
Automated Verification of Dense-Time MTL

Specifications via Discrete-Time Approximation⋆

Carlo A. Furia1, Matteo Pradella2, and Matteo Rossi1

1 Dipartimento di Elettronica e Informazione, Politecnico di Milano, Italy
2 CNR IEIIT-MI, Milano, Italy

{furia, pradella, rossi}@elet.polimi.it
http://home.dei.polimi.it/lastname/

Abstract. This paper presents a verification technique for dense-time
MTL based on discretization. The technique reduces the validity prob-
lem of MTL formulas from dense to discrete time, through the notion of
sampling invariance, introduced in previous work [13]. Since the reduc-
tion is from an undecidable problem to a decidable one, the technique is
necessarily incomplete, so it fails to provide conclusive answers for some
formulas. The paper discusses this shortcoming and hints at how it can be
mitigated in practice. The verification technique has been implemented
on top of the Zot tool [19] for discrete-time bounded validity checking;
the paper also reports on in-the-small experiments with the tool, which
show some results that are promising in terms of performance.

Keywords: real-time, metric temporal logic, discretization, dense time,
verification techniques, sampling

1 Introduction

Metric temporal logics such as MTL [18] and TRIO [5] are effective and flexible
notations to model and reason about a wide range of systems — real-time, in
particular — with varying level of detail. Both MTL and TRIO are parametric
with respect to the temporal domain, and permit to describe systems either with
a dense or a discrete notion of time [11].

Indeed, when modeling the behavior of real-time systems, the nature of the
time domain plays a prominent role, and it must be carefully chosen. From a
modeling viewpoint, dense time offers advantages in terms of naturalness and
completeness of description, being of the same quality as “physical time”, in par-
ticular when describing the composition of purely asynchronous processes (which
can occur at any instant in time); also, it is usually strictly more expressive than
discrete time [2]. Conversely, in practice, discrete-time models are generally more
amenable to (automated) verification than dense-time ones. In fact, dense-time
formalisms are often undecidable or with highly complex decidability problems
[2]; in addition, while verification methods for discrete-time models can often

⋆ Work partially supported by MIUR under the FIRB ArtDeco project.

be built upon existing techniques (e.g., for LTL, automata, and untimed for-
malisms), the native treatment of dense time requires novel, more ingenuous,
solutions. In the literature, various techniques have been proposed to mitigate
this problem. A significant category of such approaches rely on some notion of
discretization, which consists in reducing the verification problem from dense to
discrete time. Therefore, discretization techniques permit the re-use of existing
techniques (and tools), but, for formalisms that are strictly more expressive in
their dense-time variant, they are also necessarily incomplete, i.e., they fail to
give conclusive results on some instances of the verification problem.

In [13], we introduced the notion of sampling for temporal logic formulas,
an idealization of the physical sampling process. We defined RZTRIO, a subset of
the TRIO metric temporal logic interpreted over behaviors (i.e., total functions
of time), and we identified a sufficient condition under which RZTRIO formulas
are sampling invariant (i.e., such that they can be interpreted consistently over
dense-time behaviors and over discrete-time samplings thereof). While the re-
sults of [13] were derived for RZTRIO, it is immediate to translate them for MTL,
the reference language in this paper. Hence, in the following we always refer to
MTL rather than RZTRIO, also when citing results from [13].

In the field of formal verification, automata-based techniques have been ex-
tensively studied [6]. However, in the last few years, the increased practical
efficiency of SAT solvers has rendered SAT-based verification techniques an in-
teresting and viable alternative [3]. These are particularly well-suited in purely
logical/descriptive approaches, where both the system to be analyzed and its
desired properties (i.e., the entire verification problem) are expressed as tempo-
ral logic formulas. In [20], we introduced Zot, a SAT-based verification tool for
discrete-time metric temporal logics with past operators (e.g., TRIO and MTL).

In this paper, we build upon the results of [13] and [20] to provide an ef-
fective, fully automated technique and tool for the verification of specifications
written in dense-time metric temporal logic. Our contribution is twofold. First,
the verification technique is introduced and proved sound. The technique relies
on two approximations (φ+ and φ−) of the formula representing the instance
of the verification problem. These approximations represent a mapping of the
problem to the discrete-time domain; in other words, they encode information
about the samplings of the original dense-time behaviors. Approximations are
built parametrically with respect to a chosen length of the sampling period for
these samplings. Then, the validity of φ+ over discrete time implies the validity
of the original formula over dense time; conversely, the non-validity of φ− over
discrete time implies the non-validity of the original formula over dense time.
As mentioned above, the technique must be incomplete, i.e., it may happen that
the validity check of the approximations yields inconclusive results. This paper
discusses how this can be mitigated in practice.

As a second contribution, we demonstrated the practical applicability of the
technique by implementing it on top of the Zot validity checker [19], and by
performing some experiments. Although limited to a small set of examples, our
tests show interesting results; in particular, incompleteness is shown to be not

2

often a practical hurdle (usually because other limitations are more significant,
such as the inherent scalability even of discrete-time methods). The tests are
thus a first assessment of the feasibility of our discretization techniques.

The paper is organized as follows: Section 1.1 surveys some related works on
discretization techniques; Section 2 introduces the MTL subset considered in this
paper and recalls the notions of sampling (and sampling invariance) from [13];
Section 3 presents the discretization technique itself; Section 4 briefly describes
the implementation and reports on the experiments carried out; finally, Section
5 concludes. For lack of space, we omit some proofs, a few technical details, and
several experimental results; we refer the interested reader to [12].

1.1 Related Works

The problem of reducing the dense-time verification problem to the discrete-time
one was first explicitly studied in the seminal paper by Henzinger, Manna, and
Pnueli [16]. Their discretization techniques are based on the notion of digitiza-
tion; a (semantic) property (i.e., a set of timed state sequences) is digitizable if it
is both closed under digitization and closed under inverse digitization. Basically,
a property is closed under digitization if all the timed state sequences obtained by
digitizing the real-timed state sequences are also integer-timed state sequences
of the property; conversely, a property is closed under inverse digitization if all
its integer-timed state sequences can be obtained by digitizing some real-timed
state sequences of the property. The digitization of a timed state sequence is built
by considering all possible roundings, with respect to any threshold 0 ≤ ǫ < 1, of
the timestamps in the timed state sequence. Note that the timestamps are weakly
monotonic, so that more than one state value can share the same timestamp.

