
1

A Formal Approach for Designing
CORBA based Applications§ ¥

Alberto Coen-Porisini♣
Matteo Pradella♠

Matteo Rossi♦
Dino Mandrioli♦

(♦) Dipartimento di Elettronica e Informazione - Politecnico di Milano

Piazza L. da Vinci, 32 – I-20133 Milano, Italy
ph: +39-02-2399-{3561, 3522}, email: {rossi, mandrioli}@elet.polimi.it

(♣) Dipartimento di Informatica e Comunicazione - Università dell’Insubria
Via Ravasi, 2 – I-21100 Varese, Italy

ph: +39-0332-218943, email: alberto.coenporisini@uninsubria.it

(♠) CNR Istituto di Elettronica e di Ingegneria dell’Informazione e delle Telecomunicazioni -
Sez. Milano

Via Ponzio 34/5 – I-20133 Milano, Italy
ph: +39-02-2399-3495, email: pradella@elet.polimi.it

ABSTRACT

The design of distributed applications in a CORBA based environment can be carried out by
means of an incremental approach, which starts from the specification and leads to the high
level architectural design. This paper discusses a methodology to transform a formal
specification written in TRIO into a high level design document written in an extension of
TRIO, named TRIO/CORBA (TC). The TC language is suited to formally describe the high
level architecture of a CORBA based application. As a result, designers are offered with high-
level concepts that precisely define the architectural elements of an application. Furthermore,
TC offers mechanisms to extend its base semantics, and can be adapted to future
developments and enhancements in the CORBA standard. The methodology and the
associated language are presented by means of a case study derived from a real Supervision
and Control System.

Keywords
CORBA, Architectural Design, Object Orientation, Frameworks, Formal Methods, Temporal
Logic, Supervision and Control Systems

1 INTRODUCTION
Application development is composed of three major phases: requirement analysis and
specification, architectural design, implementation, whose correctness must be rigorously
verified. Great benefits in terms of user requirements validation and verification of the
implemented system can be obtained if the specification is expressed in a precise (possibly
formal) way, and if the designer is supported by a methodology (and related tools) for deriving
the architecture of the application from the specification.

§ This work has been partially supported by the Commission of the European Union – ESPRIT Project
OpenDREAMS-II and by the Italian Ministero dell’Universita` e della Ricerca Scientifica – Progetto Mosaico
¥ This paper is an expanded version of the paper by [Coen-Porisini et al. 2000].

2

Formal methods, although their wide adoption is rather controversial in industrial
environments, are often strongly recommended to enhance reliability of critical systems such
as Supervision and Control Systems (SCSs). Despite the still ongoing debate, a fairly large
amount of experience has demonstrated the effectiveness of formal methods at least in the
realm of safety critical, possibly real-time, applications [Hinchey and Bowen 1995, Saiedain et
al. 1996, Ciapessoni et al. 1999].

SCSs are often physically distributed over local or wide area networks and are usually
implemented as closed systems based on proprietary hardware and software; thus, they are
usually not portable and cannot be extended or integrated into more complex systems.
Therefore, adding new functionalities to existing SCSs often leads to building new
independent systems. For instance, an Energy Management System is typically composed of
several independent applications, each of which has its own sensors, hardware processors,
databases and specialized software, although conceptually they share the same information.
Since the functional architecture of all these applications is very similar, several components
are duplicated (e.g., there is a data acquisition component for each application).

On the other hand, open environments, where different applications can coexist and share
information, are gaining more and more acceptance to overcome the typical difficulties of
distributed, heterogeneous, often legacy, systems. One promising possibility is to use the
Common Object Request Broker Architecture (CORBA) technology1 [OMG 2002a]. In fact,
the Object Management Group (OMG) has defined the Object Management Architecture
[Soley and Stone 1995], which addresses both general issues and particular needs of specific
application domains (e.g., Banking, Telecom, Supervision and Control Systems) by defining
high level libraries or frameworks [Fayad et al. 1999].

CORBA supports the extension of an SCS by adding new components whenever they are
developed, thus reducing development time and cost. For instance, alarms could be recorded
by the alarm managing subsystems and accessed through a global database by the diagnostic
subsystem. To fully achieve such a goal, however, two crucial issues must be addressed:

• While some issues that are critical for SCSs (such as reliability and real-time) have been
taken into account by the OMG since 2000 [OMG 2000, OMG 2002a, OMG 2002b], still
only a handful of CORBA implementations exist (e.g., TAO [Schmidt], VisiBroker-RT
[Borland]) that are (sometimes not fully) compliant to the new standard.

• A big gap must be filled up by design to move from application requirements to a
complete CORBA-based implementation.

This paper addresses the latter issue by presenting an approach for designing distributed
systems in a CORBA environment, based on an initial formalization of the requirements given
in terms of TRIO [Ghezzi et al. 1990, Morzenti and San Pietro 1994]. TRIO is a first order
temporal logic which has shown to be effective for analyzing and specifying critical systems,
such as SCSs [Ciapessoni et al. 1999].

In general, TRIO-based methods, including the one presented in this paper, can be classified
as “lightweight formal methods” [Saiedain et al. 1996, Easterbrook et al. 1998] as they allow
but not enforce the use of formalisms, whenever designers decide that their benefits are worth
the related cost. In other words, they can be effective even if they are employed (possibly in
conjunction with other, informal notations) to describe/validate/verify only those parts of the
system where precision and formality are crucial, while the rest of the application can be
informally defined. For instance, only critical requirements could be formalized and the

1 In what follows we assume the reader has some knowledge of CORBA concepts and terms [Siegel 2000]

3

implementation could possibly be proved mathematically correct only against (some of) them,
leaving less critical aspects for informal and less expensive treatment.

This paper presents a methodology that consists of moving from the TRIO specification of
application requirements to a new formalization representing the high level architectural
design in which the technological target (i.e., CORBA) is taken into account. This
transformation is supported by a language, whose name is TC (TRIO/CORBA), obtained by
introducing and formalizing in TRIO the basic concepts characterizing CORBA. The
integration of a formal approach during the specification phase with CORBA concepts, at the
design level, is expected to enhance the development process.

TC combines a flexible formal notation that explicitly deals with time with a methodology to
design the high level architecture of CORBA-based systems. As a result, TC enjoys the
benefits of formality (precision, verifiability, etc.), while designers are offered with high-level
concepts that precisely define the architectural elements of an application. Furthermore, TC
offers mechanisms to extend its base semantics, and can be adapted to future developments
and enhancements in the CORBA standard, and possibly applied to other middleware
technologies.

The example presented in this paper refers to a SCS, namely an Energy Management System,
that has been specified and then designed to run in a CORBA-based environment. Although
the chosen example presents several critical (timing) requirements, the paper focuses on the
architectural language (TC) and the associated methodology used to design such systems,
rather than on the way in which such critical requirements are specified and verified2. We
believe that the results are general enough to be applied to critical applications in almost any
domain. Moreover, both the language and the methodology are used to take into account also
non-critical requirements, even though whether this is cost-effective is still under debate.

The results reported in this paper are part of a long-term research effort carried on by our
group at Politecnico di Milano in cooperation with several academic and industrial partners. A
major part of such a research was accomplished within the ESPRIT projects OpenDREAMS I
and II3. Such projects aimed at building a complete CORBA-based platform suitable for the
development of SCSs; the platform includes a whole suite of CORBA services and
frameworks and of development-supporting tools. The technical documentation of the projects
[OpenDREAMS, OpenDREAMS-II 2000] provides a complete description of the
achievements.

The paper is organized as follows: Section 2 provides a short summary of TRIO; Section 3
discusses the main features of TC; Section 4 presents the methodology by means of a case
study in which TC is used to design a Supervision and Control System; Section 5 discusses
some of the benefits of our formal approach, with an emphasis on the lessons learned from
applying the TC methodology to the case study outlined in Section 4; Section 6 compares the
research presented in this paper with some related works; finally Section 7 draws some
conclusions and outlines future works.

2 A SUMMARY OF THE TRIO SPECIFICATION LANGUAGE
TRIO [Ghezzi et al. 1990, Morzenti and San Pietro 1994] is a first order temporal logic
language that supports a linear notion of time. Besides the usual propositional operators and
quantifiers, one may compose formulas by using a single basic modal operator, called Dist,
that relates the current time, which is left implicit in the formula, to another time instant: the

2 These issues are the objects of companion reports [Marotta 2001, Rossi 2002].
3 OpenDREAMS-I started in 1995 and lasted one year, while OpenDREAMS-II started in 1997 and ended in
May 2000

4

formula Dist(F, t), where F is a formula and t a term indicating a time distance, specifies that
F holds at a time instant at t time units from the current instant.

A number of derived temporal operators can be defined from the basic Dist operator through
propositional composition and first order quantification on variables representing a time
distance. Table 1 reports the formal definition of some TRIO derived operators along with a
short informal description of their semantics. Most of such operators are symmetrically
defined with reference to the past and the future of the current instant.

Operator Definition Description

Past(A, d) d>0 ∧ Dist(A, -d)

Futr(A,d) d>0 ∧ Dist(A, d)

A held (holds) d time units in the past (future)

SomP(A) ∃ t (t>0 ∧ Dist (A, -t))

SomF(A) ∃ t (t>0 ∧ Dist (A, t))

A held (holds) sometimes in the past (future),
i.e., there is a past (future) instant in which A
held (holds)

WithinP(A, d) ∃ t (0 < t < d ∧ Dist (A, -t))

WithinF(A, d) ∃ t (0 < t < d ∧ Dist (A, t))

A occurred (occurs) in an instant at most d time
units in the past (future)

Lasted(A,d) ∀ t (0 < t < d → Dist(A,-t))

Lasts(A,d) ∀ t (0 < t < d → Dist(A,t))

A held (holds) in the past (future) over a period
of d time units

Since(A,B) ∃ t (t>0 ∧ Dist(B,-t) ∧ Lasted(A,t))

Until(A,B) ∃ t (t>0 ∧ Dist(B,t) ∧ Lasts(A,t))

There is a past (future) instant in which B held
(holds), and A was (is) true since (until) that
moment

UpToNow(A) ∃ t (t>0 ∧ Lasted(A, t))

NowOn(A) ∃ t (t>0 ∧ Lasts(A, t))

There is a past (future) interval of non null
length (starting from the current instant) in
which A held (holds)

LastTime(A,d) d ≥ 0 ∧ Dist(A,-d) ∧ Lasted(¬A,d)

NextTime(A,d) d ≥ 0 ∧ Dist(A,d) ∧ Lasts(¬ A,d)

The last (next) time that A held (holds) was
(will be) d time units ago (in the future)

Table 1: Some TRIO derived operators
TRIO is well suited to deal with both continuous and discrete time. What changes in the two
cases is the domain over which time variables range (real or integer numbers). In this paper
the time domain is assumed to be continuous.

The natural tendency to describe systems in an operational way is supported by TRIO through
the so-called ontological constructs, such as events and states. An event is a particular
predicate that is supposed to model instantaneous conditions such as a change of state or the
occurrence of an external stimulus. Events can be associated with conditions that are related
causally or temporally with them. A state is a predicate representing a property of a system. A
state may have duration over a time interval; state changes may be associated with suitable
pre-defined events and conditions.

The semantics of such constructs is defined by means of (pre-defined) TRIO axioms. In fact a
distinguishing feature of TRIO is that every high level concept is defined in terms of lower
level ones down to the operator Dist. For example, event E must satisfy the following (non-
Zeno4) behavior (as defined in [Gargantini and Morzenti 2001]):

 UpToNow(¬E) ∧ NowOn(¬E)

4 An event has non-Zeno behavior if it cannot occur infinitely many times in a finite interval (i.e., it does not have
accumulation points).

5

TRIO items (values, predicates, functions, events, states, etc.) are distinguished into time-
independent (TI), whose value does not change during system evolution, and time-dependent
(TD), whose value may change during system evolution.

For specifying large and complex systems, TRIO has the usual object-oriented concepts and
constructs such as classes, inheritance and genericity. Classes denote collections of objects
(class instances) that satisfy a set of axioms. Notice that TRIO, being a logic language, does
not support object creation/destruction. Therefore, if one wants to model an entity having a
limited lifetime he/she must simulate creation/destruction using other TRIO mechanisms,
such as a time-dependent predicate that is true when the object exists, and false otherwise. In
addition, TRIO objects do not have a priori a unique identifier to distinguish one object from
the others. However, object identity can be modeled by introducing an item that represents the
identity of the object and some axioms assuring that different objects have different identities.

Classes can be either simple or structured –the latter term denoting classes obtained by
composing simpler ones. A simple class is defined through a set of axioms premised by a
declaration of all items that are referred therein. Some of such items are visible, that is, they
may be referenced from outside, in the context of a complex class whose instances include an
instance of that class.

For example, let us consider a system composed of a user-operated console that acquires
measurements made by two identical sensors and computes the average value. When the user
pushes a “start/stop” button, the console starts/stops sending the computed value to some
output device. Furthermore, the console can be turned on/off by pressing another button.

