

A Case Study in Object-or iented Modeling and Design of
Distr ibuted Multimedia Applications1

Angelo M orzenti1, Matteo Pradella1, M atteo Rossi1, Stefano Russo2, Antonio Sergio2
1 Dipartimento di Elettronica e Informazione, Politecnico di Milano,

Piazza Leonardo da Vinci 132, 20133 Milano, Italy, morzenti@elet.polimi.it
2 Dipartimento di Informatica e Sistemistica, Università di Napoli Federico II,

Via Claudio 21, 80125 Napoli, Italy, Stefano.Russo@unina.it

1 This work has been carried out partially with the financial support of the Ministero dell'Università e della Ricerca Scientifica e
Tecnologica (MURST) under Project MOSAICO (Design Methodologies and Tools of High Performance Systems for Distributed
Applications).

Abstract. This paper investigates the use of object-oriented
techniques for the specification and design of distributed
multimedia applications (DMAs). DMAs are a class of
software applications with a range of strong – often
conflicting – requirements of dynamicity, interactivity,
real-time synchronized processing of several media types,
network distribution, high-performance, fault-tolerance,
load balancing and security. The development of complex
DMAs can benefit from the adoption of object design
methods and distributed objects implementation
technologies. The paper describes the use of two modeling
approaches, based on the standard UML modeling
language, and on the TRIO formal specification language,
respectively. The problem of defining steps to move from
the UML or TRIO specification to a CORBA IDL
implementation is addressed too. An experimental
distributed Video-on-Demand system is used throughout
the paper as a case study.

1. Introduction
Distributed Multimedia Applications (DMAs) are a class
of software systems that benefits from technological
advances in several areas – from networking to image and
other media processing – to provide end-users with highly
interactive, real-time access to remote resources and/or to
distributed collaborative processing. Examples of DMAs
are computer-supported cooperative work systems, video
conferencing systems, video-on-demand systems [1].

Key characteristics of DMAs are interactivity,
multimediality (i.e., the processing of several media
types), dynamicity, network distribution, high-
performance and synchronisation between different media
types (for real-time delivery of multimedia sources). The
requirements of advanced DMAs often include also issues
of fault-tolerance, load balancing and security. Further
desirable features include user friendliness, network
transparency, fault-tolerance and quality-of-service
guarantee.

This paper investigates the use of object-oriented (OO)
techniques for the development of a typical DMA, a
Video-on-Demand system (VoD). Two specification

approaches are discussed, based on the standard UML
modeling language [2], and on the TRIO formal
specification language [3], respectively. As distributed
objects platforms, especially CORBA, are gaining
increasing popularity [4], we also address the important
issue of moving from the specification to the CORBA IDL
definition of objects interfaces.

The paper structure is the following. Next two Sections
summarize expected benefits of using OO techniques for
DMAs, also in relationship to previous related work.
Section 4 introduces the DiVA VoD case study. Sections 5
and 6 describe DiVA modeling with UML and TRIO,
while Section 7 discusses strategies for moving from the
specification to a CORBA implementation. Section 8
gives concluding remarks.

2. OO design of DM As

OO software engineering offers a way to deal with
software development which centres all phases, from
domain modeling to software design and implementation,
around the concept of object, as an entity that incorporates
both a state and a behaviour.

Many OO analysis and design (OOA& D) methods
appeared in the late ’80s and early ’90s, including Schlaer
and Mellor, Coad and Yourdon, Booch, Rumbaugh,
Jacobson. Recently, these last three authors have joined
their forces in the effort to define a standard method. The
result is a unified notation for analysis and design known
as Unified Modeling Language [2].

UML provides a rich set of diagram types to describe
static and dynamic aspects of the system under
development, modeling user requirements, system
components, their interactions and their internal
behaviour. There exist commercial CASE support tools to
produce UML diagrams and acting as software
documentation repository. UML pays much attention to
ease of use and to providing support to mature and
engineering practices to software modeling. However it
lacks formality, especially for modeling behavioural and
real-time aspects.

One formal language for OO specification of real-time
software systems is TRIO [3]. The specification of a
system in TRIO consists of a graphical and a textual part.
The graphical notation is used to depict classes with their
interfaces, and the connections between them. Classes may
be simple or structured, i.e. composed of subclasses. The
textual part describes, in addition to the above, time
dependent and time independent items (constants,
functions, predicates, propositions), and axioms, which
are formulas in a temporal logic language. Using TRIO,
the designer can specify formally the structural as well as
the real-time aspects of the system to develop, combining
sound OO abstraction mechanisms such as information
hiding, inheritance and genericity, with the unambiguity of
logic specifications.