The comparison between the notion of digitization and the notion of sam-
pling invariance — to be recalled in Section 2.2 — shows three main differences
(see [10] for details). First, digitization assumes weakly monotonic timed words
as semantic models, whereas sampling invariance considers (strongly monotonic)
interval-based behaviors; each of these models has its own advantages and dis-
advantages [17]. Second, it has been shown [10] that the sets of MTL properties
that are digitizable and sampling invariant are incomparable, i.e., there are dig-
itizable properties that are not sampling invariant and sampling invariant prop-
erties that are not digitizable; this suggests that discretization techniques based
on these two notions are likely to have different domains of applicability. Third,
whereas sampling invariance is a syntactic property (i.e., it is defined for MTL
formulas), digitizability is a semantic notion (i.e., it is defined for sets of timed
words); as a consequence it is straightforward to characterize a significant subset
of the MTL language whose formulas are sampling invariant, whereas doing the
same with respect to digitizability is considerably more complicated [4].

Many subsequent works have applied the notion of digitization of [16], or
other notions of discretization, to specific formalisms. In the remainder of this
section we briefly report on a few of them, referring to [12] for more examples.

Chakravorty and Pandya [4] apply the notion of digitization to Interval Du-
ration Logic (IDL), a variant of duration calculus where formulas are interpreted

3

over timed state sequences. Overall, they introduce a technique to reduce the
validity problem for dense-time IDL formulas to that of discrete-time IDL; this is
possible for all IDL formulas that are closed under inverse digitization. However,
it is hard to characterize closure under inverse digitization for IDL formulas;
to lessen the problem, a new notion of strong closure under inverse digitization
(SCID) is introduced. It is much simpler to determine if a formula is SCID,
and SCID formulas are also closed under inverse digitization. For formulas that
are not SCID, they give approximations to stronger and weaker formulas that
are SCID. Finally, the validity problem for discrete-time IDL is decidable. Us-
ing these techniques, Sharma, Pandya, and Chakravorty [21] experiment with a
variety of discrete-time verification tools.

De Alfaro and Manna [7] approach the problem of discretization with refer-
ence to the temporal logic TL, a particular flavor of predicative modal logic, and
to the timed trace semantics. The authors first introduce the notion of sample
invariance (not to be confused with our notion of sampling invariance, see Sec-
tion 2.2): a temporal logic is sample invariant if the formulas of the logic do not
distinguish between any two timed traces for which a (sufficiently fine-grained)
trace that refines both exists. Then, the notion of finite variability is introduced:
roughly speaking, a formula φ is finitely variable if, for each timed trace, one
can find a refinement (called ground trace) such that any subformula of φ has a
constant truth value within any interval of the refined trace. For finitely variable
formulas over ground traces, the satisfaction relation of a formula φ in the con-
tinuous semantics corresponds to that of Ω(φ) in the discrete semantics (where
Ω is a suitably defined translation function). The paper states some sufficient
syntactic condition for a formula to achieve the finite variability requirement.
Based on this, a methodology for continuous-time verification is proposed; it is
based on refinement of continuous-time formulas to finitely-variable formulas,
which can then be verified in discrete time.

Fainekos and Pappas [9] present a technique for testing specifications writ-
ten in MITL (an MTL subset) against continuous-time signals by analyzing only
discrete samplings of the signals. Their technique shares some underlying moti-
vations and ideas with ours, although the two approaches have complementary
scopes: our tool-supported technique provides a partial verification procedure
for MTL formulas through discrete-time analysis, whereas [9] discusses practical
conditions under which the continuous-time behavior of a dynamical system can
be analyzed by means of its discrete-time observations.

2 Preliminaries

2.1 Specification Language: MTL

In this paper, we consider a variant of purely propositional Metric Temporal
Logic (MTL, [2]) as the specification language. For brevity, we refer to this
variant simply as “MTL”.

Let P be a finite (non-empty) set of atomic propositions, and I the set of all
(possibly unbounded) intervals of the time domain T with rational endpoints.

4

In this paper T coincides with either the reals R (dense time) or the integers Z
(discrete time) — or some subset thereof; we call bi-infinite the sets R and Z,
and mono-infinite their subsets R≥0 and N = Z≥0.

Behaviors are total mappings b : T→ 2P that assign to every instant t ∈ T
the set of propositions b(t) ⊆ P that are true at t. We denote as BT the set of
all behaviors over T.

MTL syntax and semantics.

Syntax. The following grammar defines the syntax of MTL, where I ∈ I and β
is a Boolean combination of atomic propositions, i.e., β ::= p | ¬β | β1 ∧ β2 for
p ∈ P .

φ ::= β | φ1 ∨ φ2 | φ1 ∧ φ2 | UI(β1, β2) | SI(β1, β2) | RI(β1, β2) | TI(β1, β2)

The basic temporal operator of MTL is the bounded until UI (and its past
counterpart bounded since SI), whose subscript I denotes the interval of time
over which the operator predicates. However, the results of sampling invariance,
recalled in Section 2.2, as well as the discretization techniques introduced in
Section 3, are easier to present when referred to MTL formulas that are in a
normal form where negations are pushed down to (Boolean combinations of)
atomic propositions, and no temporal operators are nested. Therefore, for the
sake of simplicity, we introduced directly the MTL syntax for this normal form;
hence, we also have the operators bounded release RI and bounded trigger TI —
dual of until and since, respectively — as primitive.

Throughout the paper we omit the explicit treatment of past operators (i.e.,
SI and TI) as it can be trivially derived from that of the corresponding future
operators, as shown in [12]. We also assume a number of abbreviations, such as

⊥,⊤,⇒,⇔, and the following derived operators: ♦I(β) ≡ UI(⊤, β),
←−
♦ I(β) ≡

SI(⊤, β), �I(β) ≡ RI(⊥, β), and
←−
� I(β) ≡ TI(⊥, β).