The formalization of the console is given by class Console_Class that includes two events
(Toggle_start/stop and Switch_on/off), one state (Console_On) and three values
(Sensor1_measurement, Sensor2_measurement and Computed_measurement). The semantics
is given by axioms describing the behavior of consoles. For instance, a first axiom states that
Console_On is true in the current time instant if and only if there exists a time instant in the
past when the console was on, and it has not been turned off since then, by pressing the on/off
button; in other words, Console is switched on unless the button has been pressed:

 Console_On ↔ Since(¬Switch_on/off, Console_On)

A similar axiom relates the Toggle_start/stop button with the sending of measurements from
the sensors; and a third axiom states that Computed_measurement is the average of the values
Sensor1_measurement and Sensor2_measurement. Therefore, the definition of class
Console_Class is as follows:

Class Console_Class
visible Sensor1_measurement, Sensor2_measurement, Computed_measurement,
 Toggle_start/stop, Switch_on/off
temporal domain real

TD Items
 value Sensor1_measurement : real;
 value Sensor2_measurement : real;
 value Computed_measurement : real;
 state Console_On;
 event Toggle_start/stop;
 event Switch_on/off;

axioms
 [... axioms that define the behavior of the class ...]
end Console_Class

6

TRIO is also endowed with a graphic representation in terms of boxes, lines, and connections
to depict class instances and their components, information exchange, and logical equivalence
among (parts of) objects. For example, Figure 1 shows the graphic description of
Console_Class. Visible items cross the box, that is, they may be referenced from outside, in
the context of a complex class whose instances include an instance of Console_Class.

Console_Class
Switch_on/off

Computed_measurement

Toggle_start/stop

Console_On

Sensor1_measurement

Sensor2_measurement

events

states

other items

classes

Figure 1: A TRIO simple class

The other components of the system can be specified in a similar way, leading to the
definition of classes Output_device_Class, Console_User_Class and Sensor_Class to
represent the output device, the user operating the console and the sensors from which data are
acquired, respectively.

The whole system is formalized by means of structured class Overall_System, whose instances
contain one instance of Console_Class, Output_device_Class and Console_User_Class and
two instances of Sensor_Class. In a structured class, the classes composing it are also called
modules (see declaration of Overall_System below); an instance of a structured class contains
an instance for each of its modules. Figure 2 depicts class Overall_System.

Output_device

display

Switch_on/off

Input_value

Console
Switch_on/off

Computed_measurement

Sensor1_measurement

Sensor2_measurement

Sensor2

measurement

Sensor1

measurement

User

Switch_Dev_on/off

Switch_Console_on/off

Toggle_start/stop

Dev_On

Overall_System

Console_On

Figure 2: A TRIO structured class

A line (called TRIO connection) between two items means that they are logically equivalent
and therefore it does not imply any direction in the flow of information. If connected items
share the same name, this is written outside the classes that contain it, and the corresponding

7

line ends at the border of the boxes delimiting the classes (e.g. item display in Figure 2). If, on
the other hand, the connected items are named differently in their respective classes, their
names are written inside the containing classes, and the lines cross their borders (e.g. items
Switch_on/off of module Output_device and Switch_Dev_on/off of module User).

The textual definition of class Overall_System is the following:
Class Overall_System
temporal domain real

modules
 Console : Console_Class;
 Output_device : Output_device_Class;
 Sensor1 : Sensor_Class;
 Sensor2 : Sensor_Class;
 User : Console_User_Class

connections
 (connect Output_device.Switch_on/off, User.Switch_Dev_on/off)
 (connect Console.Toggle_start/stop, User.Toggle_start/stop)
 (connect Console.Computed_measurement, Output_device.Input_value)
 (connect Console.Sensor1_measurement, Sensor1.measurement)
 (connect Console.Sensor2_measurement, Sensor2.measurement)
 [... rest of connections not shown ...]

axioms
 [... axioms that define the behavior of the class ...]
end Overall_System

Notice that the specification of any non-trivial system is usually made up of one structured
class, which models the overall system along with its environment, whose instances include
instances of other classes representing the different components of the system. The global
semantics of a structured class is defined by the logical conjunction of all axioms of the class
and of its modules.

3 THE TC LANGUAGE
The TRIO/CORBA (TC) language enriches TRIO with the typical elements of CORBA,
allowing designers to rigorously describe the architecture of a CORBA application. TC has
the formal rigor of TRIO and is suitable for describing the high level design of an application
by allowing one to formally define the behavior of the components of an architecture and the
way in which they interact.

TC introduces all basic CORBA concepts such as operations, attributes, exceptions,
interfaces, and so on. Then, complex concepts (e.g., services, frameworks) are built from such
basic elements. Following the typical TRIO approach, every basic concept has a semantics,
which is formalized by means of (pre-defined) axioms. The collection of these axioms
describes in an abstract way the behavior of any CORBA-based system. In this way designers
can focus on higher-level user-defined requirements, while low-level aspects can remain
hidden. Notice that TC has been extended to include also the low level aspects of any CORBA
implementation (e.g., the Portable Object Adapter), thus leading to a two-layered description
of CORBA5. This paper focuses on the main aspects of the first (most abstract) layer, while
the interested reader can refer to [Rossi 2002], where both layers are presented in a more
comprehensive way.

5 The need for the second layer usually arises when moving from design to verification.

8

In order to formalize the basic CORBA concepts TC introduces four “meta-classes”:
Interface, CORBA Entity, NonCORBA Entity and Environment6. A TC meta-
class can be viewed as a template used for generating TRIO classes that share a set of
common properties described by means of (pre-defined) axioms. Thus, an instance of a TC
meta-class is a TRIO class, while an instance of a TRIO class is a TRIO object.

Interface and CORBA Entity meta-classes describe the properties of CORBA IDL
interfaces and of objects interacting with an Object Request Broker (ORB), respectively.
NonCORBA Entity meta-class models non-CORBA-related entities, while the
Environment meta-class is used to structure the description of an architecture in terms of
the above mentioned meta-classes.

In the rest of the paper the following convention is adopted: CORBA Entity denotes the
name of a TC meta-class while CORBA Entity Class C denotes a class named C, instance
of the meta-class CORBA Entity. For the sake of readability whenever no ambiguity can
arise, we refer to a CORBA Entity Class C as CORBA Entity C. The same
convention is also used for the instances of the other meta-classes.

In what follows, the main features of the different TC meta-classes are discussed with
reference to CORBA 2.5 specification [OMG 2001a].

3.1 The Interface meta-class
According to OMG’s definition, a CORBA IDL interface defines the signature of a set of
operations/attributes that must be provided by any CORBA object satisfying such an interface.
Therefore, an Interface class introduces only the signature of its operations/attributes
without providing their semantics7. Thus, no axiom is defined in an Interface class.

For example, Interface TerminalInterface introduces the user-defined type
IntReturnedType, the exception negativeOrZeroPar and operations getString and getInt.
Operation getString takes one input parameter (maxLength of type short integer), returns a
value of type string, and can raise an exception (negativeOrZeroPar), while operation getInt
does not take any input parameter and does not raise any exception, and returns a value of type
IntReturnedType.

Interface Class TerminalInterface
type
 IntReturnedType = long;
exceptions
 negativeOrZeroPar;
operations
 getString
 parameters
 in maxLength: short;
 returns string;
 raises negativeOrZeroPar;
 getInt
 returns IntReturnedType;
end TerminalInterface

TC declaration of Interface class TerminalInterface

interface TerminalInterface {
 typedef long IntReturnedType;

 exception negativeOrZeroPar{};

 string getString (in short maxLength)
 raises (negativeOrZeroPar);

 IntReturnedType getInt();

}

Corresponding IDL interface declaration

6 Meta-classes are denoted in courier font.
7 For the sake of precision, an IDL interface provides some information about the semantics of the method calls
(oneway or synchronous). However, in TC such aspect is modeled by means of stereotypes, which are introduced
in Section 3.6, and thus a TC Interface has no semantics.

9

3.2 The CORBA Entity meta-class

The CORBA Entity meta-class formalizes the features of any component interacting with
an ORB. According to OMG’s terminology, entities providing operations that can be invoked
through the ORB are referred to as CORBA objects or servers, while entities invoking
operations of a CORBA object through an ORB are referred to as clients. Notice that a server
can invoke operations provided by another server and thus in this case it can also be viewed as
a client. An entity invoking operations provided by servers and not providing any operation is
referred to as a pure client. The OMG requires that every CORBA object satisfies at least one
IDL interface, while a pure client need not satisfy any interface.

In the OMG/CORBA specification, the definition of the satisfies relationship between servers
and IDL interfaces depends on the implementation language. For example, in C++ the class
implementing the server inherits from the virtual class representing the IDL interface. In Java
the class implementing the server implements the Java interface representing the IDL
interface. Finally, in C the file containing the implementation of the server includes the file
containing the prototypes representing the IDL interface.

TC models the “satisfies” relationship between an IDL interface and a server by means of
inheritance. In fact, a CORBA Entity class, whose instances represent a server, inherits
from the Interface class modeling the IDL interface. Instead, a CORBA Entity class
modeling a pure client does not inherit from any Interface class.

Since an Interface class cannot contain any axiom, different CORBA Entity classes can
be designed to provide different semantics to the same Interface class according to the
definition of IDL interface.

In what follows the term object refers to TRIO objects, that is, instances of TRIO classes,
while the term server refers to CORBA objects. Thus, an instance of a CORBA Entity class
is a TRIO object representing either a server (CORBA object) or a client. For the sake of
readability, we refer to a CORBA Entity class whose instances are servers (clients) as a
server class (client class). Notice that a class C can be both a server and a client class.
Moreover, given a server class S satisfying an IDL interface I containing operation Op, S is
said to export Op. Conversely, given a client class C invoking the operation Op, C is said to
use I and to import Op.

All CORBA Entity classes share a set of properties, expressed by means of axioms,
common to all entities that can interact by means of an ORB. For instance, they have an item
_id that is used to uniquely identify every instance of a CORBA Entity class:

 _id : OID

OID is a TC basic type representing the set of all possible identifiers that can be assigned to
an instance of a CORBA Entity class.

Notice that _id is an abstraction that can be used to model the object identity of any CORBA
object (server) as defined by the IdentifiableObject interface of the CORBA Relationship
service. Let us consider a CORBA object O whose item _id evaluates to val_id, then val_id
represents the identity of O. Moreover, The attribute _id can also be viewed as the oid
attribute that can be established through the CORBA Portable Object Adapter (POA). POAs,
are not introduced in the paper since their existence can be hidden to designers who do not
need to focus on the way in which CORBA is actually implemented.

Given a server class exporting operation returnedType Op(a1,…,an), the following TRIO
events are introduced:

10

� Op(i).inv_received, is true when the server8 exporting Op receives invocation i9 of Op;

� Op(i).start is true when invocation i starts to be processed by the server;

� Op(i).end_success is true when invocation i ends without an exception;

� Op(i).Exc.raise is true when, on the server, invocation i raises exception Exc (standard or
user-defined).

Moreover, given a client class importing operation Op, the following events are defined:

� Op(i).invoke is true when the client issues invocation i of operation Op;

� Op(i).reply is true when the client receives the reply from invocation i of Op and no
exception is raised (either by the server or the ORB);

� Op(i).Exc.received is true when invocation i of operation Op terminates on the client side
with exception Exc (standard or user-defined); a client receives an exception when either
the server, or the ORB raises it.

Finally, for both clients and servers, Op(i).ak, 1≤ k ≤ n, denotes the value of parameter ak, and
Op(i).returns denotes the returned value.

Using the events defined above it is possible to model the different ways in which an
operation can be invoked (e.g., synchronous, deferred synchronous, etc). This point is further
discussed in Section 3.5.

As an example of a CORBA Entity class, let us consider class Terminal_Obj, which
satisfies Interface class TerminalInterface. Thus, Terminal_Obj inherits from
TerminalInterface and contains the axioms defining the semantics of operations getString and
getInt.
CORBA Entity Class Terminal_Obj
inherit TerminalInterface
temporal domain real
axioms
 vars
 x : string
 i : natural

 (getString(i).start10 -- If operation getString is invoked
∧ getString(i).maxLength <= 0) -- with a negative or null maxLength parameter,
→ WithinF(getString(i).negativeOrZeroPar.raise, -- then exception negativeOrZeroPar is raised
 TgetString) -- within TgetString time units

(getString(i).start -- If operation getString is invoked
∧ getString(i).maxLength > 0) -- with a positive maxLength parameter,
→ WithinF(∃ x (getString(i).end_success -- then it returns
 ∧ getString(i).returns = x -- a string
 ∧ length(x) <= getString(i).maxLength),-- of the desired maximum length
 TgetString) -- within TgetString time units

 [... similar axioms for operation getInt ...]
end Terminal_Obj

8 In fact, when the POA of the server exporting Op receives invocation i.
9 i is an identifier that distinguishes invocations of the same operation that is Op(i) and Op(j), j ≠ i, denote
different invocations of Op. Notice that we do not assume that invocations of Op are ordered (i.e., Op(i).invoke
need not occur before Op(i+1).invoke). If such order is needed it is necessary to add explicit axioms.
10 In TRIO, free occurrences of variables are implicitly assumed to be universally quantified.

11

where TgetString is a constant that bounds the response time of the operation.

As a second example consider the CORBA Entity class GUI_Client representing a
Graphical User Interface (GUI) that can access two terminals, each of which supports
interface TerminalInterface, to read either a string or an integer. When the data are collected
from the terminals, they are first either concatenated (strings) or added together (integers) and
then displayed. Finally, the user is notified of any error occurring because of operations
invocation.