As for implementation, in the last years a major
paradigm shift in the area of client-server systems has
been driven by the advent of distributed objects
technology [4]. The Common Object Request Broker
Architecture (CORBA) standard by the Object
Management Group is one such middleware platform [5].

OO methods and distributed objects technology can
facilitate the development of complex DMAs. On the one
hand, OO design methods promote strong modularity,
which is essential to DMAs [6]. They ease the
identification of software components (objects) with clear
boundaries, each responsible for providing in a transparent
way the various system services and tasks, such as
operating media hardware, managing network
connections, implementing control policies, providing
fault-tolerance and security, and interfacing end-users.

On the other hand, distributed objects technology claim
to provide definite advantages in terms of development
cost, management of heterogeneity and distribution of
resources, location transparency, reuse of existing
subsystems, software modularity, and ease of integration
with Web technology.

Despite this, no dedicated methods exist today for the
development of CORBA systems, as well as no technique
is available for moving from an OO specification to a
CORBA architecture. These are still open research issues.
By means of a sample DMA application, this paper deals
with the definition of methods to address such issues.

3. Related work
Previous work on the OO design of a DMA has shown the
suitability of the PARSE methodology for this purpose [6].
PARSE is an object-based methodology supporting a
systematic design refinement process, based on a graphical
notation named PARSE process graphs [7].

The mapping from the PARSE design onto a message
passing Application Programming Interface is also
discussed in [6]. Here we are concerned with distributed
objects target platforms.

4. The VoD case study
DiVA (Distributed Video Architecture) is an experimental
distributed Video-on-Demand system under development
at the Department of Computer and Systems Engineering
of the Federico II University of Naples [8]. DiVA is an
interactive client-server system for retrieval and real-time
delivery of video sources from a remote distributed
database; as such, it is a typical DMA.

The general structure of DiVA is depicted in Fig. 1.
The video sources are distributed over the network in
several sites, managed by film server objects. A central
application server (VideoServer) is assumed to provide the
user clients with the functionality of searching the
distributed database for available films and selecting a
video source. The client and film server computers then
synchronize for audio/video real-time data transmission.
Multiple user sessions may be active concurrently.

VideoServer VideoClient

Connection

Film

request film

VideoClient

Video sources

FilmServer

Video sources

FilmServer

Frame trasmission

Fig. 1: The DiVA system.

5. DiVA modeling with UM L
The first step in the OO development is to describe user
requirements; these are captured in UML by means of use
cases diagrams. A use case is a metaphore for describing a
user interaction with the system2; use cases are obviously
related to system functionalities. Fig. 2 shows the use case
diagram for our VoD system. For brevity, further
functionalities for other kinds of actors, such as
configuration functions acted by the system manager, are
not modeled here. The extends relationship in Fig. 2 means
that ListRequest and FilmRequest are subcases of the
more general ConnectionRequest use case.

Video on Demand

User

Connection
Request

List
Request

Film
Request

<<extends>><<extends>>

Fig. 2. DiVA UML use case diagram.

2 Actually, actors are shown in a use case diagram, modeling
roles played by users in typical interactions with the system.

VideoServer

Film List URL List

Global
Film List

Parameter
List

Film

Login
List

VideoServer
Control

FilmServer

Local
Film List Parameters

FilmServer
Sender

update

*

update

*

activation

*

VideoClient

request

* *

request

*

*

Fig. 3. DiVA UML class and component model.

The next step is to identify problem domain objects.
These are captured in the UML class diagram. The set of
classes of DiVA objects and their relationships
(hierarchical and associations) are shown in Fig. 3. There
are objects responsible for managing local and global
directories of available clips, configuration and load
parameters, and video frames transmission to the client.

As we move toward the design phase, the problem
domain object model is refined in several ways. One
concerns the inclusion of solution domain objects and
responsibilities. In the development of DMAs, it is at this
stage that concerns such as how to operate media and
network hardware come into play. In DiVA, for instance,
the FilmServer object is responsible for delivering audio-
video data to VideoClient. For this purpose, DiVA uses a
specialised software library, the Continuous Media Toolkit
(CMT) developed at Berkeley University [9]. The use of
CMT is encapsulated within proper objects created by
FilmServer and VideoClient. A future version of DiVA
will be based around the Java Media Framework library
[10]. A good object-based design should provide the
advantage of high locality of changes for such
maintenance activity. Ideally, the replacement of CMT
with JMF would be totally transparent to other methods
and objects.