Semantics. MTL semantics is defined over behaviors, parametrically with re-
spect to the choice of the time domain T.
b(t) |=T p iff p ∈ b(t)
b(t) |=T ¬p iff p 6∈ b(t)
b(t) |=T UI(β1, β2) iff there exists d ∈ I such that: b(t + d) |=T β2

and, for all u ∈ [0, d] it is b(t + u) |=T β1

b(t) |=T RI(β1, β2) iff for all d ∈ I it is: b(t + d) |=T β2 or there exists
a u ∈ [0, d) such that b(t + u) |=T β1

b(t) |=T φ1 ∧ φ2 iff b(t) |=T φ1 and b(t) |=T φ2

b(t) |=T φ1 ∨ φ2 iff b(t) |=T φ1 or b(t) |=T φ2

b |=T φ iff for all t ∈ T: b(t) |=T φ
Whenever for all b ∈ BT : b |=T φ we say that φ is T-valid and write |=T φ.

We remark that a global satisfiability semantics is assumed, i.e., the satis-
fiability of formulas is implicitly evaluated over all time instants in the time

5

domain. This permits the direct and natural expression of most common real-
time specifications (e.g., time-bounded response) without resorting to nesting
of temporal operators. In addition, every generic MTL formulas with nesting
temporal operators can be “flattened” to the form we introduced beforehand by
introducing auxiliary propositions; in other words flat MTL and full MTL are
equi-satisfiable [8, 10]. Also notice that our MTL variant uses operators that are
non-strict in their first argument, i.e., the future and past include the present
instant, and the until and since operators are matching, i.e., they require their
two arguments to hold together at some instant in I. Other work [14] analyzes
the impact of these variants on expressiveness.

MTL+/MTL∗ syntax and semantics. In order to express the discretization
relations in Section 3, it is necessary to introduce some variations of the four
basic temporal operators until, since, release, and trigger, denoted as U

↑
I , S

↑
I ,

R
↓
I , and T

↓
I , respectively. Notice that they are not part of the language in which

dense-time specifications and properties are to be expressed, and they are needed
only to illustrate the discretization techniques. We call “MTL+” the extension
of MTL with these operators, and “MTL∗” the variant where we replace the
operators UI , SI , RI , TI with U

↑
I , S

↑
I , R

↓
I , and T

↓
I , respectively.

Let us define the semantics of the new variants of until and release.
b(t) |=T U

↑
I(β1, β2) iff there exists d ∈ I such that: b(t + d) |=T β2

and, for all u ∈ [0, d) it is b(t + u) |=T β1

b(t) |=T R
↓
I(φ1, φ2) iff for all d ∈ I it is: b(t + d) |=T φ2 or there exists

a u ∈ [0, d] such that b(t + u) |=T φ1

Granularity. For an MTL formula φ, let Iφ be the set of all non-null, finite
interval bounds appearing in φ. Given a formula φ, its granularity ρφ is a pair
of values (rφ, Rφ) where rφ is the greatest common divisor of the numerators of
the elements in Iφ, and Rφ is the least common multiple of the denominators
of the elements in Iφ. For any formula φ, we define Dφ as the set of positive
values δ such that any interval bound in Iφ is an integer if divided by δ; it is
not difficult to show that Dφ can be derived from the granularity ρφ as the set
of all fractions d/D such that: (1) D is a multiple of Rφ; and (2) d divides rφ.
Also notice that Dφ has a maximum (given by rφ/Rφ) but no minimum. D is
generalized to sets of formulas Φ in an obvious manner.

2.2 Sampling Invariance

The discretization technique developed in Section 3 is based on the notion of
sampling invariance [13]. This sub-section recalls the basic definitions and results
about sampling invariance that are needed in the remainder; we refer to [13] for
details. Note that, although sampling invariance results are presented in terms
of bi-infinite time domains, they are valid in the mono-infinite case as well.

The notion of sampling invariance characterizes formulas whose truth value
is “consistent” whether they are interpreted over dense-time or discrete-time

6

behaviors. Informally, a formula φ is sampling invariant if the discrete-time be-
haviors that satisfy φ coincide with those obtained by “sampling” all the suffi-
ciently slow dense-time behaviors that satisfy another formula φ′ (where φ′ is
obtained from φ by suitably relaxing its interval bounds), and vice versa when φ
is interpreted as a dense-time formula. Below, we recall the precise definition of
sampling invariance, after briefly introducing the basic notions that are needed.

Bounded variability. As mentioned above, sampling invariance requires behaviors
to be “sufficiently slow”, with respect to a chosen period δ ∈ R>0. Informally,
the truth value of any atomic proposition must change at most once every δ
time units; in other words, the change rate is bounded above by 1/δ. In fact, this
requirement is sometimes called bounded variability [22]. The bounded variability
requirement can be expressed as an MTL formula χ, which we do not report here
for brevity [13]. We denote the set of all dense-time behaviors satisfying χ by
Bχ ⊂ BR, and we call them χ-regular behaviors. A formula φ is called χ-valid if
b |=R φ for all b ∈ Bχ, and χ-satisfiable if b |=R φ for some b ∈ Bχ.

Zeno and Berkeley. A Zeno behavior is one where time progresses only by in-
finitesimal amounts, and thus it stops, instead of diverging. The name “Zeno”
(introduced by Abadi and Lamport [1]) is a reference to the Greek philosopher
Zeno of Elea and his paradoxes on time advancement. In this vein, we desig-
nate χ-regular behaviors “non-Berkeley” [10], from the Irish philosopher George
Berkeley3 and his investigations arguing against the notion of infinitesimal. So, a
behavior is “Berkeley” when it does not obey constraint χ for any value of δ; thus
the minimum distance in time between consecutive state changes is infinitesi-
mal. Zeno behaviors are a special case of Berkeley behaviors; more generally, in
a Berkeley behavior time can diverge, but with the system becoming arbitrarily
“fast”. See [10] for more details.

Sampling of a behavior. Let b ∈ BR be a dense-time behavior. Its sampling, with
sampling period δ ∈ R>0, is a discrete-time behavior b′ = σδ [b] ∈ BZ that agrees
with b at all integer multiples of δ. Formally: b′(k) = b(kδ) for all k ∈ Z.4

Let us point out a straightforward property of the sampling function σδ [·]
with respect to the set of behaviors Bχ.

