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1 Introduction: Why Higher-Order TRIO 
TRIO [C3M399] is a first-order metric temporal logic with object-oriented constructs 
that is suitable to describe time-critical systems. TRIO is typed, but the number of 
types available in TRIO is limited to a small set. To model general complex systems 
(that is systems ranging from invoice management applications to power plants), 
however, we feel that great flexibility in defining what are the objects composing the 
system is needed. 
Higher-Order TRIO (HOT for short) is a thorough revisitation of the TRIO language, 
one in which the user can freely define new types, which can be complex (or, for that 
matter, simple and basic) at will. 
In fact, in origin, HOT derives from a very specific need, which is to effectively 
model system (software) architectures, that require suitable mechanisms and 
constructs to easily represent information such as "object A sends object B another 
object C", etc. 
Representing this kind of information in usual TRIO would not be impossible, but 
certainly complicated and cumbersome (in two words, practically unfeasible). 
For this, we need a new definition of types in TRIO. More precisely, we will start 
from the idea that Class = Type. 
As a consequence, TRIO becomes a higher-order temporal logic, as it is now possible 
to quantify over variables that are typed by a Class (which can include functions, 
predicates, etc.). We will investigate the consequences of the equality Class = Type in 
the next sections. 
 
This document is structured as follows. Section 2 presents some basic terminology 
and definitions. Section 3 introduces the syntax of HOT, while Section 4 gives a 
lambda calculus-based semantics for the language. Section 5 adds some syntactic 
sugar to basic HOT to simplify writing useful and common properties. Section 6 
presents an alternative semantics for HOT based on set theory (Set theory-based 
HOT, SHOT for short). Section 7 hints at genericity in HOT. Finally, Section 8 draws 
some conclusions and outlines future work related to HOT. 
 
Before concluding this introduction, notice that, with respect to TRIO, the modal part 
(that is, Time) of the HOT logic remains unchanged. The representation of temporal 
evolution of systems in HOT is still built around the Dist operator (and all the usual 
derived temporal operators). Then, this document will not delve into the details of 
HOT temporal operators, whose definition and semantics is the same as in old TRIO. 

2 Some terminology and basic definitions 
In the definition of HOT, let us start with a list of basic concepts and their synonyms 
(summarized in Table 1). 

Concept Synonyms 
Item Function. Predicate. Relation. 
Formula  
Class Type (and subtype). Domain. Set. (Module.) 
Object Instance. Value (of a type). Model. History. 

Table 1 - List of HOT concepts and synonyms. 
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Items are the founding elements of the HOT logic. In HOT (and TRIO) terms, we call 
item what, in usual logic lore, is called function or predicate (notice that an item is 
either a function or a predicate, but in traditional logic a predicate is not a function, 
even though it is easy to express the former using the latter, and vice-versa). HOT 
items can have arguments (and return values), which are typed elements. The 
arguments (and returned values) of HOT items can be of any HOT type (see below). 
For example, we might define a HOT item it to be a predicate with two arguments 
of type t1 and t2: 

items: 
TD it(t1, t2) : boolean; 

Notice that, just like in TRIO, HOT items can be defined to be time-dependent (TD) 
or time-independent (TI). 
 
Items are the building blocks for HOT formulae. HOT (well-formed) formulae are, as 
usual, a combination of functions, predicates (that is, items), logical connectors (&, |, 
->, <->, not, etc.), temporal operators (Dist, Futr, Past, etc.) and quantifiers (all, 
exists). For example: 

p1(f1, f2(c1)) -> Futr(all(o)(p2(o)), t); 

Notice that every HOT variable (for example c1, o and t in the formula above) 
ranges over the values of some type, which is defined through a HOT class. 
 
So, as stated before, a HOT class defines a type. A class identifies a domain, or, 
equivalently, a set of elements. 
 
Given a HOT domain (i.e. class), an element of the domain is an object. The term 
object is synonym for instance (of a class) and value (of a type). A HOT object 
corresponds also to a model for the corresponding class (or, in TRIO terms, to a 
history). We will analyze in Section 4, which defines HOT semantics, the meaning of 
making object synonym with model (and history). 
 

3 Syntax 
Basic elements 
 
The basic elements of the HOT language are: 

• constants (of a type) 
• variables (of a type) 
• items 
• connectors and quantifiers (not, &, all, etc.) 
• temporal operators (Dist and all the usual derived operators Futr, Past, 

etc.) 
Constants and variables must have a type, which corresponds to the name of a HOT 
class. The type boolean corresponds to the truth values true and false. 
 
Items can only be declared inside HOT classes. 
 
Terms 



   

 7 

• a constant of type t is a term of type t 
• a variable of type t is a term of type t 
• if i(T1, ... Tn):Tret is an item declared in class C, where 

T1, ... Tn and Tret are all type names, and v1, ... vn are terms of 
type T1, ... Tn and c is a term of type C, then c.i(v1, ... vn) is a 
term of type Tret. 

• nothing else is a term. 
 
Predicates are terms of type boolean. 
 
Formulae 

• a predicate is a formula 
• if f1 and f2 are formulae, not f1 and f1 & f2 are formulae (all other 

usual logic connectors can be defined from not and &) 
• if v is a variable of some type t (that is, ranging over the values of a class t) 

and f is a formula, all v(f) is a formula (ex, as usual, is defined as not 
all not) 

• if f is a formula and t is a term of type temporal domain, Dist(f, 
t) is a formula 

• nothing else is a formula. 
 
HOT formulae can be declared only inside HOT classes. 
 