Therefore, CORBA Entity GUI_Client_class is a client class that uses TerminalInterface
from which it imports operations getInt and getString. Moreover, it introduces events input
and error to model user interaction, state display to model the output of the computation and
two values, firstTerminal and secondTerminal to model the reference to the two terminals
from which data are collected.

Notice that firstTerminal and secondTerminal must be initialized with the correct references
before invocation of getInt or getString can occur. Such initialization, which can be performed
using for instance the CORBA Naming Service, is not modeled in this example.

CORBA Entity Class GUI_Client_class
used interfaces TerminalInterface
visible input, error, display
temporal domain real
type
 PossibleOperations = {concat_string, sum_int};
TD items
 value firstTerminal : OID;
 value secondTerminal : OID;
 event input(PossibleOperations);
 event error(string);
 state display(string ∪ integer);

axioms
 vars
 i, j : natural;
 x, y : integer

 input(sum_int) -- If the GUI receives a request to read integers
→ ∃ i (getInt(i).invoke -- then it invokes operation getInt
 ∧ getInt(i).receiverID = firstTerminal) -- on the first terminal

(getInt(i).reply -- If the GUI receives an answer
∧ getInt(i).receiverID = firstTerminal) -- from the first terminal
→ ∃ j (getInt(j).invoke -- then it invokes getInt
 ∧ getInt(j).receiverID = secondTerminal) -- on the second terminal

 getInt(i).reply ∧ getInt(i).returns = x -- If the GUI receives the value x
∧ getInt(i).receiverID = secondTerminal -- from the second terminal and
∧ LastTime (getInt(j).reply -- the last time it received a value from
 ∧ getInt(j).receiverID = firstTerminal, t) -- the first terminal this value was y,
∧ Past(getInt(j).returns = y, t) -- then it displays the sum of x and y
→ NowOn(display(x + y))

[... similar axioms for concatenating Strings ...]

end GUI_Client_class

Instances of TC CORBA Entity classes can be either single-threaded or multi-threaded. In
the default case, a CORBA Entity models a single-threaded server/client and therefore

12

cannot execute operations in parallel. To model multi-threaded servers/clients it is necessary
to add the keyword multithreaded in the header of the class. For example, a multi-
threaded server that satisfies interface TerminalInterface, is modeled by the following CORBA
Entity class:

CORBA Entity Class parallel_Terminal_Obj multithreaded
inherit TerminalInterface

[... rest of the class is omitted ...]

end parallel_Terminal_Obj

A discussion of the formal semantics of keyword multithreaded is given in Section 3.5.

3.3 The NonCORBA Entity meta-class

NonCORBA Entity classes are used to model entities that correspond to neither servers nor
clients. For example, a NonCORBA Entity class can be used to model some physical
device such as a sensor not connected to an ORB, or possibly a human operator.

The syntax and the properties of NonCORBA Entity classes correspond to those of plain
TRIO classes. Thus, NonCORBA Entity classes can contain, and/or inherit only from other
NonCORBA Entity classes. For example, NonCORBA Entity class User_class models
the behavior of a human operator requesting integer addition or string concatenation.

NonCORBA Entity Class User_class
visible input, error
temporal domain real
type
 PossibleStates = {asleep, awake};
 PossibleOperations = {concat_string, sum_int};
TD Items
 event input(PossibleOperations);
 event error(string);
 state state(PossibleStates);
axioms
 [... axioms describing the behavior of the operator ...]
end User_class

3.4 The Environment meta-class

An Environment class is similar to a NonCORBA Entity class, except that it can
include classes of any type. Environment classes are meant to define how the other classes
composing a system interact, by describing their dependencies.

For example, let us consider a system in which several human operators (class User_class)
use a graphical user interface (class GUI_client_class) to interact with two terminals (class
Terminal_Obj).

The Environment class GUI_System, modeling the above-described system, is a structured
class that introduces four modules: TerminalOne, TerminalTwo, GUI_client and users.
TerminalOne and TerminalTwo are instances of Terminal_Obj and therefore satisfy
TerminalInterface. GUI_client, which invokes getInt and getString, is an instance of
GUI_client_class. Finally users is an array of instances of User_class and models N users
interacting with GUI_client.

Figure 3 shows the corresponding graphical representation. Most of the symbols used are the
same symbols as in TRIO. However, TC extends TRIO graphical representation by

13

introducing some CORBA-specific elements. For example, operations are depicted as arrows
pointing from the server to the client, and interfaces are represented as boxes overlapping the
servers that satisfy them.

 GUI_System

input

users

state

TerminalOne

getInt

TerminalInterface
GUI_client

display

error

TerminalTwo

TerminalInterface

getString

Figure 3: example of graphical representation of TC classes

In TRIO, connections define how the different modules of a structured class are linked
together by stating logical equivalence among exported (visible) items. In TC, instead, some
classes can export also operations. Thus, besides the usual TRIO connections between items,
TC introduces the relation bind between operations, which is meant for modeling the behavior
of the ORB. The semantics of bind is given through (pre-defined) axioms (see Section 3.5).

Visible items with the same name (events input and error) of GUI_client and users are
connected together, while operations getInt and getString exported from TerminalOne and
TerminalTwo are bound with the same operations imported by GUI_client.

Environment Class GUI_System
temporal domain real
modules
 TerminalOne : Terminal_Obj
 TerminalTwo : Terminal_Obj
 GUI_client : GUI_client_class;
 users : array [1..N] of User_class;
connections
 (bind TerminalOne.getInt, GUI_client.getInt)
 (bind TerminalTwo.getInt, GUI_client.getInt)
 (bind TerminalOne.getString, GUI_client.getString)
 (bind TerminalTwo.getString, GUI_client.getString)
 (connect GUI_client.error, users.error)
 (connect GUI_client.input, users.input)
axioms
 [... axioms describing properties of the overall system ...]
end GUI_System

Notice that a TC specification always includes at least one Environment class, which
models the system as a whole. However, since a system can be composed of different
subsystems a TC architecture can comprise more than one Environment class in order to
achieve a good modularization.

To summarize, Figure 4 shows the inherit from/contain relationships among instances of
meta-classes. For example, a CORBA Entity class can contain only NonCORBA Entity
classes and can inherit from Interface, NonCORBA Entity and CORBA Entity
classes.

14

Interface

CORBA Entity

can inherit from
can contain

Environment

NonCORBA Entity

Figure 4: The Relationships among TC meta-classes

3.5 TC Computational Model
This section provides an overview of the semantic aspects of CORBA Entity classes. The
presented semantics captures the behavior of some important elements in the OMA as
informally specified by the OMG. Without aiming at being exhaustive, in what follows the
semantics of some aspects of operation invocation is discussed first. Then, the semantics of
threads is taken into account and, finally, the semantics of the ORB is presented.

3.5.1 Semantics of operation invocations
In CORBA a client can invoke an operation in the following ways: synchronous, deferred
synchronous (using the Dynamic Invocation Interface) or asynchronous11 (through an
Asynchronous Method Invocation, as defined in the CORBA Messaging specification).

In Section 3.2 the events associated with CORBA Entity classes in order to model
operation invocation were introduced; next, the main axioms defining the semantics of
operation invocation are presented.

The first axiom states that an operation Op can successfully reply to a client only if it has been
previously invoked. Thus, the following axiom holds for every client class that imports Op:

 Op(i).reply → SomP(Op(i).invoke) [genC1]

A similar axiom exists for classes exporting Op:

 Op(i).end_success → SomP(Op(i).start) [genS1]

To model deferred synchronous operations, every client class importing an operation can
invoke the built-in operations send, poll and get_response, which model the corresponding
operations of the Dynamic Invocation Interface (DII) for deferred synchronous invocations.
For example, send(j)(Op(i)).invoke represents the deferred synchronous invocation i of
operation Op, which is achieved with invocation j of operation send.

From the client’s point of view, send, poll and get_response are invoked as synchronous
operations. Thus, the following axiom states that operation send eventually ends (either
successfully or with an exception), within T_ORB time units, where T_ORB is an ORB-
dependent constant.

11 Asynchronous Method Invocations are a recent addition to the CORBA standard, which have not yet been
introduced in any CORBA implementation. Therefore they are not considered in this paper.

15

 send(j)(Op(i)).invoke [defsynC1]
→ WithinF (send(j)(Op(i)).reply
 ⊕ ∃ Exc12 (send(j)(Op(i)).Exc.received, T_ORB))13

Notice that T_ORB is an abstraction that hides all the internal aspects of the ORB, such as the
transport layer, the operating systems timeouts etc.

The difference between a deferred synchronous invocation and a synchronous one is that the
former is modeled as a synchronous invocation to the DII of the ORB, which returns almost
immediately, while the latter is modeled as an invocation to a server, which is not guaranteed
to return (e.g., if the server crashes).

Since the results of a deferred synchronous invocation can be retrieved only after the operation
is invoked, client classes contain, for each imported operation Op, the following axiom:

 get_response(j)(Op(i)).reply → ∃ k (SomP(send(k)(Op(i)).reply) [defsyncC2]

Finally, get_response is a blocking operation, which returns control to the invoking client C
only after the corresponding remote operation terminated on the server S. As a consequence,
an Environment class containing C and S includes the following axiom:

 C.get_response(j)(Op(i)).reply [defsyncC3]
→ SomP(S.Op(i).end_success ⊕ ∃ Exc (S.Op(i).Exc.raise))

3.5.2 Thread semantics
Instances of CORBA Entity classes are associated with one or more threads, each of which
can be in one of the following states: idle, busy or blocked. This is formalized by introducing
predicate thread(k), k ≥ 0, which states that k threads are associated with a given instance, and
predicate thread(j).state(s), s ∈ {idle, busy, blocked}, which states that thread j is in state s.
Since operation invocations (received or made by a CORBA Entity instances) are carried
out by threads, predicate Op(i).thread(j) is true if and only if invocation i of operation Op is
handled by thread j.

Variable k in thread(k) equals 1 for a single-threaded server/client, and thus all operations are
associated with the same thread. For a multi-threaded server/client with a threadpool of n
threads, variable k can range from 1 to n, while k is unbounded if no number of threads is
specified.

A client thread that synchronously invokes an operation remains blocked until the operation
returns (successfully or not):

 thread(k).state(blocked) [threadC1]
↔ ∃ Op,i (Op(i).thread(k)
 ∧ Since(¬Op(i).reply ∧ ¬∃ Exc (Op(i).Exc.received), Op(i).invoke))

where Op ranges over all imported operations of the client class (including send, poll and
get_response).

When a thread is blocked, it cannot invoke operations:

 thread(k).state(blocked) [threadC2]
→ ¬∃ Op,i (Op(i).thread(k) ∧ Op(i).invoke)

12 ∃ Exc (Op(i).Exc.received) is a shortcut for Op(i).Exc1.received ∨ ... ∨ Op(i).ExcN.received, where Exc1 ...
ExcN are the exceptions that can be raised when invoking Op.
13 Symbol ⊕ stands for the “exclusive or”.

16

Therefore, a single-threaded client remains blocked while waiting for a synchronous
invocation to terminate.

On the server side, when an invocation is received and all available threads are busy or
blocked the incoming request is queued and will be served only when one thread becomes
idle. The axioms defining the queuing of incoming invocations are omitted for sake of brevity.

3.5.3 Modeling the ORB
When an operation is invoked by a client, the ORB dispatches the request to the server. In
general, a delay (because of both the ORB and the underlying network) occurs between the
moment when the client sends the request (through the ORB), and the moment when the
server receives the invocation.

Let Op be an operation invoked by client C on server S (where C and S are instances of some
CORBA Entity classes). The following axiom states that when C invokes Op, either the
invocation is eventually dispatched to S, or a standard exception COMM_FAILURE is raised
by the ORB:

 C.Op(i).invoke ∧ C.Op(i).receiverID(S._id) [ORB1]
→ (SomF(S.Op(i).inv_received ∧ S.Op(i).callerID(C._id))
 ⊕ SomF(C.Op(i).COMM_FAILURE.received))

where C.Op(i).receiverID(S._id) is true if and only if Op is invoked on server S. Conversely,
axiom [ORB2] states that if S receives an invocation from client C (S.Op(i).callerID(C._id) is
true), the invocation was previously made by C:

 S.Op(i).inv_received ∧ S.Op(i).callerID(C._id) [ORB2]
→ SomP(C.Op(i).invoke ∧ C.Op(i).receiverID(S._id))

Finally, axiom [ORB3] states that when C receives a reply concerning invocation i of Op, the
operation successfully terminated on C.

 C.Op(i).reply ∧ C.Op(i).receiverID(S._id) [ORB3]
→ SomP(S.Op(i).end_success ∧ S.Op(i).callerID(C._id))

These (and other) axioms define the meaning of bindings between operations and therefore
belong to the Environment class containing C and S.

For each binding between operations defined in an Environment class, an instance of the
previous axioms is automatically generated. For example, class GUI_System contains, among
others, the following axiom referring to operation getInt between TerminalOne and
GUI_client:

(GUI_client.getInt(i).invoke [GUI_ORB1]
∧ GUI_client.getInt(i).receiverID(TerminalOne._id))
→ (SomF (TerminalOne.getInt(i).inv_received
 ∧ TerminalOne.getInt(i).callerID(GUI_client._id))
 ⊕ SomF(GUI_client.getInt(i).COMM_FAILURE.received))

[GUI_ORB2] and [GUI_ORB3] are generated similarly.