Lemma 1 (Properties of σδ [·]). For any δ ∈ R>0, σδ [·] is onto and total.

Adaptation functions. To “switch” from the discrete-time to the dense-time in-
terpretation of a formula φ in a way that preserves the truth value of φ, one has
to “adapt” the interval bounds appearing in φ. This adaptation is formalized
by two functions ηRδ {·} and ηZδ {·}: the former adapts dense-time formulas to be
discrete-time ones, while the latter performs the converse.

3 See e.g., http://www-groups.dcs.st-and.ac.uk/∼history/Biographies/Berkeley.html
4 The original definition in [13] also introduced a basic offset z ∈ R, but since it does

not play any role in the present discussion we simply take it to be zero.

7

The exact definition of ηRδ {·} and ηZδ {·}, omitted for the lack of space, is
given in [13, 12]. We note that, if φ is an MTL formula, then ηRδ {φ} is an MTL∗

formula and ηZδ {φ} is an MTL formula.

Sampling invariance. Let us introduce precisely the notion of sampling invari-
ance as a property of MTL formulas.

Theorem 1 (Sampling Invariance [13]). Any MTL formula φ is sampling
invariant, that is, for any sampling period δ: (1) (closure under sampling) for all
dense-time behavior b ∈ Bχ, if b |=R φ then σδ [b] |=Z ηRδ {φ}; and (2) (closure
under inverse sampling) for all discrete-time behavior b ∈ BZ, if b |=Z φ then
∀b′ ∈ Bχ such that σδ [b′] = b, it is b′ |=R ηZδ {φ}.
3 Discretization of Dense-Time MTL Through Sampling

This section presents a discretization technique to solve the verification problem
for MTL specifications.

First of all, given a dense-time MTL formula φ and a sampling period δ > 0,
we define two functions Ωδ : MTL → MTL∗, Oδ : MTL → MTL that approx-
imate φ through the discrete-time formulas Ωδ (φ) and Oδ (φ); basically, these
retain some properties of the samplings of the dense-time behaviors satisfying
φ, in a way that allows us to infer the validity of φ from the validity of its
approximations. For reasons that will become apparent shortly, we name Ωδ (φ)
the under-approximation of φ, and Oδ (φ) the over-approximation. They are pre-
sented in Sections 3.1 and 3.2, respectively.

In general, the verification problem consists in checking whether a system,
described by a specification formula φsys, satisfies a given property φprop; in other
words, whether b |=R φprop holds for any behavior b for which b |=R φsys holds.
Section 3.3 shows how to construct two discrete-time formulas φ+, φ− that are
both built upon the over- and under-approximations of φsys and φprop. Then:

– the validity of φ+ over discrete time implies that system φsys satisfies property
φprop over dense-time non-Berkeley behaviors;

– the non-validity of φ− over discrete time implies that system φsys does not
satisfy property φprop over some non-Berkeley dense-time behavior.

Finally, Section 3.4 shows how the previously introduced approximations
can be used in an algorithm to verify a system specified in dense time. The
resulting verification technique is however incomplete, in that the results from
the validity checking of the approximations of a formula can be inconclusive;
therefore the algorithm can fail. The incompleteness may be partially mitigated
by suitably choosing the sampling period δ, but it cannot be entirely avoided.
This is inevitable, since the approximation is a simplification of the dense-time
verification problem, which cannot be fully captured by discrete-time reasoning
only, for a number of well-known reasons [2, 15].

8

3.1 Under-Approximation

The approximation function Ωδ (·) maps dense-time MTL formulas to discrete-
time MTL∗ formulas such that the non-validity of the latter implies the non-
validity of the former, over behaviors in Bχ. More precisely, for MTL formulas
such that the chosen sampling period δ is in Dφ (see Section 2.1), Ωδ (·) is defined
as follows.

Ωδ (β) ≡ β
Ωδ (φ1 ∧ φ2) ≡ Ωδ (φ1) ∧Ωδ (φ2)
Ωδ (φ1 ∨ φ2) ≡ Ωδ (φ1) ∨Ωδ (φ2)

Ωδ

(

U〈l,u〉(φ1, φ2)
)

≡ U
↑
[l/δ,u/δ](Ωδ (φ1) , Ωδ (φ2))

Ωδ

(

R〈l,u〉(φ1, φ2)
)

≡ R
↓
〈l/δ,u/δ〉(Ωδ (φ1) , Ωδ (φ2))

The following lemma, proved in [12], justifies the name under-approximation.

Lemma 2 (Under-approximation). For any MTL formula φ, for any δ ∈
Dφ, and for any b ∈ BZ: if b 6|=Z Ωδ (φ) then for all b′ ∈ Bχ such that σδ [b′] = b
it is b′ 6|=R φ.

3.2 Over-Approximation

The approximation function Oδ (·) maps dense-time MTL formulas to discrete-
time MTL formulas such that the validity of the latter implies the validity of the
former, over behaviors in Bχ. More precisely, for MTL formulas such that the
chosen sampling period δ is in Dφ (see Section 2.1), Oδ (·) is defined as follows.

Oδ (β) ≡ β
Oδ (φ1 ∨ φ2) ≡ Oδ (φ1) ∨Oδ (φ2)
Oδ (φ1 ∧ φ2) ≡ Oδ (φ1) ∧Oδ (φ2)

Oδ

(

U〈l,u〉(φ1, φ2)
)

≡ U[l/δ+1,u/δ−1](Oδ (φ1) , Oδ (φ2))

Oδ

(

R〈l,u〉(φ1, φ2)
)

≡ R[l/δ−1,u/δ+1](Oδ (φ1) , Oδ (φ2))

The following lemma justifies the name over-approximation.

Lemma 3 (Over-approximation). For any MTL formula φ, for any δ ∈ Dφ,
and for any b ∈ BZ: if b |=Z Oδ (φ) then for all b′ ∈ Bχ such that σδ [b′] = b it is
b′ |=R φ.