The refinement of the object model proceeds also in
the direction of identification of system components.
Objects with a strong degree of cohesion are grouped
together, representing subsystems with clear boundaries.
The UML component diagram captures this aspect. For
distributed systems like DiVA, components should
represent candidate subsystems with respect to partitioning
and allocation. Clustering of objects in the DiVA design is
shown for the sake of space on the object model (Fig. 3).
Three subsystems are shown: FilmServer, VideoServer
and VideoClient.

VC :
VideoClient

VS :
VideoServer

FS :
FilmServer

login()

logged in()

list()

URL request()

list request()

load balancing()

sender activation()

activation OK()
ID client()URL()

receiver activation()

frames()

Fig. 4. UML sequence diagram.

Having identified system objects and components, the
design proceeds to the definition of the objects’ behaviour.
The class diagram usually contains the classes’
responsibilities, in terms of the main operations they offer.
The external behaviour of objects is now further refined
describing the interactions between them. UML provides
sequence or collaboration diagrams to describe how
groups of objects collaborate in some behaviour.

In DiVA, the flow of messages in a typical user session
is shown in Fig. 4. Once a user request has been accepted,
VideoServer interacts with FilmServer to start delivery of
the film (sequence diagram is not shown here).

The OO design proceeds through the definition of the
internal behaviour of each object in the system. For this
purpose, UML provides state diagrams, a variation of
David Harel’ s statecharts. Figure 5 shows the state
diagram of a VideoClient object.

Drawing state diagrams is useful for specifying the
dynamics, across use cases, of a single (non-trivial) object.
They complement interaction diagrams, which are good at
describing the behaviour of several objects in a single use
case. Moreover, consistency checks can be performed
(supported by CASE tools) with respect to the object’s
interface, since state changes happen only as a result of
events that reach the object.

wait list URL request

wait URL

receiving film

riceiving list

send URL request to VideoServer

send login to FilmServer

request film to FilmServer

wait reply
from

VideoServer
login to VideoServer

list request

login notOK list not available URL not available

not URL

login notOK

sending frames

end

film request

receiving list

wait reply
from

FilmServer

Fig. 5. State diagram of a VideoClient object.

Fig. 6. DiVA TRIO class diagram.

6. DiVA modeling with TRIO
Figure 6 shows the class diagram of DiVA, using the
TRIO notation. This notation is quite intuitive: the boxes
represent the classes. A class logic item is depicted by a
line into the class' box: this line continues outside when
it's visible. Bold line stands for state items, i.e. items
possibly holding in intervals of the time domain. Items
represented with a dot are event items, i.e. items possibly
holding only in insulated instants of the time domain.
Arrays of classes are depicted by stack of boxes.

As we can see, the TRIO class diagram structure is
almost identical to the one of Fig. 3. The main difference
resides in the description of operations: one operation is
usually represented by a complex set of logical items and
relations between them. So the number of connections in
the TRIO class diagram is naturally greater than the
number of arrows shown in Fig. 6. As we will see, the
TRIO/CORBA methodology permits the passage from
"simple" logical items to complex CORBA concepts like
operations and attributes.

The brief description of the TRIO specified system is
the following. A video client sends its identification data
(login, password) to the video server to open a session
(event 'open_session'); if the client is authenticated
('login_validated'), it can then issue requests to the video
server, to obtain the list of available films
('request_film_list'), or to receive a specific film
('request_film'). When the video server receives a request
for an available film, it determines which is the film
server that will transmit the film to the video client; it
then requests ('activate_send_film') the film transmission
from the film server to the video client. Like for UML, in

the TRIO specification film transmission has not been
modeled in its details: we represented that fact that
multimedia data are exchanged between a film server
and a video client by means of a state
('film_transmission'), which describes when data
(frames) are flowing. For load balancing reasons, the
video server can ask a film server which is the work-load
it is carrying ('request_load'). A film server notifies the
video server when a film is added/removed from its local
database ('add_film', 'remove_film'). When a video client
has no more requests to issue, it closes the session
opened by the video server ('close_session'). Errors are
signaled ('errorVideoClient', 'errorVideoServer') when
illegal operations are performed.

