Kasbah

Kasbah [2] is a web-based classified ads system, created at MIT. It implements a
virtual marketplace with two classes of autonomous agents: sellers and buyers.

A selling agent is very like to a classified ad. When users create a new selling
agent, they give it a description of the item they want to sell. Unlike traditional
classified ads, Kasbah selling agents are active. Basically, they try to sell them-
selves, contacting interested parties (namely, buying agents) and negotiating
with them to find the best deal.

Users have some control over the agent’s negotiation strategy. They can spec-
ify the decay function the agent uses to lower the asking price over its given time
frame. The three decay functions offered by Kasbah are linear, quadratic, and
cubic with respect to time.

Linear decay

Quadratic decay

asking
price

Cubic decay

T

time frame

Fig. 1. The three decay functions

To summarize, a Kasbah agent, along with its being a seller or a buyer, is
denoted by the following characteristics:

— the good to sell/buy;

latest desired date to sell/buy the good;

— desired (starting) price;

— lowest /highest acceptable price;

negotiation strategy (linear/quadratic/cubic with respect to time);

— minimum acceptable reputation of the buyer/seller.

In this work, we will consider only a buyer, without any loss of generality: in
fact, a seller is a kind of mirror image of a buyer.

At the time of writing, an improved version of Kasbah is available online,
renamed MarketMaker, (see http://maker .media.mit.edu), which actually in-
troduces the last item of the above dotted list, i.e. the “reputation” management.

3 A stripped-down BDI model

BDI logics is based on a philosophical theory of intentional action originally
stated by Bratman (see [1,11,12,10]). It models an autonomous agent, struc-
turing its mental state using three main components: Belief, Desire (or Goal),
and Intention.

For our specification, we used a modified version of the BDI logic presented
in [11,12]. In fact the specified Kasbah seller turned out to be quite simple;
therefore we discarded the D and I components.

Moreover, we never used the branching time Computation Tree Logic (or
CTL* - see [3]), as Rao and Georgeft did, and we decided to use a somewhat
simpler linear time logic to cover the main timing aspects (see, e.g., the thorough
description of Temporal Logic of Concurrency in [4]).

Informally, our semantics works as follows. A world is modeled using a linear
temporal structure, with single past and single future. A particular time point
in a particular world is called a situation.

Events transform one time point into another. Of course, the agent may
attempt to execute some event, but fail to do so. Thus we distinguish between
the successful execution of events and their failure.

As for the timing aspects, as we stated before, we use a version of the Tem-
poral Logic of Concurrency. The standard temporal operator of this logic are:
(O, meaning “in the next time instant”; <, meaning “eventually”; O, meaning
“always in the future”; U, meaning “until”.

Belief is modeled in a quite conventional way. That is, to each situation,
we associate a set of belief-accessible worlds: these are, intuitively, these are the
worlds that the agent believes to be possible (relation B).

The Intention-accessible worlds and the Goal-accessible worlds of the full BDI
model are not considered in this paper.

Let us now enter into some formal details. The following definitions are from
[11], slightly modified and tailored to our case.

Definition 1. An interpretation M is a tuple M = (W, E, T, <,U,B,®). W s
a set of worlds, E is a set of primitive event types, T is a set of time points,
< is a total order relation on T (linear time), U is the universe of discourse,
and @ is a mapping of first-order entities to elements in U for any given world
and time point. A situation is a world, e.g. w, at a particular time point, e.g.
t, and is denoted by w;. The relation B map the agent’s current situation to its
belief-accessible worlds: B C W x T x W. We will use B{* to denote the set of
worlds B-accessible from world w at time t.

Definition 2. Each world w of W is a tuple (Ty,Sw,Fuw), where Ty, CT. A
fullpath is an infinite sequence of time points (to,t1,...) such that t; < t;41. We
will use the notation (wy,, . ..) to make the world of a particular fullpath explicit.
Sy : Ty x Ty — E and similarly of F,,, moreover both are partially functional
and have disjoint domains.