Proof (sketch, see also [12]). Oδ (φ) is an MTL formula, which is therefore sam-
pling invariant according to Theorem 1, and in particular closed under inverse
sampling. Therefore, let b ∈ BZ such that b |=Z Oδ (φ). Then the definition of
closure under inverse sampling implies that all b′ ∈ Bχ such that b = σδ [b′]
satisfy b′ |=R ηZδ {Oδ (φ)}. According to the definition of ηZδ {·} (given in [12,
Tab. 3]), one can check that ηZδ {Oδ (φ)} ⇒ φ is valid. More precisely, ηZδ {·}
allows one to choose arbitrarily if any interval 〈l, u〉 of until and since should be
closed or not, so that it is possible to match the original intervals in φ. Moreover,

9

ηZδ {·} always yields a closed interval in instances of release and trigger ; there-
fore, it gives either the same subformula as in φ, or a strengthening of it, when it
replaces an open interval with its closure. It is easy to check that this property
is lifted to whole formulas. All in all, b′ |=R ηZδ {Oδ (φ)} implies b′ |=R φ.

3.3 System Approximations

Let us now consider a system formally described by an MTL formula φsys, and a
putative property described by another MTL formula φprop. Verification amounts
to proving (or disproving) that all behaviors that satisfy φsys also satisfy φprop.

Let us abbreviate by Alw(φ) the nesting MTL formula φ ∧ �(0,+∞)(φ) ∧
←−
� (0,+∞)(φ); b |=T Alw(φ) iff b |=T φ, for any behavior b, so Alw(φ) can be
expressed without nesting if φ is flat, through the global satisfiability semantics.
Then, the verification problem can be reduced to that of determining the validity
of the MTL formula Alw(φsys)⇒ Alw(φprop). To this end we prove the following.

Proposition 1 (Approximations). For any MTL formulas φ1, φ2, and for
any δ ∈ Dφ1,φ2 : (1) if Alw(Ωδ (φ1))⇒ Alw(Oδ (φ2)) is Z-valid, then Alw(φ1)⇒
Alw(φ2) is χ-valid; and (2) if Alw(Oδ (φ1))⇒ Alw(Ωδ (φ2)) is not Z-valid, then
Alw(φ1)⇒ Alw(φ2) is not χ-valid.

Proof. Let δ ∈ Dφ1,φ2 .
Proof of (1). Assume that φ+ = Alw(Ωδ (φ1)) ⇒ Alw(Oδ (φ2)) is Z-valid.

That is, for all b ∈ BZ it is b |=Z φ+; equivalently: either b 6|=Z Ωδ (φ1) or
b |=Z Oδ (φ2). From Lemmas 3 and 2, this implies that for all b ∈ BZ, for all
b′ ∈ Bχ such that σδ [b′] = b, it is either b′ 6|=R φ1 or b′ |=R φ2. Thus, let b′ be
any dense-time behavior in Bχ; from Lemma 1, there exists a b ∈ BZ such that
σδ [b′] = b. We conclude that for all b′ ∈ Bχ, either b′ 6|=R φ1 or b′ |=R φ2. All in
all, Alw(φ1)⇒ Alw(φ2) is χ-valid.

Proof of (2). We note that the proof of (2) can be obtained from the proof
of (1) by duality. Thus, assume that φ− = Alw(Oδ (φ1))⇒ Alw(Ωδ (φ2)) is notZ-valid. That is, for some b ∈ BZ it is b 6|=Z φ−; equivalently: b |=Z Oδ (φ1) and
b 6|=Z Ωδ (φ2). From Lemmas 3 and 2, this implies that there exists a b ∈ BZ
such that, for all b′ ∈ Bχ such that σδ [b′] = b, it is b′ |=R φ1 and b′ 6|=R φ2.
Next, Lemma 1 states that, for all b ∈ BZ, there exists some b′ such that b′ ∈ Bχ

and σδ [b′] = b. We conclude that there exists a b′ ∈ Bχ such that σδ [b′] = b,
b′ |=R φ1 and b′ 6|=R φ2. All in all, Alw(φ1)⇒ Alw(φ2) is not χ-valid. ⊓⊔

3.4 Validity Checking Procedure

Let us finally present the validity checking algorithm based on the approxima-
tions described above.

The algorithm takes as input a set of MTL formulas φ1
sys

, . . . , φm
sys

, φprop, where

φi
sys

are the formulas describing the system, and φprop is the property to be
verified, as well as a suitable value δ. The algorithm checks the validity of φ =
∧

i=1,...,m Alw
(

φi
sys

)

⇒ Alw(φprop) as follows.

10

1. For each formula γ ∈ φprop ∪
⋃

i=1,...,m φi
sys

, compute the over-approximation
Oδ (γ) and the under-approximation Ωδ (γ).

2. Compute:
φ+ =

∧

i=1,...,m Alw
(

Ωδ

(

φm
sys

))

⇒ Alw(Oδ (φprop));

φ− =
∧

i=1,...,m Alw
(

Oδ

(

φm
sys

))

⇒ Alw(Ωδ (φprop)).

3. If φ+ is Z-valid, then φ is χ-valid for sampling period δ;
4. otherwise, if φ− is not Z-valid, then φ is not χ-valid for sampling period δ;
5. otherwise, fail.

Incompleteness of the algorithm. The incompleteness of the algorithm in
determining the validity of MTL formulas is two-fold. First, the algorithm does
not check all dense-time behaviors for satisfaction of an MTL formula φ, but
only those obeying constraint χ for the chosen sampling period δ. Choosing a
smaller δ may mitigate this shortcoming, as this amounts to choosing a finer
sampling of behaviors or, equivalently, to allowing faster behaviors. However,
this may also not bring better results. In fact, as δ decreases, not only do the
approximation formulas change, but also more behaviors (namely, faster ones)
are allowed; thus the effects of shortening the sampling periods are subtle and
they may become difficult to predict. We leave a comprehensive study of this
phenomenon to future work.

The second source of incompleteness lies in the technique itself, that is based
on two different approximations for formula φ. Therefore, it is possible that φ+

is non-valid and φ− is valid; in this case, no conclusion about the validity of φ
can be drawn.