Fig. 7 shows a sample axiom taken from the class
VideoServer. The intuitive meaning of this formula is the
following. If a video client vcID issues a valid film list
request to the video server (i.e. if the request is
associated with a valid session identifier sID), then either
the film list is sent to the video client, or error
'ListNotAvailable' is signaled, within a time interval of
RESP_MAX_DELAY. RESP_MAX_DELAY is a
constant which depends on the system and the used
ORB.

Answer_to_a_film_list_request_1
film_list_request(vcID, i, sID) ∧ logged_in(sID) �
 WithinF (send_film_list(vcID, i) ∨
 errorVideoClient(vcID, i, ListNotAvailable),
 RESP_MAX_DELAY)

Fig. 7. A TRIO sample axiom for the DiVA system.

VideoServer

FilmServers

VideoClients

film_request

send_film_list

errorVideoClient

film_list_request

film_list_sent

open_session

ad
d_

fil
m

re
m

ov
e_

fil
m

lo
ad

_r
eq

ue
st

se
nd

_l
oa

d

ac
tiv

at
e_

se
nd

_f
ilm

film_transmission

er
ro

r

validate_login

close_session

password
request_film

film_location
receive_film_list

error
logged_in

logged_in

request_film_list

film_list

open_session

ad
d_

fil
m

re
m

ov
e_

fil
m

re
qu

es
t_

lo
ad

re
ce

iv
e_

lo
ad

ac
tiv

at
e_

se
nd

_f
ilm

fil
m

_t
ra

ns
m

is
si

on

er
ro

rF
ilm

S
er

ve
r

login_validated

close_session

VideoOnDemand

7. From the OO specification to the CORBA
system design
The development cycle of a CORBA application under
Iona’s Orbix [11] consists of:

- definition of the IDL interfaces for CORBA
objects’ classes;

- implementation of classes;
- CORBA server program implementation;
- CORBA client program implementation.
The CORBA server program is responsible for

making CORBA server objects available through the
ORB. The minimum the server program has to do is to
instantiate static CORBA server objects and register
them under the broker. The client program is responsible
for the instantiation of client objects.

In the design of the software architecture of a
CORBA implementation of a system specified with
UML, the class diagram allows an initial definition of
the actual CORBA objects and, for each of them, of the
public parts (attributes and operations) to be included in
the IDL interface. IDL is the objects’ Interface
Description Language of CORBA. IDL has a C++ like
syntax for the definition of the objects’ public interfaces,
corresponding to the responsibilities drawn in the UML
modeling phase.

The IDL code for DiVA-CORBA object follows.

/ / I DL code f or t he Di VA obj ec t s
i nt er f aces
#i nc l ude “ def . i dl ” / / User dat a t ypes
def i ni t i ons

/ / Def i ni t i on of except i ons gener at ed by
Vi deoSer ver
except i on NoAccess { st r i ng r eason; } ;
except i on NoLi s t { st r i ng r eason; } ;

except i on NoURL { st r i ng r eason; } ;
except i on Unr each { st r i ng r eason; } ;

/ / Vi deoSer ver i nt er f ace t owar ds
Vi deoCl i ent
i nt er f ace Vi deoSer ver {
 voi d l ogi n (i n st r i ng l ogi n, i n s t r i ng
passwor d,
 out uns i gned l ong i dcl i ent)
 r ai ses (NoAccess) ;
 voi d Get Li st (out seqFi l mI nf Fi l mLi st)
 r ai ses (NoLi st) ;
 voi d Get URL(i n uns i gned l ong i dcl i p ,
out Fi l mI nf Fi l m)
 r ai ses (NoURL, Unr each) ;
} ;

/ / Vi deoSer ver i nt er f ace t o Vi deoCl i ent
i nt er f ace VS_t o_FS {
 voi d Bui l dGl obal Li st (i n seqRemot eDat a
Local Li s t , i n URL l ocat i on)
 r ai ses (NoLi st) ;
} ;

/ / def i ni t i on of except i ons gener at ed by
Fi l mSer ver
except i on NoVal ues { s t r i ng r eason; } ;
except i on NoFi l mLi s t { s t r i ng r eason; } ;
except i on NoAccessFS { s t r i ng r eason; } ;