Consider an interpretation M, with a variable assignment v. We take v} to
be that function that yields d for the variable ¢ and is the same as v everywhere
else. The semantics of first-order formulas can be given as follows.

- M?’l)?(wtoiwtli"') |: q(yh;yn) iff <’U(y1),...,’l)(yn)> € ¢(qaw;t0) where
q(y1,...,yn) is a predicate formula.
M, v, (Wey, Wiy, -..) E ¢ it M,v, (wey, wyy,...) E b
- M;’”:(wtoawtla"') ': ¢1 V(ﬁg iff M;”:(wtoawhw") |: ¢1 or
MU?(wtO’wtl"")':¢2)
- M;’”:(wtoawtla"') ': El/“ﬁ iff M;’”Zi;(wtoawtla"') '= ¢7
for some d in U
- M,v, (wiy, wyy,...) E Q¢ iff M,v, (wy,,...) E ¢
M,v, (wy, wyy, . ..) |E drldds iff Fk, k > 0, such that
M U:(wtka"') ':¢2 and VJ1O S.] < k,M,U,(U)t]-,---) |: ¢1
- M, v, (wiy, wy,,...) | BEL(¢) iff Vw' € B, M, v, wi, = ¢
M, v, (wy,,...) |E succeeded(e) iff Ity such that Sy (to,t1) =€
M, v, (wy,,...) |E failed(e) iff 3ty such that F,(to,t1) =€

Other useful operators are derived as usual:

= o1 NP2 = (=1 V —d2);

— $1 = P2 = P V Po;

= Q1 & P2 = (1 = P2) A (2 = ¢1);

— true = (¢ V —¢);

— false = —true;

— Op =true U ¢;

— O¢ = =0¢;

— 3l p(i) = Ji(p(i) AV # i — —p(j)))-

Here are some of the main definitions about events:

— succeeds(e) <> Osucceeded(e);

— fails(e) + O failed(e);

— done(e) « succeeded V failed(e);
— does(e) <> Odone(e).

4 A Kasbah Selling Agent

In this section, we introduce the formal description of our Kasbah-like selling
agent. This informal description comes quite directly from [2] and defines the
behavior of a Kasbah selling agent.

An agent consists of the following components: control parameters, negotia-
tion history, and internal state. The control parameters are the six user-specified
parameters described earlier in the paper. The negotiation history records each
conversation that the agent has had with other agents. An example conversation
is “I offered agent B a price 100. B rejected the offer” or “Agent C asked my
selling price. I replied 91”.

Time is partitioned by Kasbah in discrete slices: only one agent is active in
a given time slice. The internal state of an agent contains information that the
agent uses to decide what will do during its time slice. The internal state stores a
list of “potential contacts”, which are those agents interested in buying what the
agent is selling. With each potential contact, the last known offering price (i.e.
what the agent is willing to buy for), and whether it has been asked this round
are recorded. The internal state also stores the agent’s own current asking price.
The strategy an agent uses to decide what to do in each time slice is described
below.

— Clurrent asking price: the agent lowers its asking price according to the speci-
fied price decay function. When the agent is created, its asking price is set to
the desired price. By the time to sell by, the asking price is the lowest price.
At any moment in between, the current asking price can be interpolated
according to the decay function.

— Decide which agent to talk to: the agent’s strategy is to talk to each poten-
tial contact exactly once per round. In other words, an agent will never talk
again to a given potential contact until it has first talked to all other poten-
tial contacts. The algorithm for deciding which potential contact to talk to
during a slice works as follows: consider the potential contacts that have not
yet been spoken to in the current round. If all have been spoken to, then
begin a new round and consider all the potential contacts. From this set of
agents (suitable), pick one that has never been contacted, or, if all agents un-
der consideration have been contacted, then pick the one whose last known
offering price is the highest. The idea is to first talk to those agents which
seem the most promising, first those who have never been spoken to, and
then the agents who have indicated a willingness to pay a higher price.