4 Implementation and Experiments

This section describes the implementation of the verification algorithm (Section
4.1), presents two system verification problems (Section 4.2), and reports some
of the results obtained in solving them using the tool presented in Section 4.1
(Section 4.3). Several more results can be found in [12].

4.1 Discrete-Time Bounded Validity Checking

The technique introduced in Section 3 reduces the validity-checking problem for
MTL formulas over dense time to that over discrete time; the latter is known
to be decidable and EXPSPACE-complete [2]. Recently, validity-checking tech-
niques based on the use of propositional satisfiability (SAT) checkers have been
developed for discrete-time verification, and they have yielded very encourag-
ing performances in practical tests. Recent variants of these techniques offer the
possibility to check completeness.Zot is an agile and easily extensible bounded satisfiability checker (Zot and
the examples described in this section are available for download [19]). The
tool supports different logic languages through a multi-layered approach: its

11

core uses PLTL, and a decidable predicative fragment of TRIO (in practice
equivalent to RZTRIO and MTL) is defined on top of it. Zot supports different
encodings of temporal logic as SAT problems. Indeed, the user can choose a
particular encoding to carry out verification, and the tool loads automatically the
corresponding plug-in. At the moment, a few variants of some of the encodings
presented in [3] are supported, and the encoding over Z presented in [20].

In order to assess the practical feasibility of our discretization technique,
we verified some examples using Zot. To this end, Zot was extended to accept
MTL+ formulas, and to perform the discretization routine on formulas. The
experimental results are described in Section 4.3.

4.2 Examples

We modeled two systems: a simple controlled reservoir (similar to the one in
[13]), and a coffee machine. They are described only informally here; the exact
formalization is given in the Appendix and details are in [12].

The controlled reservoir. The controlled reservoir system consists of a reservoir
and a controller. The reservoir can nondeterministically leak and being filled
with new liquid by the controller. The level of fluid in the reservoir is described
by two predicates: ℓ ≥ min holds when the level of fluid is above a minimum
level, ℓ ≥ thres holds if the level is above a control threshold, assumed to be
higher than the minimum. The system is described by five formulas, shown in
the Appendix, stating the behavior of the fluid level under all combinations of
filling and leaking, and the control action (filling is triggered as soon as the level
goes below the control threshold). The property (1) to be verified requires that,
after the system is “initialized” by setting the level above the control threshold,
the level stays above the minimum forever in the future:

ℓ ≥ thres ⇒ �(0,+∞)(ℓ ≥ min) (1)

The system description is parametric with respect to a single parameter
ν. The desired property holds if and only if the sampling period δ equals ν.
Otherwise the property does not hold since the sampling period is “too short”
with respect to ν: this corresponds to allowing faster behaviors for which the
given specification is too weak to assess the desired property (more details can
be found in [12]).

The coffee machine. The second example consists in the description of a cof-
fee machine, in operational fashion. We introduce the predicates: prepare cup,
press button, start pour, end pour, get cup. They represent, respectively, the ac-
tions of inserting a new cup in the coffee machine, pressing the button to start
the brewing process, beginning and ending of the pouring of coffee, retrieving
a cup (presumably filled with coffee) from the machine. We also introduce the
predicates: pour, cup present, coffee ready, and key in. They are meant to hold
when, respectively, the coffee is pouring into the cup, a cup is inserted in the ma-
chine, the coffee has been completely brewed, and a key (to operate the machine,

12

say by recording the coffee credits of the user) is inserted in the machine. Three
constants T1, T2, T3 describe the various delays in the operations of the ma-
chine; also, a parameter ν is introduced to relate the various delays in a suitable
manner (see [12] for details). The behavior of the machine is modeled through
ten formulas, shown in the Appendix. From these, two candidate properties of
the system should be verified: the first (2) states that the pouring ends only if
a key was inserted in the past (between T3 and T1 + T2 + T3 time units ago);
the second (3) asserts that a cup is present while the coffee is being poured.

end pour ⇒
←−
♦ [T3,T1+T2+T3](key in) (2)

pour ⇒ cup present (3)

Some modifications were required in order to obtain a system formalization
which avoids some idiosyncrasies of the dense-time description that obstruct the
discretization process. They are discussed in [12].

Both candidate properties hold if δ = 1. Otherwise, the properties may not
hold, also according to the particular values for the constants T1, T2, T3, which
interact in a subtle way. See [12] for more details.

4.3 Experiments

Tables 1–2 report a small sub-set of the results obtained in an array of tests
with the discretization techniques and Zot; more of them can be found in [12].
For each test the tables report: the value k of the bound given to Zot (in other
words, the size of the explored space); the value of parameter ν in the models;
the value of δ, according to which the discretizations are built; the value of other
parameters in the models (i.e., T1, T2, T3 in the case of the coffee machine); the
outcome of the validity check for the properties to be verified. Each test is done
both over mono-infinite domain, and over bi-infinite domain. For each test the
tables report, in addition to the outcome (⊤ means valid, ⊥ means non-valid, ∼
means that the approximation technique has been inconclusive), the net (CPU)
time and the total amount of memory taken in the process.

The tests have been performed on a PC equipped with an AMD Athlon64
x2 4600+ processor, 2 Gb of RAM, and Ubuntu GNU/Linux. Zot used GNU
CLisp v. 2.39, and MiniSat v. 1.14 as SAT-solving engine.

The reservoir example (in Table 1) is a simple one, and in fact the results
are highly predictable and satisfactory. Inconclusive results are never obtained
when applying the discretization technique, and the property is confirmed to be
valid if and only if ν = δ. The times and spaces required to obtain the results
are always relatively small, and they scale rather well with the increase of the
bound. Finally, notice that it usually takes a shorter time to check the validity
than to check the non-validity; this is obvious, as the latter requires to submit
both φ+ and φ− to the validity checker, while the former checks just φ+.