Notice that there is no axiom that guarantees that after the operation ends on the server, the
answer is sent back to the client, since there could be a communication failure that prevents
this to occur.

The delay between C.Op(i).invoke and S.Op(i).inv_received (and between S.Op(i).end_success
and C.Op(i).reply) remains unbounded since we do not deal with real-time constraints (and

17

neither the ORB, nor the network give guarantees about maximum latencies); however, this
can be further refined by establishing an upper bound for such a delay (see [Marotta et al.
2001] for an analysis and formalization of real-time CORBA and [Pradovera 2001] for a first
qualitative and experimental assessment thereof).

Moreover, there could be a further delay before the server actually starts processing the
invocation. For example, if a single-threaded server is busy because of another invocation
(from another client) it queues the incoming request, and will process it whenever possible.

The axioms modeling the behavior of servers between the moment when they receive an
invocation and the moment when the operation starts being processed are not shown for the
sake of brevity.

3.6 Stereotypes
Stereotypes can be used to extend the semantics of TC elements. They can be attached to any
element in a TC diagram, once they are defined. Defining a stereotype means to state, using a
suitable syntax, the new axioms that must be associated with the marked element along with
the existing axioms that do not hold anymore, if any.

For example, let us consider CORBA oneway operations, which must obey some signature
constraints (they only have in parameters, do not return any value, they cannot raise user-
defined exceptions), and adopt a best-effort invocation semantics. In order to define such
operations it is possible to introduce the stereotype «oneway», which can be associated with
exported operations. The «oneway» stereotype does not introduce any new axioms, but
requires that axiom [ORB1] does not hold, since the invocation is not guaranteed to be
dispatched to the server.

As a second example, let us assume that one needs to model reliable servers, that is fault
tolerant servers exporting operations guaranteed to return (provided that they do not enter an
infinite loop) with either a successful result or an exception14. Notice that the axioms of
Section 3.5 do not guarantee that an operation returns after being invoked since the server
could crash before the operation has ended. In order to define such reliable behavior it is
possible to introduce the stereotype «reliable» that can be associated with any server
class. The «reliable» stereotype extends the properties of a CORBA Entity class, as
defined by the following declaration, which introduces a new axiom for each exported
operation Op:

stereotype reliable applies to CORBA Entity
foreach Op in Exported
 add
 vars:
 i : natural;
 Reliable:
 Op(i).start → SomF (Op(i).end_success ⊕ ∃ Exc (Op(i).Exc.raise))
end

Stereotype «reliable» (and the associated semantics described by axiom [Reliable]) is
applied to servers, and concerns only the exported operations. Notice that, from the client’s
viewpoint, reliability requires both the server and the underlying ORB to be reliable.

As a final example, consider the CORBA Event Service [OMG 2001b], which provides a way
for exchanging (CORBA) events among objects interacting through the ORB. Objects sending

14 One way of building reliable servers is by means of the Object Group Service [OpenDREAMS-II 1998b]
developed in OpenDREAMS-II, which provides a way for managing a set of replicated servers. Moreover, the
CORBA standard includes the specification of a Fault-Tolerant CORBA.

18

events are referred to as suppliers, while objects receiving events are referred to as consumers.
An event can be viewed as a chunk of information concerning something that happened in the
supplier (e.g., an attribute changing value) that is of some interest to one or more consumers.
The Event Service allows one to decouple suppliers from consumers by introducing event
channels. Thus, rather than having the supplier invoking an operation of the consumer to
notify that the event occurred (or having the consumer invoking an operation of the supplier to
ask whether the event occurred), the Event Service provides event channels to dispatch events
from suppliers to consumers. OMG specifies the following models for initiating the event
dispatching:

� the supplier initiates the event dispatching by invoking an operation on the event channel
(supplier push model), or

� the event channel initiates the event dispatching by invoking an operation of the supplier
to check whether an event occurred (supplier pull model).

In a similar way, it specifies a push model and a pull model for the consumer:

� the event channel notifies the consumer by invoking one of its operation (consumer push
model), or

� the consumer queries the event channel to check whether any event is available (consumer
pull model).

In order to formalize the Event Service, TC introduces four different stereotypes representing
the different combinations of push and pull models for suppliers and consumers. For example,
if operation Op exported by server S and imported by client C is marked as «eventPush»,
its invocation corresponds to an event dispatching made using the push model for both the
supplier and the consumer. Conversely, if Op is marked as «eventPull», the event is
dispatched using the pull model for both the supplier and the consumer. Notice that, in the
former case, S is the consumer and C is the supplier while in the latter case S is the supplier
and C the consumer. In both cases, event dispatching occurs asynchronously, that is,
termination of operation Op on the client is decoupled from termination on the server.

Each of the stereotypes mentioned above formalizes the behavior of the Event Service
according to the different models of event dispatching.

For example, an Environment class E, containing both S and C, in which Op is marked as
«eventPush» will not contain axiom [ORB3] for Op, which relates the termination of Op
for the client (i.e., C.Op(i).reply) with the actual termination of Op on the server (i.e.,
S.Op(i).end_success). In fact, C invoking Op represents

1. the supplier (C) invoking an operation on the event channel to push the event into the
event channel, and

2. the event channel invoking Op to dispatch the event to the consumer (S).

Since the termination of event dispatching does not occur before termination of event pushing,
axiom ORB3 does not hold for Op. Instead, other axioms, not discussed here for the sake of
brevity, are added to formalize the behavior of the Event Channel. The interested reader can
refer to [Rossi 2002] for a more detailed definition of stereotype «eventPush».

4 THE TC METHODOLOGY
High level design essentially consists of identifying the classes composing the system whose
instances provide and use services by interacting through the ORB. The design of the high
level architecture of an application is influenced by the outcome of the specification phase: a
good design is very often the natural consequence of a good specification. On the other hand,

19

during the design it may be necessary to reconsider some of the requirements stated in the
specification. As a result, the design phase should not be considered as a self-contained
process. This paper, however, does not discuss the issue of writing, analyzing and managing
specifications; the interested reader can refer to [Ciapessoni et al. 1999] for an industrial
experience on specifying system requirements using TRIO.

This section presents a methodology, named TRIO/CORBA Methodology (TCM) to design
the high level architecture of a CORBA-based system starting from a TRIO specification. The
goal of this methodology (as well as of other methodologies) is to show the conceptual path
that one has to follow in order to design the architecture of a system. Along the path, designers
have to make design choices that influence the resulting architecture. Although we believe
that no methodology should be considered as a “silver bullet”, we think that a categorization
of the different design choices along with some guidelines on how to tackle such choices can
indeed be useful to designers. Therefore, a good methodology should:

1. identify the different conceptual problems that designers have to face;

2. suggest the best order in which such problems should be tackled;

3. provide guidelines and suggestions on how to solve the most critical problems that
designers will face.

TCM allows designers to smoothly move from the specification towards the high level design
in a step-wise fashion. At each step, a different aspect is taken into account so that the
complexity of the whole design is kept under control. Moreover, at each step a “design
document” is produced using TC, in order to keep track of the different choices made.

In the presentation of TCM, we point out which steps are straightforward and therefore can be
automated, and which ones cannot be performed without a creative effort from the designer.
In what follows the steps are presented as if [Parnas and Clement 1986] they were meant to be
executed sequentially. However it is useful to remind that they are not completely independent
and that, in practice, they follow an incremental approach [Mills et al. 1987]. Moreover,
mutual feedbacks among the various phases and sub-phases are unavoidable according to the
philosophy of the spiral approach [Boehm 1988].

The methodology is mainly structured into five major steps:

• identification of data flows between the specification classes;
• identification of operations and attributes;
• identification of objects;
• identification of interfaces and semantics of operations and attributes;
• identification of services and non-architecture-impacting frameworks.
The methodology is illustrated by means of an example based on a Maintenance System
developed by ENEL, the Italian energy agency, within the ESPRIT Project OpenDREAMS-II
[OpenDREAMS-II 1998a]. In what follows the Maintenance System is introduced and a short
discussion of its TRIO specification is provided. Then, the different steps of the methodology
are presented in detail.

Notice that, when dealing with industrial projects, one has often to face legacy aspects of
(already deployed) systems, which can, in some cases, limit the number of choices that can be
made during the different phases of application development.

20

4.1 The ENEL Maintenance System
The goal of the Maintenance System (MS) is to monitor the activity of field devices (sensors,
actuators, etc.) installed in a power plant, in order to quickly detect possible failures and
malfunctions.

The core of the system is the Instrumentation Maintenance System (IMS), which is in charge
of collecting and validating data (i.e., measurements) coming from the field devices.
Whenever the validation process detects an anomaly in the behavior of such devices, IMS
sends an alarm to Alarm Manager (AM), which in turn notifies a human operator by means of
a Human-Machine Interface (HMI).

Figure 5 shows the main components of the application and their mutual interactions.

ControlSystem

GlobalPlantDBIMS

AlarmManager HMI

Devices

Figure 5: The Maintenance System

Notice that IMS does not communicate directly with the field devices: all the data collected by
these devices are stored into a database named Global Plant Data Base (GPDB). Thus, IMS
queries GPDB to obtain the desired data. Using the same communication mechanism IMS can
also send commands to the devices or can make a device perform a self-test to verify its
correct functioning. However, before sending a command to a device, IMS must get from the
Control System (CS) the rights to access such device. After having completed the desired
operations, IMS notifies CS, which, in turn, releases the device.

For the sake of simplicity, this paper does not take into account the interaction between the
user and HMI.

The final, complete implementation of the MS application consisted of 18 classes and 28 IDL
interfaces15. The actual number of objects depends on the number of connected devices (in the
first field tests this number was about 60). Communication is mostly performed through
synchronous operations.

The only parts of the application that do not rely on CORBA for communication are the field
devices. ENEL imposed as a design decision the use of field-bus16 [IEC] for managing the
interaction among devices and the GPDB. This decision was strongly based on the state of the
art at the time of the project.

4.2 The TRIO Specification
The specification of the Maintenance System consists of a single structured TRIO class
(MaintenanceSystem), modeling both the system as a whole and the environment in which the

15 The number of IDL intefaces includes those defining static information such as Operators roles, Types of
values etc, which are not presented in the paper.
16 A field-bus is the typical SCS digital channel used to connect sensors and other equipment to computers. The
choice of a field-bus was done in order to be compliant with the current ENEL internal standards.

21

system has to operate. Such class, in turn, comprises modules modeling the different
components of the system.

Most of the identified classes come directly from the informal specification of the system.
Thus, the specification contains classes modeling the control system, the instrumentation
maintenance system, and so on. The only part of the specification not directly coming from
the informal specification is the one that describes the way in which IMS, Alarm Manager and
HMI interact. In fact, the most natural way to specify such interaction would be to introduce a
class (AlarmDispatcher) in charge of dispatching the alarms detected by IMS to HMI, as
shown in Figure 6.

IMS HMIAlarmDispatcher
alarm_notify alarm_send

Figure 6: The alarm-dispatching system

Instead, specifiers decided to manage alarms by using the Anomalies Detection Module
(ADM), which is a framework developed in OpenDREAMS-II whose aim is to notify an
operator through a human-machine interface of the occurrences of anomalies in some other
module [Capobianchi et al. 1999, OpenDREAMS-II 1998c]. However, in order to use ADM,
each source of alarm (i.e., sensors presenting anomalies) must be associated with a different
object within ADM. Such objects are in charge of raising alarms whenever the corresponding
entities enter an abnormal state. Therefore, the specification of the alarm management part
must be structured as reported in Figure 7.

IMS HMI SensorModel

change_state alarm_send
state

Figure 7: The alarm-dispatching system using ADM

Although the goal of the specification is to describe what the system must do without
describing how it can be implemented, in many industrial environments separation between
application requirements and implementation choices is not as sharp, whether this is useful or
dangerous [Jackson 1995]; This is also due to the legacy aspects that we expressed at the
beginning of this section. An example of this overlapping is represented by the use of
architecture-impacting frameworks, such as ADM, that contain in their very definition
architecture-shaping concepts, so that their use should be carefully considered since the
specification phase.

Figure 8 shows the graphical representation of the TRIO classes composing the specification
for the part of the system taken into account. Notice that the part affected by the introduction
of ADM has been enclosed in a box. This can be viewed as a reminder for the following steps
in order to make the design choices specifically tailored towards the use of such framework.

Figure 8 shows also some of the TRIO items used to specify the behavior of classes and the
way in which they are connected. For example, item test_request is an event that is true when
IMS asks a device, via GPDB, to perform a self-test, while access_avail is a non-visible state
representing whether or not IMS has acquired the access rights from CS. The Validation
module contained in IMS identifies the part devoted to validating the measurements coming
from the devices.