/ / Fi l mSer ver i nt er f ace t o Vi deoCl i ent
i nt er f ace Fi l mSer ver {
 voi d l ogi n (i n uns i gned l ong i dcl i ent)
 r ai ses (NoAccessFS) ;
} ;

/ / Fi l mSer ver i nt er f ace t owar ds
Vi deoSer ver
i nt er f ace FS_t o_VS {

VideoServerObj

«replicated» FilmServerObjs

VideoClientObjs

get_film_list

open_session

re
m

ov
e_

fil
m

ge
t_

lo
ad

frame_transmission

close_session

password

film_location

logged_in

get_film

ad
d_

fil
m

ac
tiv

at
e_

se
nd

_f
ilm

«n
ob

lo
ck

»

Step 5 - VideoOnDemand

VideoServer

VS_to_FS

FS_to_VS

FilmServer

logged_in

Fig. 8. DiVA class diagram after having applied the T/C methodology.

 voi d Get Par amLi s t (i nout seqPar am
Par amLi st)
 r ai ses (NoVal ues) ;
 voi d UpAr ch(i n unsi gned l ong i dc l i ent) ;
} ;

The UML component diagram reveals useful to
define an initial static allocation of the CORBA objects
onto the distributed target platform. Sequence diagrams
define the flow of methods’ invocation between objects;
along with state diagrams, they guide the implementation
(coding) and the testing of objects’ behaviour (methods).

A drawback of the UML graphical notation is that it
lacks some rigor, since its semantics is not precisely
defined. On the other hand, this rigor can be provided by
the (complementary) use of formal languages.

The TRIO/CORBA language and methodology [12]
have been developed to introduce formal languages at
architectural design level. Following the TRIO/CORBA
(T/C) methodology it is possible to derive the CORBA
architecture of an application from its TRIO functional
specification. This architecture is rigorously formalized
through the T/C language.

The T/C methodology is composed of five steps: 1)
identification of data flows between TRIO classes; 2)
separation of data flows in operations and attributes and
identification of client-server relationships between
classes; 3) identification of interfaces and application
objects; 4) recognition of non-blocking operations and
read only attributes; 5) identification of CORBA
services.

The architecture of the DiVA-CORBA system that
we obtained through the T/C methodology is shown in
figure 8. All the logic items that in the TRIO class
diagram of figure 6 connected two different TRIO
classes are now organized in operations (for example

'get_film_list') offered by CORBA application objects
(in this case of operation 'get_film_list' this is the video
server) through IDL interfaces (e.g. 'VideoServer')3.

The T/C class diagram of figure 8 has a
corresponding textual description (expressed in the T/C
language), which defines rigorously the behavior (i.e. the
semantics) of the application objects and clients that
compose the DiVA-CORBA system.

It must be noted that the UML and the T/C
approaches are complementary. In fact, UML diagrams
can be formalized through the T/C language; viceversa,
form the T/C description of an application it is possible
to build the corresponding UML diagrams.

The overall architecture of the DiVA-CORBA
system is represented in Fig. 9. The graphical user
interface (VideoClient) recalls the corresponding
CORBA object VideoClient to which it propagates the
user requests (message no. 1 in Fig. 9); the requests are
sent through to the CORBA AMS object (VideoServer)
by means of the ORB (sequence of messages 2.1, 2.2).
Replies are then sent by CORBA AMS to CORBA
VideoClient (2.3, 2.4). Upon selection of a specific
videoclip, CORBA AMS interacts wiht CORBA
ArchServer (the public interface of the FilmServer) in
order to activate the Sender process that will take care of
the frame transmission. Concurrently, a dedicated
Receiver process in the CORBA VideoClient is
activated, responsible for flow synchronization and
display. At this point the real delivery takes place over
the channel created between Sender and Receiver.

3 Since the CORBA architecture of the DiVA system was
derived from the UML diagrams and from the TRIO
specification in two parallel projects, the two CORBA
structures can present some discrepancies.

ORB

VideoServer

Access Manager
CORBA Object

CORBA
VideoClient

VideoClient
(TCL/TK)

Receiver

VideoClient
(TCL/TK)

GUI

(1)

(2.3)
(3.1)

(2.5)

(2.2)

(2.1) (2.4)

ArchServer
(TCL/TK)

Sender

CORBA
ArchServer

(3.2)

(3.3)

(4)

ArchServer
(TCL/TK)

Sender

CORBA
ArchServer

FilmServer 1 FilmServer n

Fig. 9. Software architecture of DiVA-CORBA.