Table 2 reports some of the results obtained with the coffee machine example.
Property (2) is shown to be valid for all the choices of parameters made in the
experiments reported in Table 2. The times needed to get this result are rather

13

k ν δ Pr.(1) T = N (time / mem) Pr.(1) T = Z (time / mem)
5 10 10 ⊤ (0.2 s / 2.2 Mb) ⊤ (0.4 s / 2.6 Mb)
5 10 10/3 ⊥ (0.7 s / 5.8 Mb) ⊥ (1.2 s / 9 Mb)

10 10 10 ⊤ (0.6 s / 3.2 Mb) ⊤ (0.7 s / 4.9 Mb)
10 10 10/3 ⊥ (1.6 s / 12.1 Mb) ⊥ (2 s / 18.1 Mb)
50 10 10 ⊤ (2.8 s / 15.3 Mb) ⊤ (5.3 s / 23.5 Mb)
50 10 10/3 ⊥ (8.6 s / 110.8 Mb) ⊥ (19.5 s / 149.5 Mb)

100 10 10 ⊤ (9.5 s / 30.4 Mb) ⊤ (20.2 s / 46.7 Mb)
100 10 10/3 ⊥ (29.9 s / 361.9 Mb) ⊥ (66.1 s / 470.6 Mb)
200 10 10 ⊤ (33.3 s / 60.7 Mb) ⊤ (72.6 s / 93.1 Mb)
200 10 10/3 ⊥ (108.6 s / 1240.1 Mb) ⊥ (245.1 s / 1588.3 Mb)

Table 1. Checking property (1) of the reservoir example.

k ν δ T1, T2, T3 Pr.(2) N (time / mem) Pr.(3) N (time / mem) Pr.(2) Z (time / mem) Pr.(3) Z (time / mem)

10 1 1 4,4,4 ⊤ (1.8 s / 11.7 Mb) ⊤ (1.3 s / 9.8 Mb) ⊤ (3.5 s / 17.9 Mb) ⊤ (2.6 s / 14.9 Mb)
10 2 1 4,4,4 ⊤ (1.7 s / 11.4 Mb) ⊤ (1.4 s / 9.5 Mb) ⊤ (3.4 s / 17.6 Mb) ⊤ (2.2 s / 14.6 Mb)
10 3 1 10,7,8 ⊤ (3.1 s / 17.4 Mb) ∼ (4.2 s / 35.7 Mb) ⊤ (7.3 s / 27 Mb) ∼ (8.6 s / 52.5 Mb)

20 1 1 4,4,4 ⊤ (5.1 s / 22.7 Mb) ⊤ (3.6 s / 18.9 Mb) ⊤ (11.6 s / 34.7 Mb) ⊤ (8 s / 28.9 Mb)
20 2 1 4,4,4 ⊤ (4.9 s / 22 Mb) ⊤ (3.3 s / 18.3 Mb) ⊤ (10.9 s / 34.1 Mb) ⊤ (7.6 s / 28.3 Mb)
20 3 1 10,7,8 ⊤ (11.6 s / 33.6 Mb) ∼ (13.8 s / 78.3 Mb) ⊤ (25.6 s / 52.5 Mb) ∼ (30.4 s / 114.3 Mb)

30 1 1 4,4,4 ⊤ (11 s / 33.6 Mb) ⊤ (7.7 s / 28.1 Mb) ⊤ (24 s / 51.6 Mb) ⊤ (16.7 s / 43 Mb)
30 2 1 4,4,4 ⊤ (10.4 s / 32.7 Mb) ⊤ (7.1 s / 27.2 Mb) ⊤ (23.7 s / 51.1 Mb) ⊤ (16.1 s / 42.2 Mb)
30 3 1 10,7,8 ⊤ (24.2 s / 49.7 Mb) ∼ (28.6 s / 153.3 Mb) ⊤ (55.5 s / 78.3 Mb) ∼ (65.3 s / 189.2 Mb)

40 1 1 4,4,4 ⊤ (18.4 s / 45 Mb) ⊤ (12.9 s / 37.3 Mb) ⊤ (39.6 s / 68.9 Mb) ⊤ (27.6 s / 57.1 Mb)
40 2 1 4,4,4 ⊤ (17.8 s / 43.8 Mb) ⊤ (12.3 s / 36.1 Mb) ⊤ (38.3 s / 67.7 Mb) ⊤ (26.4 s / 56 Mb)
40 3 1 10,7,8 ⊤ (40.6 s / 66.3 Mb) ∼ (47.8 s / 200 Mb) ⊤ (89.3 s / 103.8 Mb) ∼ (106.7 s / 284.8 Mb)

50 1 1 4,4,4 ⊤ (27.7 s / 56 Mb) ⊤ (19.4 s / 46.5 Mb) ⊤ (60.8 s / 85.8 Mb) ⊤ (42.1 s / 71.2 Mb)
50 2 1 4,4,4 ⊤ (26.6 s / 54.5 Mb) ⊤ (18.4 s / 45 Mb) ⊤ (57.9 s / 84.4 Mb) ⊤ (39.9 s / 69.8 Mb)
50 3 1 10,7,8 ⊤ (60.8 s / 82.6 Mb) ∼ (71.8 s / 272.1 Mb) ⊤ (136.2 s / 129.3 Mb) ∼ (160.3 s / 389.1 Mb)

Table 2. Checking properties (2) and (3) of the coffee machine example.

short, and scale with the length of k. This is reasonable, as the main factors
affecting the complexity of the check are the values of the parameters T1, T2, T3,
which however stay in a small range in all tests.

The outcomes of the validity check of the other property (3) are, on the
other hand, more varied. As stated when presenting the example, if δ = 1 the
second property is valid for the system. While this is confirmed by several of the
tests, some cases fall in the incompleteness area of the method, and analyzing
the approximations gives inconclusive results. In any case, the time and space
required are rather small.

5 Conclusion

We presented a technique to reduce the verification problem for dense-time MTL
specifications to the corresponding problem over discrete-time models, based on
the notions of sampling and sampling invariance. In a nutshell, we perform simple
syntactic transformations on the MTL formulas to be checked for validity; the
resulting formulas retain (partial) information about the discrete-time samplings
of the dense-time behaviors described by the the original formulas.

This approach, which considers only a subset of generic MTL formulas, has a
two-fold incompleteness: it verifies only “sufficiently slow” dense-time behaviors
(although the “speed” of the behaviors can often be modulated), and the analysis
of the discretized formulas may yield inconclusive results.