22

 MaintenanceSystem

IMS GPDB

MeasuringChannels

chan_status

measure

status

detailed_status

chan_detailed_status

measure_info

command_send

cyclic_acq

on_variation_acq

test_request

test_end

access_avail

Validation

st
ar

t_
va

lid
at

in
g

en
d_

va
lid

at
in

g

stored_data

HMI MCstates

change_state
alarm_send state

ODAnomaliesDetectionModule

CS

access_denied

abort_request

access_yield

access_request

access_granted

Figure 8: TRIO diagram of the MS application

The behavior of the system is expressed by means of axioms providing semantics to the
different classes. For instance, the following axioms of class IMS state that:

� if a test (test_cmd) is started (test_request) or any other command (dev_cmd) is sent
(command_send) to a device MC, then IMS must have already acquired the access rights
from CS (access_avail);

 (test_request(i, MC, test_cmd) [ax1]
 ∨ command_send(i, MC, dev_cmd))
 → access_avail

� if the testing activity (test_cmd) on a device ends (test_end) then it was previously started
(test_request);

 test_end(i, MC) [ax2]
 → ∃ test_cmd (SomP(test_request(i, MC, test_cmd)))

� If (and only if) IMS requests CS the rights to access the devices (access_request) and after
sixty seconds no answer (access_granted or access_denied) has been received from CS,
then IMS issues a request to abort the process (abort_request).

 ∃ j (abort_request(j))
↔ ∃ i (LastTime (access_request(i), 60) [ax3]
 ∧ Lasted (¬ (access_granted(i) ∨ access_denied(i)), 60))

In turn, the following axiom of CS states that when IMS issues an abort_request, previous
unanswered access requests are aborted, that is neither access_granted, nor access_denied
will be issued.

(abort_request(j) [ax4]
∧ Since (¬ (access_granted(i) ∨ access_denied(i)), access_request(i)))
→ ¬Som (access_granted(i) ∨ access_denied(i))

Furthermore, the following axioms of class GPDB state that:

23

� If GPDB sends to IMS the status (dev_s), the operating mode (om) and the access
permission (ac_p) concerning a device MC (cyclic_acq) by means of chan_status, then it
has acquired such data from MC by means of status in the last Tmax time units17.

 cyclic_acq(i, MC) [ax5]
→ ∃ dev_s, om, ac_p (chan_status(MC, dev_s, om, ac_p)
 ∧ WithinP(status(MC, dev_s, om, ac_p), Tmax))

� If GPDB receives the request to initiate a test (test_cmd) on device MC, the test will
eventually end.

 test_request(i, MC, test_cmd) → SomF (test_end(i, MC)) [ax6]

An (early) complete TRIO specification of the MS is given in [Pradella 2000].

4.3 From the Specification to the Design
In what follows the design methodology is illustrated by applying it to the Maintenance
System.

4.3.1 Step 1: Data Flows
The first step aims at identifying explicit information exchanges among the classes identified
in the specification. These exchanges are called data flows and are a first step to move from
the concept of sharing logical items (predicates, functions, etc) – typical of TRIO classes –
towards the concept of exported operations – typical of CORBA.

A data flow can be viewed as a complex merge of TRIO items and is either unidirectional or
bi-directional depending on the direction in which information flows. The decision on how to
regroup TRIO items is taken by analyzing the behavior (i.e., the axioms) of the classes to
which the items belong. For example, let us consider axioms [ax2] and [ax6]: combined
together, they state that test_end is true if and only if test_request was true sometime before.
Furthermore, the following axiom (from class GPDB)

 test_end(i, MC)
→ ∃ mval, vi, timetag (measure_info(MC, mID, mval, vi, timetag)
 ∧ WithinP(measure(MC, mID, mval, vi, timetag), Tmax))

states that, when a test ends, measure_info “carries” the value that was exchanged at most
Tmax time units ago between GPDB and MeasuringChannel. Since similar axioms relate
test_end with chan_status and chan_detailed_status, we group all of them into a bi-directional
data flow named test. In fact, test_end denotes the end of a test whose beginning is
represented by test_request, while measure_info, chan_status and chan_detailed_status
describe the results of the test.

The semantics of abort_request, instead, suggests that there is a unidirectional flow from IMS
to CS. In fact, if IMS issues an abort_request ([ax3]) then CS does not send back any answer
(it actually stops ongoing processing of any pending access_request, as stated by [ax4]).

Both examples show that whenever some items are related (by means of axioms) to describe a
cause-effect relationship they become candidates to be transformed into a dataflow. Thus,
deciding whether to perform such transformation is a typical design choice, since data flows
are meant for modeling ORB-based communication.

17 Tmax is a system-dependent constant representing the maximum delay between the instant when data are
collected from the devices and the instant when they are sent to IMS.

24

For example, items measure, status and detailed_status, connecting classes GPDB and
MeasuringChannels, are not grouped into a data flow. In fact, they represent the information
exchanged between the devices and GPDB, and the design choice made is to use a field-bus to
make the two entities communicate, instead of an ORB. Therefore, they are not grouped into a
data flow and their representation remains as it was in the specification. However, the field-
bus imposes to introduce a new item (ctrl) connecting GPDB with the devices, representing a
control signal. In fact only when ctrl is true, measure, status and detailed_status have
meaningful values that can be accessed by GPDB.

Notice that, in the future, the same situation might call for a different solution such as using a
real-time ORB. In such a case those same items should be grouped into a data flow
representing ORB-based information exchange between GPDB and field devices.

A cause-effect relationship between events is not the only reason to group items into a data
flow as the following example shows.

Suppose that the anomalies detected by IMS are categorized into light and severe. Thus, the
specification would contain two events warning and alarm connecting MCStates and HMI
and representing light and severe anomalies, respectively. Upon closer inspection of the
semantics of these events, the designer might decide that they represent the same flow of
information (some notification from MCStates to HMI), and group them in a unique data flow
alarm_send.

In this case, grouping is not the consequence of an existing cause-effect relationship among
items; rather, it depends on the fact that such items describe a similar flow of information.
Thus, the designer may find that the specification introduced different items to model events
that are conceptually similar, and he/she can decide to abstract from such initial view grouping
them into a single data flow.

Figure 9 reports the TRIO classes of the specification of figure 8 in which some items have
been replaced by data flows.

 MaintenanceSystem

IMS

access_avail

Validation

st
ar

t_
va

lid
at

in
g

en
d_

va
lid

at
in

g

stored_data

HMI MCstates

change_state
alarm_send state

AnomaliesDetectionModule

measure

status

detailed_status

cyclic_acq

on_variation_acq

test

command_send ctrl

MeasuringChannels

GPDB

CS

abort_request

access_yield

request_access

Figure 9: Data Flows representation

Moreover, every data flow is textually defined. For example, the definition of test is as
follows:

25

Connection between IMS and GPDB
Dataflows
 test (from test_request,
 to test_end,
 to chan_status,
 to chan_detailed_status,
 to measure_info);

test is then a bi-directional data flow (it contains both from and to elements), where
test_request represents information flowing from IMS to GPDB, and all other items
correspond to an information flow from GPDB to IMS.

4.3.2 Step 2: Clients and Servers
In the second step, every data flow is categorized as either operation or attribute. For each
operation, one has to choose the class that exports it (server class) and the classes that import
it (client classes). Similarly, for each attribute, one has to choose the class that declares it and
the classes that access it.

Notice that the direction of a data flow connecting two classes does not determine a priori the
client class and the server class. This is a typical design choice that concerns the
communication style that one wants to use.

For example data flow test becomes an operation (with the same name) exported by GPDB
and invoked by IMS, since test must be executed only when IMS issues a command.

In Figure 10 arrows identifying the operations are drawn from exporting classes to importing
ones.

 MaintenanceSystem
IMS

access_avail

Validation

st
ar

t_
va

lid
at

in
g

en
d_

va
lid

at
in

g

stored_data

HMI MCstates

set_status
raise_alarmstate

AnomaliesDetectionModule

measure

status

detailed_status

ctrl

MeasuringChannels

GPDB

get_measure

variation

test

command CS

abort_request

access_yield

request_access

Figure 10: The Maintenance System after steps 1 and 2

GPDB exports two other operations, command (derived from flow command_send) and
get_measure (derived from flow cyclic_acq), while it invokes the operation variation (derived
from flow on_variation_acq) exported by IMS. Since we decided to exploit the Anomalies
Detection Module, dataflow change_state has become operation set_status of that module.

26

4.3.3 Step 3: Objects
This step aims at identifying all CORBA Entities (i.e., servers and clients) that need to be
implemented. Such identification is based on the operations/attributes introduced in the
previous step.

Every class exporting/importing at least one operation (attribute) is a natural candidate to
become an instance of the CORBA Entity meta-class since it will use the ORB to
communicate. Notice that each CORBA Entity class has to satisfy the corresponding
axioms of the specification. However, since in the previous steps TRIO items have been
merged into data flows it is necessary to rewrite such axioms. This point is further discussed
in Section 4.3.6.

Identifying the right CORBA Entity classes is a crucial design step in which the actual
structure of the system is defined. Thus, the problem is to decide to which extent the structure
of the specification should be maintained when designing the high level architecture of a
system. Notice that, although TRIO supports the object-oriented paradigm, the experience has
shown that very often specifiers tend to give a functional-oriented specification. This is not a
bad practice per se, but may lead to a class structure that needs to be modified in order to
identify the actual CORBA objects. Thus, in order to come up with a real object-oriented
architecture it may be necessary to split and/or group some of the classes of the specification.

For example, classes IMS and GPDB are candidate to become CORBA Entity classes since
they both export at least one operation. However, after having analyzed the axioms of module
GPDB, we decided to divide it into two parts, named Gateway and DataRep, as shown in
Figure 11. Looking at the behavior of class GPDB we notice that the axioms referring to
operations test and command are independent from those referring to get_measure and
variation. In fact, Gateway acts as a gateway for sending commands while DataRep acts as the
actual database, storing all the measurements collected by the devices. Therefore, IMS,
Gateway and DataRep are CORBA Entity classes.

IMS

access_avail

Validation

st
ar

t_
va

lid
at

in
g

en
d_

va
lid

at
in

g

stored_data

HMI MCstates

state

measure
status
detailed_status

get_measure

variation

test

command

Gateway

ctrl

DataRep

MeasuringChannels

set_status
raise_alarm

AnomaliesDetectionModule

MaintenanaceSystem

CS

abort_request

access_yield

request_access

Figure 11: The CORBA Entity classes

The rationale underlying the splitting of GPDB into Gateway and DataRep is that GPDB can
be decomposed into two different parts playing different roles. This kind of decomposition is
a design choice concerning the actual structure of the overall system, which in general may be
different from the structure of the specification.

27

Thus, the decision of splitting a class is taken by analyzing its behavior (i.e., the axioms). If
the behavior of part of a class is independent from the rest of it then the class is a good
candidate for splitting. A class is composed of independent parts if it is possible to identify a
subset of its axioms that do not refer to the items occurring in the remaining axioms (and vice
versa).

Notice that also operations test and command of Gateway are independent since the events
defining command do not appear in the axioms that refer to test and vice versa. However, in
this case the design choice was to keep these two operations in the same server (Gateway),
since they both provide a way to issue commands to the measuring devices.

Another reason for modifying the class structure of the specification is the introduction of an
architecture-impacting framework. However, this was not our case since the framework has
been taken into account at specification-time.

In conclusion, restructuring the classes composing a system is a major design choice that
belongs to the designer who acts on his/her knowledge of what the system does. Thus, a
“mechanical analysis” of the axioms can help in identifying the classes that are candidate for
splitting/grouping but, as usual, the final choice is left to the designer.

Class MeasuringChannels does not correspond to any CORBA object, since it does not
interact with the rest of the application by means of CORBA operations and/or attributes (see
Section 4.3.2). Therefore, MeasuringChannels becomes an instance of the NonCORBA
Entity meta-class.

4.3.4 Step 4: Interfaces and Semantics of Operations and Attributes
All CORBA Entity classes identified in the previous step acting as server classes must be
provided with the needed interfaces. This is done by introducing instances of the
Interface meta-class and making the CORBA Entity classes exporting at least one
operation/attribute inherit from them. In our example, six different interfaces have been
introduced (one for each CORBA Entity class) as shown in figure 12.

IMS

access_avail

Validation

st
ar

t_
va

lid
at

in
g

en
d_

va
lid

at
in

g

stored_data

HMI MCstates

state

measure
status
detailed_status

get_measure

variation

test

command

Gateway

ctrl

DeviceManager

DataManager

DataRep

DataReceiver

MeasuringChannels

set_status
raise_alarm

AnomaliesDetectionModule

AlarmReceiver
ADM::State

MaintenanceSystem

CS

abort_request

access_yield «oneway»

request_access AccessRightManager

Figure 12: The TC diagram after step 4

Notice that Interface ADM::State is a standard interface defined in the Anomalies
Detection Module, which is satisfied by CORBA Entity MCstates.

28

Providing the interface to server classes, unlike other design choices, can be done in a
systematic way and can be performed almost automatically. Thus, once the CORBA Entity
classes (and their interfaces) have been identified the structure of the architecture is defined.

Let us consider now a server class exporting both operations and attributes. According to
CORBA specifications, the default is that operation invocations have either an at-most-once
semantics, if they raise an exception, or an exactly-once semantics if they return successfully,
while attributes can be accessed and modified by all clients importing them.

In addition, CORBA allows operations to be declared oneway, which means that a best-effort
semantics, which does not guarantee delivery of the request, is adopted; also, attributes can be
declared read-only, which means that clients cannot modify them.