— Talk to the potential contact (candidate): the agent offers to sell the item
at its current asking price. If the contacted agent accepts, then the agent’s
job is done. If the contacted agent rejects the offer, then it is asked what its
offering price is. This price is recorded for that potential contact.

4.1 The Price Function

The axioms in this section describe the temporal behavior of the offering price
function: price is a time-dependent function, local to the agent. The specifier
needs to include one of the following propositions, depending on the chosen be-
havior of the price functions: linearSeller, quadraticSeller, cubicSeller. These are
the only curves available in Kasbah, but other behaviors can be easily introduced
by adding a price definition with the chosen function shape.

dp = maz, — min, and dt = max; — min; are agent-dependent constants:
i.e. the maximum price variation, and the maximum expected life of the agent,
respectively.

. . dp
linearSeller < start < OF(price = maz, — —k
OSkASdt (O (p p dt))

. . dp
k _ _ 2
quadraticSeller <+ 0<{\<dt (start < OF(price = max, pres k))

dp
. k . _ _ 3
cubicSeller < 0<{\<dt (start < OF(price = max, a3 k))

The following are the corresponding price functions for the “mirror image”:

a buying agent.

d
linear Buyer < /\ (start < O (price = min, + d—i)k))
0<k<dt

. ,) d
quadraticBuyer < /\ (start < OF(price = miny, + d—tp2k2))
0<k<dt

d
cubicBuyer < /\ (start < OF(price = min, + d_tl;kS))
0<k<dt

These axioms permit a very easy way of coding the price function in the
specification. Ideally, using the same structure it is possible to describe whatever
price function in a pointwise fashion, thus extending the fixed Kasbah behaviors.

4.2 Actions and Predicates

Let Ag and Pr be two distinct subsets of U, let a € Ag be an agent, and p € Pr
a price. The following are the main possible actions:

wants(a,p): a offers the price p for the good;

— info(a,p): a asks the agent its current price, the agent replies p;
— offer(a,p): the agent offers a to buy at price p;

ask(a,p): the agent asks to a its price, a answers p.

Note that a successful transaction is modeled using succeeded. For example,
succeeded of fer(a,p) means that during the previous time instant a offered a
price p, and the agent accepted.

The following are needed predicates about the other agents.

— suitable(a): a is a suitable agent (i.e. it is looking for what we are trying to
sell and it has an acceptable reputation);
— dead(a): the agent a is dead (in fact, it ended its activity).

These predicates are “local” to the agent. They are needed to record every
negotiation phase and to denote the staring (and ending) of activity.

— candidate(a): a is chosen for negotiation;

— db(a,p): database with agent a and associated price p;

— nc(a): agent a has never been contacted;

— start: the agent is starting its activity;

— end: the agent finished its dt time slot, or successfully sold its good: end of
activity.

4.3 Main Axioms

The following axioms define the start and the end of the agent’s trade activity
(1d1,2,4,5); while (1d3) states about other agents’ ending of activity (in fact
dead(a) means only that a is no more active for trading). Axiom (1d6) tells
about actions and time slice: the agent can execute only one action per round.

(1d1) start — QO-start

(1d2) start — Q%Oend A ~endU end

(1d3) dead(a) — Odead(a)

(1d4) end — Oend

(1d5) end — —3Jadp(doesof fer(a,p) V does ask(a,p))
(1d6) does s — —3t(t # s A does t)

The next groups of axioms deal with the mental state of the agent.

A first, necessary axiom is based on the previously introduced price function
axioms, e.g. if we want to define a linear seller, then we must introduce the axiom
BEL(linearSeller).

Negotiation Management These axioms deal about asking and offering prices
for the good. The agent must contact every suitable - and not contacted-before
- candidate; while it must offer to candidate and contacted-before agents a price
depending to their negotiation history.