14

The technique is however simple to implement in practice, and it was used, on
top of the Zot bounded validity checker for discrete-time formulas, to carry out
some experiments. The results are promising in that they show that the effects of
incompleteness can often be mitigated in practice, and the computational effort
required to check the discretized formulas is usually acceptably small.

Future work in this line of research will follow three main directions. First,
the technique and tool of this paper will be applied to real-life industrial case-
studies. Second, our verification technique will be extended to deal with systems
described through operational formalisms such as timed automata or Petri nets.
Third, methods will be developed to guide the writing of dense-time specifica-
tions in a form that is amenable to the application of discretization.

Acknowledgments. We thank Paritosh Pandya for discussions suggesting to
apply the notion of sampling to dense-time verification through discretization,
Mario Arrigoni Neri for providing a sketch of the coffee machine example, and
the anonymous reviewers of several conferences for their remarks.

References

1. M. Abadi and L. Lamport. An old-fashioned recipe for real-time. ACM TOPLAS,
16(5):1543–1571, 1994.

2. R. Alur and T. A. Henzinger. Real-time logics: Complexity and expressiveness.
Information and Computation, 104(1):35–77, 1993.

3. A. Biere, K. Heljanko, T. Junttila, T. Latvala, and V. Schuppan. Linear encodings
of bounded LTL model checking. Logical Methods in Comp. Sci., 2(5:5):1–64, 2006.

4. G. Chakravorty and P. K. Pandya. Digiziting interval duration logic. In Proc. of
CAV’03, volume 2725 of LNCS, pages 167–179, 2003.

5. E. Ciapessoni, A. Coen-Porisini, E. Crivelli, D. Mandrioli, P. Mirandola, and
A. Morzenti. From formal models to formally-based methods: an industrial ex-
perience. ACM TOSEM, 8(1):79–113, 1999.

6. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 2000.
7. L. de Alfaro and Z. Manna. Verification in continuous time by discrete reasoning.

In Proc. of AMAST’95, volume 936 of LNCS, pages 292–306, 1995.
8. D. D’Souza, R. Mohan M., and P. Prabhakar. Eliminating past operators in metric

temporal logic. Technical Report IISc-CSA-TR-2006-11, 2006.
9. G. E. Fainekos and G. J. Pappas. Robust sampling for MITL specifications. In

Proc. of FORMATS’07, volume 4763 of LNCS, 2007.
10. C. A. Furia. Scaling up the formal analysis of real-time systems. PhD thesis, DEI,

Politecnico di Milano, May 2007.
11. C. A. Furia, D. Mandrioli, A. Morzenti, and M. Rossi. Modeling time in computing:

A taxonomy and a comparative survey. Technical Report 2007.22, DEI, Politecnico
di Milano, 2007.

12. C. A. Furia, M. Pradella, and M. Rossi. Dense-time MTL verification through
sampling. Technical Report 2007.37, DEI, Politecnico di Milano, April 2007.

13. C. A. Furia and M. Rossi. Integrating discrete- and continuous-time metric tem-
poral logics through sampling. In Proc. of FORMATS’06, volume 4202 of LNCS,
pages 215–229, 2006.

15

14. C. A. Furia and M. Rossi. On the expressiveness of MTL variants over dense time.
In Proc. of FORMATS’07, volume 4763 of LNCS, pages 163–178, 2007.

15. T. A. Henzinger. It’s about time: Real-time logics reviewed. In Proc. of CON-
CUR’98, volume 1466 of LNCS, pages 439–454, 1998.

16. T. A. Henzinger, Z. Manna, and A. Pnueli. What good are digital clocks? In Proc.
of ICALP’92, volume 623 of LNCS, pages 545–558, 1992.

17. Y. Hirshfeld and A. M. Rabinovich. Logics for real time: Decidability and com-
plexity. Fundamenta Informaticae, 62(1):1–28, 2004.

18. R. Koymans. Specifying real-time properties with metric temporal logic. Real-Time
Systems, 2(4):255–299, 1990.

19. M. Pradella. Zot. http://home.dei.polimi.it/pradella, March 2007.
20. M. Pradella, A. Morzenti, and P. San Pietro. The symmetry of the past and of the

future. In Proc. of ESEC/FSE 2007, 2007.
21. B. Sharma, P. K. Pandya, and S. Chakraborty. Bounded validity checking of

interval duration logic. In Proc. of TACAS’05, volume 3440 of LNCS, pages 301–
316, 2005.

22. T. Wilke. Specifying timed state sequences in powerful decidable logics and timed
automata. In Proc. of FTRTFT’94, volume 863 of LNCS, pages 694–715, 1994.

Appendix: Example Specifications

The reservoir system.

ℓ ≥ min ∧�(0,ν)(F) ⇒ �[ν,ν](ℓ ≥ min) (4)

ℓ ≥ thres ⇒ �[ν,ν](ℓ ≥ min) (5)

ℓ ≥ min ∧�(0,ν)(¬F ∧ ¬L) ⇒ �[ν,ν](ℓ ≥ min) (6)

ℓ ≥ thres ⇒ ℓ ≥ min (7)

ℓ < thres ⇒ F (8)

The coffee machine.5

prepare cup ⇒
←−
♦ (0,T1)(press button) (9)

start pour ⇒
←−
♦ (0,T2)(prepare cup) (10)

end pour ⇒
←−
� [T3,T3](start pour) ∧

←−
� [0,T3)(pour) (11)

press button ⇒ key in (12)

¬pour ∧©(pour) ⇔ start pour (13)

�(0,T3)
(pour) ⇒ start pour ∧�[T3,T3](end pour) (14)

start pour ⇒ cup present ∧ ¬coffee ready (15)

cup present ∧©(¬cup present) ⇔ get cup (16)

get cup ⇒ coffee ready (17)

start pour ⇒ �[T3,T3]
(end pour) ∧�(0,T3]

(pour) (18)

5 The ©(β) operator is defined as U(0,+∞)(β,⊤) ∨ (¬β ∧ R(0,+∞)(β,⊥)).

16