Thus, during this step the designer can add the TC stereotypes «oneway» and «readonly»
to identify oneway operations and read-only attributes, respectively.

For example, we decided to use for the access_yield operation a best-effort semantics, so we
marked it «oneway» as shown in Figure 12.

4.3.5 Step 5: Services and Frameworks
CORBA Services and Frameworks are defined by means of a set of IDL interfaces, and thus
they are modeled by means of Interface classes. Notice that translating IDL interfaces into
Interface classes (and vice versa) can be done automatically, since they only differ from a
syntactic point of view.

Conversely, in order to provide semantics to a CORBA Service (Framework) one has to
define the underlying CORBA Entity classes satisfying the Interface classes. In other
words, it is necessary to formalize in TC the semantics of the CORBA Services
(Frameworks), and possibly of further independent ones, starting from the informal
specification issued by the OMG (or the independent developer).

However, in order to introduce in TC a CORBA Service (Framework) one has to
(automatically) translate its IDL interfaces into Interface classes without being compelled
to provide also the formal semantics of such Service in term of CORBA Entity classes.
Thus, there is a trade-off between the amount of effort needed to introduce existing CORBA
Services (Frameworks) and the level of formality obtained, which in turn defines the level of
formal correctness that one may prove. This is an example of the lightweight approach that we
advocate and that is discussed in depth in a previous paper [Ciapessoni et al. 1999].

From a graphical point of view, CORBA Services are normally represented by means of
stereotypes, while Frameworks are usually represented by a class structure.

When designing the Maintenance System, the CORBA services taken into account were event,
transaction, query, object group and persistence; and a TC formalization has been made for
some of them [OpenDREAMS-II 1998b]. Object group and persistence are used by objects
while query and transaction involve operations on objects. All these services can cooperate in
order to allow an object to fulfill its requirements.

For example, DataRep is a critical component and needs to be reliable to satisfy the fault
tolerance requirements of the system. In the specification, data acquisition from GPDB was
modeled by means of events (cyclic_acq and on_variation_acq), and the fault-tolerance
requirement was implicitly stated. However, as more low-level details are included in the
design, the requirement had to be made explicit, and therefore the stereotype «reliable» (see
Section 3.6) was added to DataRep. Therefore, the following axiom (instance of [Reliable]) is
automatically introduced:

29

 get_measure(i).start [get_mReliable]
 → SomF (get_measure(i).end_success ⊕ ∃ Exc (get_measure(i).Exc.raise))

Furthermore, let us consider operation variation invoked by DataRep to notify IMS that an
abnormal variation of some measured quantity occurred. Such operation should not block
DataRep while IMS processes the information since other abnormal variations may occur.
This can be obtained in different ways. For instance

1. DataRep is a multithreaded client. However, this would raise the complexity of the
connection with the measuring channels, or

2. DataRep invokes variation in a deferred synchronous way, or

3. DataRep and IMS use the CORBA Event Service [OMG 2001b] for exchanging
information.

Solution 3) is better than solution 2) if DataRep has to notify abnormal variations to objects
other than IMS. In such a case solution 2) requires that DataRep invoke an operation for each
object, while solution 3) requires that DataRep invoke only the CORBA Event Service.

Since in the complete system other components than IMS should be notified we decided to
use the CORBA Event Service. Furthermore, dataflow on_variation_acq (see Figure 9) shows
that the information flows from DataRep to IMS that is DataRep is the supplier while IMS is
the consumer. The design choice of transforming on_variation_acq into operation variation,
exported by IMS and imported by DataRep, leads to adopt the push model for both supplier
and consumer. Thus, operation variation is marked with the stereotype «eventPush» as
shown in Figure 13.

Notice that ADM relies on CORBA Event Service to deliver alarm notifications, and it
defines a special type of event (AlarmEvent), which is exchanged between alarm suppliers and
alarm consumers [OpenDREAMS-II 1998d]. Operation raise_alarm, dispatching alarms from
MCstates to HMI, is implemented using ADM and thus, is labeled with stereotype
«ODAlarmEvent».

 MaintenanceSystem

IMS

access_avail

Validation

st
ar

t_
va

lid
at

in
g

en
d_

va
lid

at
in

g

stored_data

HMI MCstates

state

set_status
«ODAlarmEvent» raise_alarm

AnomaliesDetectionModule

AlarmReceiver
ADM::State

_value

command

measure
status
detailed_status

get_measure

 «eventPush» variation

test

ctrl

DataManager

«reliable»

DataRep

DataReceiver

BPValue

odFloat
MeasuringChannels

Gateway
DeviceManager

CS

abort_request

access_yield «oneway»

request_access AccessRightManager

Figure 13: The final TC diagram

Finally, the Base Process Value framework [Capobianchi et al. 1999], defined and
implemented in OpenDREAMS-II, is introduced. This framework provides a way to store and
manipulate the values coming from devices along with some related information such as time

30

stamps and validity. It is meant for SCSs and it defines several different interfaces, one of
which (odFloat) is used in the example by DataRep, Gateway and IMS to exchange
information about the measured values.

At the end of this step, the IDL interfaces are automatically produced from the CORBA
Interface classes.

4.3.6 Tuning up the axioms
Once the structure of the system architecture is defined, one can express the semantics of the
different classes by adapting the axioms of the specification in order to take into account all
the transformations that have occurred. During this process, one must make sure that the
requirements captured by the (formal) specification are still satisfied by the architecture. In
what follows, we outline the transformation that should be performed on the axioms in the
specification to come up with the axioms that reflect the design choices made.

For example, during steps 1 and 2 items test_request and test_end were associated with the
invocation of operation test and the moment when this operation returns, respectively. Thus,
[ax1] is transformed into the following axiom of class IMS in which data flows are involved
(item access_avail remained unchanged since it does not belong to any data flow).

 (test(i).invoke ∨ command(i).invoke)→access_avail [ax1’]

Similarly, axiom [ax2] would become:

 test(i).reply → SomP(test(i).invoke) [ax2’]

however, [ax2’] can be dropped since it is implied by the definition of synchronous operation
([genC1]). In principle, this would require a proof obligation that guarantees that the axiom
can be dropped, but in this case the proof is trivial, since [ax2’] coincides with the instance of
[genC1] relative to operation test.

Let us consider now axiom [ax5] of class GPDB. In this case one has to take into account that
the TRIO item cyclic_acq has become the operation get_measure and that when the latter ends
the information sent back is described in a more detailed way, since a data structure made up
of three fields (status, oper_mode and acc_perm) is used. Therefore, axiom [ax5] is rewritten
as follows:

 (get_measure(i).end_success [ax5’]
 ∧ Past(get_measure(i).inv_received ∧ get_measure(i).device = dev, Tmax)
 ∧ MC_address(dev, MC_ad)
 ∧ WithinP(status(MC_ad, dev_s, om, a_p), Tmax))
 →
 (get_measure(i).brief_status.status = dev_s
 ∧ get_measure(i).brief_status.oper_mode = om
 ∧ get_measure(i).brief_status.acc_perm = a_p)

In other cases, the TC description may contain axioms that do not exist in the specification.
Such axioms typically describe some lower-level behaviors not previously taken into account.

For example, operation variation has an input parameter, named calibrations, composed of
five fields (calibID, date, zero_error, span_error and lin_eq) used to send some calibration
data to the IMS. A new axiom is introduced to specify that when calibration data are sent all
the information must be defined.

31

 variation(i).calibrations(l).calibID = cal [axN]
 → ∃ d, z_e, s_e, lin_eq
 (variation(i).calibrations(l).date = d
 ∧ variation(i).calibrations(l).zero_error = z_e
 ∧ variation(i).calibrations(l).span_error = s_e
 ∧ variation(i).calibrations(l).lin_eq = lin_eq)

This level of detail was not taken into consideration in the specification, but is suitable for an
architectural description.

As a last example let us consider the choice, discussed during step 1, of using a field-bus to
implement the communication between GPDB (currently represented by CORBA Entity
classes DataRep and Gateway) and the field devices. Moreover, let us suppose that one wants
to state that values coming from the devices (i.e., whenever ctrl is true) represent

1. the results of a test/command issued by IMS via Gateway, which must be sent within T1
time units to IMS, or

2. the results of a cyclic data acquisition performed by IMS via DataRep, which must be sent
within T2 time units to IMS, or

3. the variations occurred in some device that must be notified to IMS within T3 time units.

The above property involves several different components of the architectural description of
the system and thus is formalized by the following axiom in the Environment class
Maintenance System, which represents the whole application:

 MeasuringChannels[j].ctrl
→ ∃ i, d
 ((WithinF(Gateway.test(i).end_success ∧ Gateway.test(i).device=d, T1)
 ∨ WithinF(Gateway.command(i).end_success ∧ Gateway.command(i).device=d, T1)
 ∨ WithinF(DataRep.get_measure(i).end_succes ∧ DataRep.get_measure(i).device=d, T2)
 ∨ WithinF(IMS.variation(i).inv_received ∧ IMS.variation (i).device=d, T3))
 ∧ GPDB.MC_address(d, j))

where MC_address is a predicate binding each instance of a device (index j) with its symbolic
name, used by IMS (variable dev).

Furthermore, other axioms, not reported here, ensure that each time ctrl is true only one of the
above operations occurs.

Some of the transformations of this section can be done automatically; however, the
intervention of the designer is often crucial. For example, once we have recognized that
test_request corresponds to invocation of operation test, transformation of axiom [ax1] into
[ax1’] is straightforward, and could be done automatically. The same holds for elimination of
axiom [ax2]. Modification of axiom [ax5], instead, relies heavily on the intuition that the
designer has of the low-level details of method invocation, and would be difficult to be done
automatically. Conversely, the last two axioms do not come from the specification and have
been added by designers thanks to their knowledge of the system.

5 BENEFITS AND LESSONS LEARNED
During the design of the TC language and methodology, and the development of the MS
application, a number of issues came up providing a qualitative assessment of the approach
taken, the achieved benefits, the lessons learned, and remaining problems and challenges. This
section discusses the most significant aspects of our assessment, based both on the experience
gained during the OpenDREAMS-II project and on the subsequent research efforts.

32

The development of the MS application confirmed once more that rigor and formality are
fundamental, at least when dealing with the most critical aspects of an application, in order to
understand and manage complex systems' specification and architecture design. Safety-critical
(distributed) systems are natural candidates for exploiting formal methods techniques because
of their inherent complexity. During the process of formally specifying some aspects of the
MS application new problems, ignored by the first informal description, aroused (e.g.,
formalization of services pointed out flaws in their definitions [OpenDREAMS-II 1998b].

One of the greatest benefits of formal methods lies in the ability to formally verify correctness
of the design against the specification before the system is actually implemented. In our
approach, formally proving that a TC architecture is consistent with the associated TRIO
specification can be carried out using the PVS system [Owre et al. 1992]. The prototype of a
correctness prover -or disprover- based on the translation of the TRIO formalism into PVS
[Alborghetti et al. 1997, Gargantini and Morzenti 2001] has been successfully used to
demonstrate the correctness of the architecture of a test application with respect to its
specification. Moreover, using TC to formally define the application architecture allowed us
to apply the TRIO techniques and tools [Mandrioli et al. 1995, San Pietro et al. 2000] to verify
that the design does not contain inconsistencies or to derive real-time functional test cases
from specifications. These issues are not discussed in this paper but the interested reader can
refer to [Rossi 2002] in which TC verification issues are discussed.

A major benefit coming from coupling formal methods with an open, standard middleware
architecture such as CORBA has been the increase of the level of abstraction at which
designers have to work. For example, many communication issues among the different
components of the application, which had to be explicitly taken into account in our previous
experiences, turned out to be formalized by the TC language and thus they could be used in an
off-the-shelf fashion.

Another benefit related to our approach consists of its ability to follow in a smooth way the
technological changes that may occur. In fact, since the beginning of our research, the OMG’s
specifications have evolved: new services were introduced and existing specifications have
been modified. Our approach allowed us to follow the specification evolution in a fairly
natural way: whenever new features were added by the OMG, TC simply required the
definition of new (built-in) axioms and possibly the use of stereotyping mechanisms, without
having to modify the core of the language. For instance, we originally started with the
standard non-real-time CORBA and thus strict timing requirements were not taken into
account. Once the OMG’s issued the Real-Time CORBA specification [OMG 2002b] we
were able to use the features presented therein in a quite direct and straightforward way, with
a minor adaptation of our methodology (see for instance Section 4.3.1).

Moreover, even if this paper focused on CORBA-based architectures, the same approach can
be adapted and applied to other object-oriented middleware such as DCOM [Eddon and
Eddon 1998] or Java/RMI [Pitt and McNiff 2001]. In fact, by defining our own syntax for
Interface classes rather than modifying OMG’s IDL, we could add features to our
interface language and translate it into a variety of other Interface Definition Languages.
Finally, TC and its related methodology (possibly with semantic extensions, introduced by
means of new stereotypes) can be applied to a variety of other middlewares, such as event-
based [Cugola et al. 2001] and peer-to-peer ones [Oram 2001].