(nml) BEL(candidate(a) A nc(a) A = failedof fer(a,p)) —
does of fer(a,price)

(nm2) BEL(candidate(a) A nc(a) A failedof fer(a,p)) —

does ask(a, q)
) BEL(candidate(a) A db(a,p) A p < price) — does of fer(a, price)
) BEL(candidate(a) A db(a,p) A p > price) — doesof fer(a,p)
) BEL(donewants(a,p) Ap > price) — succeeded wants(a, p)
) BEL(Jadp(succeeded of fer(a,p) V succeeded wants(a,p))) — end

Negotiation recording These axioms define how to insert new entries in the
negotiation management database. The agent must remember every highest offer
coming from buying agents; moreover it must hold every useful db entry (i.e.
concerning only “alive” agents).

(nrl) (BEL(done wants(a,p)) VvV BEL(done ask(a,p))) — BEL(db(a, p))
(nr2) BEL(db(a, p) A =3q(done wants(a, q)) A ~Ig(done ask(a,q))) —
BEL(QO(db(a, p) V dead(a)))

DB Consistency The following axioms are basically needed to maintain the
negotiation database consistency.

dbl
db2

(dbl) BEL(start A suitable(a) — nc(a))

(db2) BEL(db(a,p) — —nc(a))

(db3) BEL(nc(a) » ~3p(db(a, p)))

(db4) BEL(dead(a) — —mnc(a) A —Ip(db(a, p)))

(db5) BEL(suitable(a) — (nc(a) V Ip(db(a, p))))
(db6) BEL((nc(a) Vv Ip(db(a,p))) — suitable(a))
(db7) BEL(—dead(a) — (nc(a) = suitable(a)))
(db8) BEL(—dead(a) — (Ip(db(a,p)) — suitable(a)))
(db9) BEL(suitable(a) — OQ(suitable(a) V dead(a)))

Candidate Management These axioms describes how a candidate is chosen
by the agent, and the relation between a candidate and a suitable agent.

(cml) BEL(candidate(a) A db(a,p) —
—3b6(b # a A suitable(b) A db(b,q) A q > p))
(¢cm2) BEL(candidate(a) A db(a,p) = —3b(b # a A nc(b)))
(cm3) BEL(candidate(a) A nc(a) —
—3b(b # a A nc(b) A failedof fer(b,p)))
EL(3la(suitable(a) A candidate(a)))

(cm4) B

(cmb) BEL(candidate(a) — suitable(a))

(cm6) BEL(succeeded wants(a,p) — —3b(candidate(h)))
(cm7) BEL(candidate(a) — —3b(b # a A does of fer(b,p)))

4.4 Cognitive Architecture Axioms

In this section we introduce the cognitive architecture of our agent. Indeed, the
architecture turns out to be quite simple: the agent is purely reactive.

Time The agent must hold its belief in the immediate future.

(tm) BEL(Ot) — O(BEL(#))

Seller

BEL \

DO

J

Sensor Actuator

Environment

Fig. 2. The agent’s cognitive architecture

Sensors Let e be an observable action. The following axioms show how envi-
ronment affects the agent’s “inner belief”.

Clearly we use the term “sensors” speaking of a software: in this case the
environment is the Kasbah virtual marketplace.

(sel) done(e) — BEL(done(e))

(se2) suitable(a) — BEL(suitable(a))
(se3) dead(a) — BEL(dead(a))

(sed) start — BEL(start)

(seb) end — BEL(end)

Actuators Originally we used the following axiom to describe the “virtual-
actuator”:

(ac) INTEND(does(e)) — does(e)

Now, this uses the INTEND operator, but this modal operator was previously
present only in this simple form: INTEND(does(e)).

Actually, it is convenient to replace this subformula with does(e), because
the INTEND part is totally absent from this agent’s architecture (as well as the
GOAL part). Therefore (ac) can be deleted. Clearly, as was stated before, this
is a purely reactive agent, and therefore the concept of intention is redundant.