8. Conclusions and future work

We have described the object-oriented specification of a
Video-on-Demand system, and discussed advantages of
this approach in the development of distributed
multimedia applications.

Ease of modeling is among the major benefits of
popular OO modeling languages such as UML. When
real-time requirements come into play, however, formal
specification techniques are required, to support
automated checking or at least formal reasoning. UML
lacks such features. TRIO combines graphical and
textual descriptions; the latter specify behavioural
properties as logic formulas.

A pragmatic approach (UML) and a more formal one
(T/C) for moving from the OO specification to the
definition of the architecture of a CORBA system have
been sketched out. Although the VoD case study
represents well the class of DMAs, more research work
is required in this sense.

Previous work had focused on the use of the PARSE
process graph notation to design DMAs [3]. We believe
that UML lacks the kind of diagrams that PARSE
provides to define communication paths between
cooperating objects. These are very useful when building
distributed systems where communication is hand-coded
based on some message-passing API (like TCP/IP
sockets). However, this is not the case of a CORBA
implementation, since message-passing is implicit in the
semantics of distributed objects’ method invocation.

Several other issues still need to be considered. These
include the validation that functional and performance
requirements are met by the CORBA implementation.
Formal validation of the application can be achieved
through the TRIO semantic tools [13], once the CORBA
platform is also validated. It must be noted that platform
validation is one of the goals of the OpenDREAMS
ESPRIT project.

Future work on the DiVA case study will address the
incorporation of capabilities of fault-tolerance (to
recover from user session crashes) and load balancing
(among FilmServers). New dedicated objects responsible
for managing the status of the distributed system will be
added, and the VideoServer will be modified
accordingly, to implement predefined policies for
managing replicas and session recovery transparently to
VideoClients. We shall investigate how such
requirements can be specified formally, and then
implemented using CORBA services, like the replication
service defined in the OpenDREAMS ESPRIT project
[14], in such a way that requirements satisfaction can be
verified.

Acknowledgements
We acknowledge the contribution of Dr Lucia Merone to
the design and implementation of the DiVA system
under CORBA.

References

[1] F Fluckiger, Understanding Networked Multimedia
– applications and technologies, Prentice-Hall (1995)

[6] M. Fowler with K. Scott, UML distilled, Addison
Wesley (1997)

[3] E.Ciapessoni, A.Coen-Porisini, E.Crivelli,
D.Mandrioli, P.Mirandola, A.Morzenti, From formal
models to formally-based methods: an industrial
experience, ACM TOSEM - Transactions On Software
Engineering and Methodologies, vol. 8, No 1, January
1999, pages 80-115

[4] R. Orfali, D. Harkey, The Essential Distributed
Objects Survival Guide, John Wiley & sons (1997)

[5] T J Mowbray, W A Ruh, Inside CORBA:
Distributed Object Standards and Applications,
Addison Wesley (1997)

[6] A Y Liu, T S Chan and I Gorton, Designing
Distributed Multimedia Systems Using PARSE, Proc
IFIP Workshop on Software Engineering for Parallel
and Distributed Systems (PDSE96), April 1996, Berlin,
Germany, Chapman & Hall (1996)

[7] I Gorton, J P Gray and I E Jelly, Object Based
Modelling of Parallel Programs, IEEE Parallel and
Distributed Technology Journal, Vol 3, No. 2 (1995)

[8] DiVA Project, www.grid.unina.it/projects/diva

[9] Berkeley Continuous Media Toolkit,
bmrc.berkeley.edu/projects/cmt/cmt.html

[10] Sullivan et al., Programming with the Java Media
Framework, Wiley Computer Publishing (1998)

[11] S. Baker: CORBA Distributed Objects Using
Orbix. Addison-Wesley – ACM Press (1997)

[12] OpenDREAMS II Consortium, Intermediate
Application Development Methodology, Deliv.
WP5/T5.1-PDM-REP/R51a-V1 (1998)

[13] D. Mandrioli, S. Morasca, A. Morzenti,
Generating test cases for real-time systems from logic
specifications, ACM-TOCS - Transactions on
Computer Systems, 13(4) (1995)

[14] OpenDREAMS II Consortium, Replication Service
Design, Deliv. WP1/T1.4-EPFL-REP/IR14-V1 (1998)