So far, the work done has been carried out by a strongly integrated and long term cooperating
group (composed of people from the academia and the industry), who share a common
background in the area of formal methods. Thus, it remains to be verified if similar benefits
can be achieved by industrial designers who have not been so deeply involved in the

33

development of the methodology. This is a fairly typical and still daunting problem for the
diffusion of formal methods in the practice of industrial projects [Ciapessoni et al. 1999].

Another, somewhat related, problem that could hamper a wider diffusion of our methodology
is represented by the currently available tools supporting our approach both when
specifying/designing an application and when performing verification activities. Currently, the
prototype of a graphical interactive editor supporting the documentation of all phases, from
requirement specification to architectural design, is available, while no verification tool
specifically tailored for TC is currently available. Thus, the work done has been carried out by
translating TC into TRIO and then using the available (semantic) tools. This approach
required a high level of expertise from the users and may not be viable without a deep
understanding of TRIO and its semantics.

Finally, the methodology has been developed hand-in-hand with the MS application and it can
be seen as coming from it. Beside the MS application, TC and its related methodology has
been applied to other smaller cases (e.g. [Morzenti et al. 1999]). It is likely that by applying
our methodology to more case studies, one could get additional useful insights to revise and
refine some of its finer points.

6 RELATED WORKS
The TC language and methodology presented in this paper combine in a novel way concepts
and experiences derived and adapted from a number of different (and, until now, mostly
unrelated) research fields such as:

• Architecture Description Languages;

• extensible formalisms and formal methods;

• object-oriented design methodologies;

• middleware and architectures for distributed applications.

Therefore, our approach shares some background ideas with many of the research efforts in
the above fields, but it distinguishes from them essentially in that it combines and integrates
those ideas and applies them to the domain of (critical) CORBA-based, distributed
applications.

The rest of this section analyzes the relationships of our approach with the results obtained in
the areas mentioned above. In addition, it puts the TC language/methodology in the context of
the broader research effort carried on at Politecnico di Milano of which this work is part.

Historically, the combination of formal methods with a stepwise refinement process that
allows one to proceed smoothly from high level specifications down to architectural design
and possibly even to final implementation dates back to early algebraic and logic approaches
such as Larch [Guttag and Horning 1993] and B [Abrial 1996]. However, the application of
such approaches has been limited to traditional, general purpose (in most cases sequential)
systems, while distributed, real-time systems were not taken into account.

Architecture Description Languages (ADLs), such as Darwin [Magee et al. 1995] and Wright
[Allen and Garlan 1997], allow one to describe software systems in term of communicating
components and, in the case of Wright, connectors. However, most of them focus on the static
structure of the system rather than on the components' dynamic behavior, which is often dealt
with separately (possibly with a different formalism) [Kramer and Magee 1997]. In addition,
the formalisms chosen to model components' behavioral aspects are mostly CSP-like [Hoare
1985], which are unsuitable for describing time-related properties. TC, instead, allows the
designer to formally describe both the structure of a system and the behavior of its

34

components. Being TC based on a temporal logic such as TRIO, time-related properties can
be described in a very natural way.

The Rapide ADL [Luckham et al. 1995] takes into account both structural and behavioral
aspects and allows one to express temporal relationships between events in the system
[Luckham 1998]. With respect to Rapide, the TC is more flexible in time modelling, as it can
deal with both dense and discrete time domains.

In addition, [Di Nitto and Rosemblum 1999] showed that most ADLs are not flexible enough
to allow designers to take into account the specificities of the underlying (middleware)
technology such as CORBA. The main reason being that they tend to be limited in scope, and
they offer only a small number of constructs to avoid complexity explosion in the simulation
of the architecture. TC, instead, provides CORBA specific features that allow designers to
explicitly take into account the main aspects of the target technology. Moreover, TC offers
extension mechanisms that allow designers to formally introduce new concepts by means of
the existing ones. Thus, TC can be used to describe the system at different levels of
abstraction. For example, CORBA specific features are modeled in TC by defining the basic
concepts (e.g., operations, CORBA objects, etc) in term of TRIO, while higher-level concepts
(services, frameworks, etc.) are defined in terms of the basic ones.

Another distinguishing feature of our approach with respect to others such as Darwin [Magee
et al. 1995], Durra [Barbacci et al. 1993] is being tailored towards SCSs, which are mostly
demanding in terms of reliability -and often are hard real-time systems. Such an orientation,
however, does not affect the whole method, which in large part is well suited for general
distributed applications based on CORBA; only the final step, which exploits typical services
and frameworks, is specialized towards this application domain. In fact, we also applied the
method to other, non-SCS applications [Morzenti et al. 1999].

Stereotyping is used in many approaches to introduce specific constructs in a language. For
example, [Robbins et al. 1998] uses stereotyping to extend UML with ADL-specific concepts,
without providing a formal definition of such concepts; [Kaveh and Emmerich 2001]
introduces stereotypes to formally model synchronization primitives and thread management
in CORBA architectures to detect deadlock through model checking. However, the approach
of [Kaveh and Emmerich 2001] does not consider timing requirements. In our approach,
instead, stereotypes are formally defined and they can also express timing properties.

Another peculiar feature of our approach is that TC couples the language for describing high-
level system architectures with a development methodology, which starts from system
requirements. Therefore, TC goes beyond ADLs, which lack a methodology to determine the
system architecture from the requirements.

With respect to other general purpose, object-oriented (OO) methodologies, the TC approach
is explicitly targeted to CORBA, has formal foundations, and deals rigorously and
quantitatively with time. Each of these features can be found singularly in literature but no one
combines all of them in a single development method. Methodologies and notations such as
[Booch 1994, Booch et al. 1996, Rumbaugh et al. 1991, Jacobson et al. 1999, Maher et al.
1996] do not specifically address the issues of Object-Oriented Analysis/Development over
CORBA, nor (with the exception of the OCTOPUS notation) those of real-time systems.
Moreover, they do not allow a formal description of requirements since they lack a rigorous
underlying mathematical model, even though some work has been carried out to couple these
methodologies with formal specification languages [Lano 1996, Lavazza et al. 2001]. ROOM
(Real-time Object Oriented Modeling, [Selic et al. 1994]) and UML for real-time [Douglass
2000] (which owes many of its concepts to ROOM) are notations tailored towards real-time

35

systems; however, these notations are mostly informal and they do not address the
specificities of middleware-based distributed systems.

To fill this gap, the OMG, which now supports UML [OMG 2003], has added a CORBA
profile to UML [OMG 2002c]. It also began to support model-driven application development
[OMG 2001c], and has defined a metamodel to describe software development processes
[OMG 2001d]. However, OMG's efforts in the field of CORBA-targeted development
processes are still largely informal, and they do not tackle real-time issues. Notice also that
such efforts began significantly after, not only the beginning, but even the first results of our
research along this approach [Coen-Porisini and Mandrioli 2000, Coen-Porisini, et al. 2000].

Finally, [Neema et al. 2002] define a modeling language, called Adaptive Quality Modeling
Language (AQML), that is used to describe the requirements concerning the management of
policies within a Quality of Service (QoS) adaptation layer built on top of middleware such as
CORBA. The AQML approach is oriented towards modeling and simulating the QoS
adaptation and the underlying middleware infrastructure. The TC approach is more general
because it is geared towards modeling all aspects of a CORBA-based system, from
middleware infrastructure to application logic. In addition, AQML cannot express time-related
properties, which is a distinguishing feature of TC.

The TC language and methodology presented in this paper are part of a long term research
going on at Politecnico di Milano, whose ultimate goal is the development of sound, proven
correct, real-time, distributed applications based on the CORBA platform. [Coen-Porisini and
Mandrioli 2000] reports on the first results of the research, which were based on the initial,
non real-time, CORBA standard and on early case studies; such first results were still rather
informal and the TC language was not yet defined. [Coen-Porisini et al. 2000] provides a first
description of both the TC language and methodology but due to typical conference
proceedings limitations, it does not discuss many aspects of the methodology and lacks a
comprehensive presentation of the TC language.

Thus, this paper extends and revises [Coen-Porisini et al. 2000] by including many more
technical details and a more thorough description of both the methodology and the case study.
Moreover, this paper also reports on further results that have been achieved more recently,
while remaining focused on the key aspects of formally modeling application requirements
and its architecture and on the methodology to derive the latter from the formers.

Other related results are documented in separate reports and papers: [Rossi 2002] discusses
the formalization of real-time aspects, which has proceeded in parallel with the evolution of
the standard and the development and availability of real-time ORBs, and [Pradovera 2001]
reports on an experimental validation of the real-time features of TAO [Schmidt et al. 1998].
[Rossi 2002] deals also with the verification aspects of the TC approach, with strong attention
to hard real-time constraints. It introduces a two-layered model suitable for describing and
verifying real-time CORBA-based applications with different levels of detail; the lower-level
(more detailed) layer takes into account the ORB and the operating system elements such as
RTPOAs and schedulers. The low-level mechanisms of the Fault-Tolerant CORBA
specification [OMG 2002a], instead, have yet to be included in the TC model.

Since revision 2.5, Fault-Tolerant CORBA is part of the CORBA/IIOP specification [OMG
2001a]. The FT CORBA specification does not affect the TC methodology since, from the
methodological point of view, what is relevant is that an object is reliable, not how this is
achieved. A formalization of the FT CORBA specification, however, would lay the basis to
prove that the mechanisms described therein are suitable to obtain the desired degree of
reliability and, in particular, that FT CORBA enforces the semantics of the «reliable»

36

stereotype. This issue, however, relates to the problem of modeling and verifying the CORBA
platform, which is outside the scope of this paper.

7 CONCLUSIONS
This paper proposed and illustrated a formal method to develop distributed applications based
on CORBA. The method exploits the object-oriented logic language TRIO and drives the
designer to obtain a complete CORBA architectural design through a smooth sequence of
steps starting from the specification of the application requirements. Thus, the method enjoys
the typical benefits of formality, i.e., rigor and precision, both in specification and in
verification, and the possibility of using powerful tools (e.g., to generate (semi) automatically
test cases for the implementation). In particular, since the semantics of both application
specification and architectural design is expressed in terms of logic formulas one can, at least
in principle, prove the correctness of the design as a typical logical implication.

This paper focused on the essentials of the method. The reader is referred to the bibliography
for a more thorough and detailed exposition. In particular, [Pradella 2000] describes the
method and the application case study in full detail. The fundamental issue of managing real-
time aspects in CORBA-based systems, not considered in this paper, is the objective of
[Marotta et al. 2001] and [Rossi 2002] where the real-time extension of CORBA [OMG
2002b] is analyzed and formalized and it is shown how to build -potentially- guaranteed real-
time applications on top of it. The issue of verifying the correctness of the architectural design
against application requirements is addressed by [Rossi 2002].

In our approach, we chose not to modify in any way the definition of CORBA (e.g., we do not
propose any formal extensions to IDL). Instead, we decided to preserve its basic features,
coupling them with a formal definition. This approach should not be seen as an alternative to
existing non-formal, non CORBA-oriented methods such as UML; rather, it is well suited to
augment, and be integrated with, several existing informal practices [Ciapessoni et al. 1999].

The evolution of CORBA (and related research) over the time has also confirmed the validity
of our approach, which stresses the importance of reliability and time predictability in a
CORBA architecture. The efforts of OMG towards both supporting more precise modeling
formalisms (UML is a first step in this direction, although very incomplete) and adding
features specifically meant to improve reliability and time predictability of the platform (e.g.,
Fault-Tolerant and Real-Time CORBA) proved the soundness of the goals initially set by the
OpenDREAMS projects, which this research was part of.

Finally, we expect to produce a suite of TRIO/TC tools that will be easily accessible and
widely usable in an industrial environment. In fact, TRIO is currently supported by a suite of
(prototype) tools that cover many aspects of formal verification. Thanks to the distinguishing
feature of TRIO that complex operators are built on top of a basic, simple building block
(operator Dist) these tools have smoothly evolved over the time to include high-level concepts
(e.g. states and events) that were not present in the original version of TRIO. In a similar way,
new evolutions are planned to include TC elements. In fact, since the semantics of TC is
entirely given in TRIO, TC tools can be built upon TRIO ones by translating TC architectures
into TRIO specifications (i.e., adding the necessary built-in axioms every time that a TC-
specific construct is used). However, this approach might not be very efficient, and therefore
future work will aim at optimizing TRIO tools to better deal with TC-specific concepts.

ACKNOWLEDGMENTS
As already mentioned, this work has been done during the ESPRIT projects OpenDREAMS-I
and II. We acknowledge the cooperation of all the members of the project: Alcatel CRC,
ENEL, EPFL, ISR, Poet, and Teamlog.

37

We also thank the reviewers for their comments, which helped us improving this paper.

REFERENCES18

ABRIAL, J. R. 1996. The B-Book: Assigning Programs To Meanings, Cambridge University
Press.

ALBORGHETTI, A., GARGANTINI, A. AND MORZENTI, A. 1997. Providing Automated Support to
Deductive Analysis of Time Critical Systems”, Proc. of Sixth European Software
Engineering Conference ESEC 97, Zurich, Switzerland.

ALLEN R. AND GARLAN D. 1997. A Formal Basis for Architectural Connection, ACM
Transactions on Software Engineering and Methodology, vol. 6, n. 3, pp. 213-249.