About Axiom Systems Rao and Georgeff preferred axiom system for the BEL
component is KD45 (see [12]). In our example, the BEL component is in fact
functioning like a simple database for the agent. We need basic logic deduction
within this BEL component (K). We want belief to be consistent (D), but we do
not need introspection and there are not nested applications of the BEL operator:
we can forget axioms like (4) or (5). Therefore, we use just the following axioms:

(K) BEL(¢) A BEL(¢ — ¢) — BEL(%))
(D) BEL(¢) — —-BEL(—¢)

Another relevant aspect is time: considering the CTL component, we do not
need a branching time logic, because all time operators have the form inevitable
OP. In our opinion, branching time logic is effective only with more sophisticated
agents, able to deal with quite complex situations in a deliberative way. Therefore
linear temporal logic suffices, allowing us to drop the inevitable operator.

5 Some Useful Trading Properties

As we stated in the introduction, the user may want to be assured about the
correctness of his agent. Now, having a formal definition of it, we can assert -and
prove- useful properties.

A first interesting property is the following: the agent will never offer a price
below the price function. This is stated by the next theorem.

Theorem 1. BEL(candidate(a)) A does(of fer(a,p)) = p > price

Proof. We will partition the scenario in mutual exclusive cases, depending on
the presence/absence of the entry referred to agent a in the agent’s database
(see axioms (dbn)).

Let us suppose that db(a,p’), with p' < price. Then, by (mn3), it implies
does(of fer(a,price)). But, by (1d6), we cannot ask/receive other offers. There-
fore p = price: the statement holds.

Now suppose db(a,p'), with p’ > price.

Then, by (mn4), this implies does(of fer(a,p')). Like in the previous case,
by (1d6), we cannot ask or receive other offers. Therefore p = p' > price: the
statement holds.

Consider now the case nc(a). We can suppose done(of fer(a,p')) (case a) and
specifically succeeded of fer(a,p’) (case al). This implies, by (nm6), end, there-
fore (by axiom (1d5)): —3adp(does(of fer(a,p))). The premise of the statement
is false: the statement holds.

Otherwise, we can suppose failed(of fer(a,p')) (case a2). This implies (nm?2)
does(ask(a,p')), therefore we have (1d7) —Jadp(does(of fer(a,p))). Like in the
previous case, the premise of the statement is false: the statement holds.

Now consider (case b): ~done(of fer(a,p')). This implies (definition of done):
—failed(of fer(a,p’)).

Therefore, by (nml), we obtain does(of fer(a, price)), but, by (1d6), we can-
not ask/receive other offers. Therefore p = price: the statement holds.

The following other simple statement assures that the agent, after receiving
an offer higher or equal to the current price, will buy immediately. Moreover, it
will not offer/ask anymore (end of activity).

Theorem 2. done(wants(a,p)) Ap > price —
succeeded(wants(a,p)) A =3b(does(of fer(b, q)))

Proof. By (sel), the premise of the statement implies the premise of axiom
(nm5). Therefore succeeded wants(a,p) holds. But this, by (nm6), implies the
end of activity (end).

This means, using (1d5), that =3b(does(of fer(b,q))) holds, which is the other
consequence to be proved.

Actually, the previous two properties are fairly trivial but nonetheless useful.
They are thought just as an example, to show how this can be an effective
framework for asserting trading properties in the delicate field of e-commerce.

As stated in [8], a practical formal method should be supported by analysis
techniques that can be invoked with the mere push of a button (e.g. model
checking). A really simple formal framework, like the one presented in this paper,
is naturally suited to “pushbutton” techniques.

6 Conclusions

First generation systems for agent-mediated electronic commerce are already
creating new markets and beginning to reduce transaction costs in a variety of
business tasks. However, many business aspects are now only partially (if any)
covered, and sometimes in an ineffective or unreliable way. A more extensive use
of formal methods should change and improve the current situation.

For this point, this experience turned to be quite useful in some respects.

We effectively use some well-known formal tools to reverse-engineer a real
implemented e-market autonomous software agent. This naturally permits to
proof useful properties about the correctness of the agent’s behavior.

We simplified the BDI formalism in a somewhat weaker, but easier and more
practical-suited logic. Quite naturally, an “easy” logic usually means easier de-
ductions and the possibility of efficient (semi-)automatic analysis tools.

We did a simple and straightforward reasoning about the cognitive architec-
ture of our agent. It seems quite natural that a practical agent for e-commerce
must be simple and straight-minded: network bandwidth and host processing
power are at present too weak to adequately support the refined and complex-
minded agents we often see in some theoretical /philosophical papers. As a matter
of fact, sometimes the expressive power of the chosen logic results misdirected,
compared to the requirements of present (and probably near-future) automated
electronic market.

7

Acknowledgments

We wish to thank Gianpaolo Cugola and Stefano Gaburri for the fruitful discus-
sions. Last but not least, many thanks even to Mattia Monga, who solved some
nontrivial ’'TEX formatting problems.

References

1.

10.

11.

12.

M. E. Bratman. Intentions, Plans, and Practical Reason. Harvard University
Press, Cambridge, MA, 1987.

. A. Chavez and P. Maes. Kasbah: An agent marketplace for buying and selling

goods. In First International Conference on the Practical Application of Intelligent
Agents and Multi-Agent Technology, pages 75-90, 1996.

E. Allen Emerson and Jai Srinivasan. Branching time temporal logic. In Jaco W.
de Bakker, Willem-Paul de Roever, and Grzegorz Rozenberg, editors, Linear Time,
Branching Time and Partial Order in Logics and Models of Concurrency, number
vol. 354 in Lecture Notes in Computer Science, pages 123-172. Springer, Heidel-
berg, Germany, 1989.

. R. Goldblatt. Logics of Time and Computation, Second Edition, Revised and Ez-

panded, volume 7 of CSLI Lecture Notes. CSLI, Stanford, 1992 (first edition 1987).
Distributed by University of Chicago Press.

R. H. Guttman and P. Maes. Cooperative vs. competitive multi-agent negotiations
in retail electronic commerce. In Matthias Klusch and Gerhard Weif}, editors,
Proceedings of the 2nd International Workshop on Cooperative Information Agents
II: Learning, Mobility and Electronic Commerce for Information Discovery on the
Internet, volume 1435 of LNAI, pages 135-147, Berlin, July 4-7 1998. Springer.
R. H. Guttman and P. Maes. Agent-mediated integrative negotiation for retail
electronic commerce. In Pablo Noriega and Charles Sierra, editors, Proceedings of
the 1st International Workshop on Agent Mediated Electronic Commerce (AMET-
98), volume 1571 of LNAI, pages 70-90, Berlin, May 10-10 1999. Springer.

R. H. Guttman, A. G. Moukas, and P. Maes. Agent-mediated electronic commerce:
A survey. In Knowledge Engineering Review, 1998.

C. Heitmeyer. On the need for practical formal methods. Lecture Notes in Com-
puter Science, 1486, 1998.

P. Maes, R. H. Guttman, and A. G. Moukas. Agents that buy and sell. Commu-
nications of the ACM, 42(3):81-91, March 1999.

D. Morley. Semantics of BDI agents and their environment. Technical Report 74,
Australian AT Institute, Carlton, Australia, 1996.

A.S. Rao and M. P. Georgeff. Modeling rational agents within a BDI-architecture.
Technical Report 14, Australian AT Institute, Carlton, Australia, 1991.

A. S. Rao and M. P. Georgeff. Formal models and decision procedures for multi-
agent systems. Technical Note 61, Australian Artificial Intelligence Institute, Mel-
bourne, Australia, June 1995.