BARBACCI, M., WEINSTOCK, C., DOUBLEDAY, D., GARDNER, M., et al., 1993. Durra: a structure
description language for developing distributed applications, IEE Software Engineering
Journal, 8, 2, pp. 83 - 94.

BOEHM, B.W. 1988. A spiral model of software development and enhancement, IEEE
Computer, 21, 5, pp. 61-72.

BOOCH, G. 1994. Object Oriented Analysis and Design with Applications, Benjamins
Cummings.

BOOCH, G. 1996. Object Solutions: Managing the Object-Oriented Project, Addison Wesley.
BOOCH, G., JACOBSON, I. AND RUMBAUGH, J. 1996. The Unified Modeling Language for

Object Oriented Development, Documentation set, RationalRose.
BORLAND. Borland VisiBroker -RT Product Overview.

www.highlander.com/products/index.html
CAPOBIANCHI, R., CARCAGNO, D., COEN-PORISINI, A., MANDRIOLI, D., AND MORZENTI, A.

1999. A framework architecture for the development of new generation supervision and
control systems, in Domain Specific Application Frameworks, Eds. M. Fayad, D. Schmidt,
J. Wiley, pp. 231-250.

CIAPESSONI, E., COEN-PORISINI, A., CRIVELLI, E., MANDRIOLI, D., MIRANDOLA, P. AND
MORZENTI, A. 1999. From Formal models to formal based methods: an industrial
experience, ACM Transactions on Software Engineering and Methodologies, 8, 1, pp 79-
113.

COEN-PORISINI, A. AND MANDRIOLI, D. 2000. Using TRIO for designing a CORBA-based
application, Concurrency: Practice and Experience, vol. 12, no. 8, pp 981-1015.

COEN-PORISINI, A., PRADELLA, M., ROSSI, M. AND MANDRIOLI, D. 2000. A Formal Approach
for Designing CORBA based Applications, Proc. International Conference on Software
Engineering ICSE2000, Limerick, Ireland.

CUGOLA, G., DI NITTO, E. AND FUGGETTA A. 2001. The JEDI Event-Based Infrastructure and
its Application to the Development of the OPSS WFMS, IEEE Transactions of Software
Engineering Volume: 27, No. 9, pp 827-850.

DI NITTO, E. AND ROSENBLUM, D. 1999. Exploiting ADLs to Specify Architectural Styles
Induced by Middleware Infrastructures, Proceedings of the 21st International Conference
on Software Engineering, Los Angeles, California.

DOUGLASS, B. P. 2000. Real-Time UML: Developing Efficient Objects for Embedded
Systems, Addison Wesley.

18 The reader interested in acquiring the OpenDREAMS reports should contact the authors.

38

EASTERBROOK, S.; LUTZ, R.; COVINGTON, R.; KELLY, J.; AMPO, Y.; HAMILTON, D. 1998.
“Experiences using lightweight formal methods for requirements modeling”, IEEE
Transactions on Software Engineering, Volume: 24, No. 1, pp. 4 -14.

EDDON, G. AND EDDON H., 1998. Inside Distributed COM. Microsoft Press.
FAYAD, M., SCHMIDT, D. AND JOHNSON, R. (eds) 1999. Building Application Frameworks:

Object-Oriented Foundations of Framework Design, J. Wiley.
GARGANTINI, A. AND MORZENTI, A. 2001. Automated Deductive Requirements Analysis of

Critical Systems, ACM TOSEM - Transactions On Software Engineering and
Methodologies, Volume: 3, No. 3, pp 225-307.

GHEZZI, C., MANDRIOLI, D. AND MORZENTI, A. 1990. TRIO, a logic language for executable
specifications of real-time systems, Journal of Systems and Software, 12, 2, pp. 107-123.

GUTTAG, J. V. AND HORNING, J. J. 1993. Larch: Languages and Tools for Formal Specification,
Springer-Verlag.

HINCHEY M., BOWEN J. eds. 1995. Application of Formal Methods, Prentice Hall Int.
Hertfordshire.

HOARE, C. A. R. 1985. Communicating Sequential Processes, Prentice Hall.
IEC - IS - 1158-2. Field Bus standard for use in industrial control system Physical layer

specification and service definition.
JACKSON, M. 1995. Software Requirements and Specification, Addison Wesley, Reading, MA.
JACOBSON, I., BOOCH, G. AND RUMBAUGH, J. 1999. The Unified Software Development

Process, Addison Wesley.
KAVEH N. AND EMMERICH W. 2001. Deadlock detection in distributed object systems, Proc. of

8th European Software Engineering Conference (ESEC2001), Wien, Austria.
KRAMER, J. AND MAGEE, J. 1997. Exposing the Skeleton in the Coordination Closet, Proc. 2nd

International Conference on Coordination Languages and Models, Lecture Notes in
Computer Science no. 1282, pp. 18 – 31.

LANO, K. 1996. Enhancing Object Oriented Methods with Formal Notations, Theory and
Practice of Object Systems, vol. 2 no. 4., pp. 247-268.

LAVAZZA, L., QUARONI, G. AND VENTURELLI, M. 2001. Combining UML and formal notations
for modelling real-time systems, Proc. of 8th European Software Engineering Conference
(ESEC2001), Wien, Austria.

LUCKHAM, D., KENNEY, J., AUGUSTIN, L., VERA, J., BRYAN, D. AND MANN, W. 1995.
Specification and Analysis of System Architecture Using Rapide, IEEE Transactions on
Software Engineering, vol. 21, n. 4, pp. 336-355.

LUCKHAM, D. 1998. Rapide: A language and toolset for causal event modeling of distributed
system architectures, Proc. of the 2nd International Conference on Worldwide Computing
and Its Applications (WWCA 98), Lecture Notes in Computer Science no. 1368, pp. 88 –
96.

MAGEE, J., DULAY., N, EISENBACH, S. AND KRAMER, J. 1995. Specifying Distributed Software
Architecture, Proc. ESEC '95, Lecture Notes in Computer Science no. 989, pp. 137 – 153.

MAHER, A., KUUSELA, J. AND ZIEGLER, J. 1996. Object-Oriented Technology for Real-Time
Systems, A Practical Approach using OMT and Fusion, Prentice Hall.

MANDRIOLI, D., MORASCA, S. AND MORZENTI, A. 1995. Generating test cases for real-time
systems from logic specifications, ACM-TOCS - Transactions on Computer Systems, 13, 4,
pp. 365-398.

39

MAROTTA, A., MORZENTI, A. AND MANDRIOLI, D. 2001. Modeling and Analyzing Real-Time
CORBA and Supervision & Control Framework and Applications, Proc. of 21st
International Conference on Distributed Computer Systems (ICDCS 2001).

MILLS, H., DYER, M. AND LINGER, R. 1987. Cleanroom Software Engineering, IEEE Software
vol. 4, n. 5, pages 19-25.

MORZENTI, A., PRADELLA, M., ROSSI, M., RUSSO, S. AND SERGIO, A. 1999. A Case Study in
Object-oriented modeling and Design of Distributed Multimedia Applications, Proc. of 2nd
Symposium on Software Engineering for Parallel and Distributed Systems (PDSE'99), Los
Angeles (USA), IEEE Computer Society Press, pp 217 – 223.

MORZENTI, A. AND SAN PIETRO, P. 1994. Object-Oriented logic specifications of time critical
systems, ACM-TOSEM - Transactions on Software Engineering and Methodologies, 3, 1,
pp. 56-98, January 1994.

NEEMA, S., BAPTY T, GRAY J AND GOKHALE A 2002. Generators for Synthesis of QoS
Adaptation in Distributed Real-Time Embedded Systems, First ACM SIGPLAN/SIGSOFT
Conference on Generative Programming and Component Engineering (GPCE 2002)
Pittsburgh (USA), pp. 236-251.

OPENDREAMS CONSORTIUM, Final Report, Deliv. WP0/T0.1-ALCT-REP/R01e
OPENDREAMS II CONSORTIUM 2000. Final Report, Deliv. WP0/T0.1-ALCT-REP/R01b-V1.
OPENDREAMS II CONSORTIUM 1998a. EMS Application Specification Extensions, Deliv.

WP7/T7.1-ENEL-REP/R71-V1.
OPENDREAMS II CONSORTIUM 1998b. Formalization of OD Services, Deliv. WP1/T1.3-

PdM-REP/R13-V1.
OPENDREAMS II CONSORTIUM 1998c. Activity Modules Functional Specification, Deliv.

WP3/T3.3-ISR-REP/R33-V2.
OPENDREAMS II CONSORTIUM 1998d. Utility Modules Functional Specification, Deliv.

WP3/T3.2-ALCT-REP/R32-V1.
OMG 2000. The Common Object Request Broker: Architecture and Specification, Revision

2.4, OMG Technical Report 2000-10-01, 492 Old Connecticut Path, Framingham, MA
01701, USA.

OMG 2001a. The Common Object Request Broker: Architecture and Specification, Revision
2.5, OMG Technical Report 2001-09-34, 492 Old Connecticut Path, Framingham, MA
01701, USA.

OMG 2001b. Event Service Specification, OMG Technical Report 2001-03-01, 492 Old
Connecticut Path, Framingham, MA 01701, USA.

OMG 2001c. Model Driven Architecture - A Technical Perspective, OMG Technical Report
ormsc/2001-07-01, 492 Old Connecticut Path, Framingham, MA 01701, USA.

OMG 2001d. Software Process Engineering Metamodel, OMG Technical Report 2002-11-14,
492 Old Connecticut Path, Framingham, MA 01701, USA.

OMG 2002a. The Common Object Request Broker: Architecture and Specification, Revision
3.0, OMG Technical Report 2002-06-01, 492 Old Connecticut Path, Framingham, MA
01701, USA.

OMG 2002b. Real-Time CORBA Specification, OMG Technical Report 2002-08-02, 492 Old
Connecticut Path, Framingham, MA 01701, USA.

OMG 2002c. UML Profile for CORBA Specification, OMG Technical Report 2002-04-01,
492 Old Connecticut Path, Framingham, MA 01701, USA.

40

OMG 2003. OMG Unified Modeling Language Specification, OMG Technical Report 2003-
03-01, 492 Old Connecticut Path, Framingham, MA 01701, USA.

OWRE, S., RUSHBY, J. M. AND SHANKAR, N. 1992. PVS: A Prototype Verification System.,
Proc. of the 11th International Conference on Automated Deduction, Lecture Notes in
Computer Science no. 607, pp. 748 – 752.

ORAM, A. (ed) 2001. “Peer-to-Peer, Harnessing the Power of Disruptive Technologies”,
O’Reilly

PARNAS, D. L. AND CLEMENTS, P. C. 1986. A rational design process: how and why to fake it,
IEEE Transactions on Software Engineering, 12, 2, pp. 251-257.

PITT E. AND MCNIFF K. 2001. “Java™.rmi: The Remote Method Invocation Guide”, Addison-
Wesley

PRADELLA, M. 2000. Methods and Tools for the Design and Analysis of Distributed
Supervision and Control Systems, Ph.D. Thesis, Politecnico di Milano.
www.elet.polimi.it/upload/pradella.

PRADOVERA, P. 2001. A Feasibility Study of Real-Time Systems Based on the Common
Object Request Architecture, Ms Thesis, University of Illinois at Chicago.

ROBBINS, J. E., MEDVIDOVIC, N., REDMILES, D. F. AND ROSENBLUM, D. S. 1998. Integrating
Architecture Description Languages with a Standard Design Method, Proceedings of the
20th International Conference on Software Engineering, Kyoto, Japan.

ROSSI, M. 2002. Modeling and Analysis of CORBA-based Real-time Distributed Systems,
Ph.D. Thesis, Politecnico di Milano. www.elet.polimi.it/upload/rossi/.

RUMBAUGH, J., BLAHA, M. W., PREMERLANI, F., EDDY, F. AND LORENSEN, W. 1991. Object-
Oriented Modeling and Design, Prentice Hall.

SAIEDIAN, H., BOWEN, J. P., BUTLER, R. W., DILL, D. L., GLASS, R. L., GRIES, D., HALL, A.,
HINCHEY, M. G., HOLLOWAY, C. M., JACKSON, D., JONES, C. B., LUTZ, M. J., PARNAS, D. L.,
RUSHBY, J., WING, J. AND ZAVE, P. 1996. “An Invitation to Formal Methods” IEEE
Computer, Vol. 29, No. 4, pp.16-30.

SAN PIETRO, P., MORZENTI, A. AND MORASCA, S. 2000. Test Case Generation for Modular
Time Critical Systems, IEEE Transactions on Software Engineering, 26, 2.

SCHMIDT, D. Real-Time CORBA with TAO. www.cs.wustl.edu/~schmidt/tao.html.
SCHMIDT, D. C., LEVINE, D. AND MUNGEE, S. 1998. The Design of the TAO Real-Time Object

Request Broker, Computer Communications Special Issue on Building Quality of Service
into Distributed Systems, Elsevier Science, Volume 21, No. 4, pp. 294-324.

SELIC, B., GULLEKON, G. AND WARD, P. T. 1994. Real-Time Object-Oriented Modeling, J.
Wiley.

SIEGEL, J. 2000. CORBA 3 Fundamentals of Programming, J. Wiley.
SOLEY, R. AND STONE, C. (ed) 1995. Object Management Architecture Guide, J. Wiley.