Examples 
 
Here are some examples of definitions of HOT classes. 
The first example defines the natural numbers using Peano's axioms. Class Natural 
has three items, isZero, succ, and +. isZero identifies the natural number 0, that 
is, there is only one natural number such that isZero is true. For short, we refer to 
this particular natural number with constant 0 in the axioms of class Natural. succ 
is a function that returns the successor of a natural number, while + represents the 
usual addition. NatPredicate is a class (i.e. a type) representing the set of 
possible predicates on natural numbers (that is, the set of functions from naturals to 
booleans), and is defined below. 

class Natural 
visible: isZero, succ, +; 
items: 
  TI isZero : boolean; 
  TI succ : Natural; 
  TI +(Natural): Natural; 

axioms: 
  vars: 
  n, n1, n2 : Natural; 
  z : Natural; 
  p : NatPredicate;   /* defined below */ 

  formulae: 
  Peano1:  ex z(z.isZero);  /* call it 0 */ 

  Peano1_bis:  n1.isZero & n2.isZero -> n1 = n2; 

  Peano2 : all n1(ex n2(n2 = n1.succ)); 
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  Peano3: n1.succ = n2.succ -> n1 = n2; 

  Peano4: not ex i(ex z(z.iszero & (z = i.succ))); 

  Peano5: all p(p.val(0) ->  
                 (all i(p.val(i) -> p.val(i.succ)) 
                  -> 
                  all i(p.val(i)) )); 

  ax+_1: all n1, n2(n1.+(n2.succ) = (n1.+(n2)).succ); 
  ax+_2: all n1 (n1.+(0) = n1); 
end 

Notice that, to represent a + b given the definition above one should write 
a.+(b), since + is an item of class Natural. However, HOT allows also the classic 
(and more natural) syntax a + b. Section 5 deals with this (and other) syntactic 
features of the language. 
 
Class NatPredicate defines (a class corresponding to) the set of all predicates on 
natural numbers. In classic logic, if p is a predicate over natural numbers and n is a 
natural number, we would write p(n) to signify the value of predicate p in n. Again, 
the syntax for pure HOT is a little more cumbersome, as we define an item, val, 
which takes a natural number as argument, and corresponds to the value of the 
predicate in that natural number. Then, instead of p(n), in HOT we write p.val(n). 
Again, shortcuts for notations such as p.val(n) might be devised in the future, if 
necessary. 

class NatPredicate 
visible: val; 
items: 
  TI val(Natural) : boolean; 
end 

Class Invoice defines invoices. It has only one axiom, which states that the serial 
number of an invoice separates it from other invoices (that is, no two invoices have 
the same serial number). 

class Invoice 
visible: sr_num, amount, date; 
items: 
  TI sr_num : Natural; 
  TI amount : Real; 
  TI date : Date; 

axioms: 
  vars: 
  i1, i2: Invoice; 

  formulae 
  sr_num_unique: all i1, i2(i1.sr_num = i2.sr_num -> i1 = i2); 
end 

Class Sensor defines the behavior of any possible sensor of a system. Every sensor 
has a serial number, which separates it from every other sensors. The quantity 
measured by the sensor is represented by item measure, item limit is a threshold 
that said quantity should not exceed, while predicate over_limit is true when the 
measured quantity is above its limit. Finally, predicate working is true when the 
sensor is correctly functioning (false otherwise). 
The two axioms of the class state the uniqueness of serial numbers for sensors, and 
the behavior of predicate over_limit. 
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class Sensor 
visible: measure, limit, over_limit, working; 
temporal domain: Real; 
items: 
  TI sr_num: Natural; 
  TD total measure: Real; 
  TI limit: Real; 
  TD over_limit : boolean; 
  TD working : boolean; 

axioms: 
  vars: 
  s1, s2: Sensor; 

  formulae: 
  def_over_limit: over_limit <-> measure > limit; 
  sr_num_unique: all s1, s2(s1.sr_num = s2.sr_num -> s1 = s2); 
end 

Finally, class Controller models controllers provided with two sensors. The 
hypothesis is that the two sensors monitor the same quantity, and item avg keeps 
track of the average of the two measurements (as defined by axiom def_avg). The 
sensors of the controller can be replaced if they stop working. Axiom 
sensor1_change states exactly this property for sensor s1, that is, that if sensor 
s1 stops working, it will be replaced with a different sensor within SUBS_TIME time 
units. 
Axiom sensors_never_the_same states that it is not possible to wire the 
controller in a way such that it reads data from just one sensor. 

class Controller 
temporal domain: Real 
items: 
  TD s1: Sensor; 
  TD s2: Sensor;  
  TD avg: Real; 

axioms: 
  vars: 
  sid1, sid2: Natural; 

  formulae: 
  sensors_never_the_same: Alw(s1 != s2); 
  def_avg: avg = (s1.measure + s2.measure)/2; 

  sensor1_change: 
  not s1.working & s1.sr_num = sid1 
  -> 
  WithinF(s1.working & s1.sr_num != sid1, SUBS_TIME); 
/* SUBS_TIME is a pre-defined positive real constant */ 
end 

 

4 Semantics (of Basic HOT) 
The semantics of HOT is given in terms of typed lambda calculus, as used in the type 
theory presented in [And86]. Then, HOT classes are to be interpreted as sets of 
values, and everything else is a function (even connectors and quantifiers, as shown in 
[And86]). Most notably, items of classes are functions. 
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Suppose, for example, that we declare in HOT the following class C (let us focus on 
time-independent items for the time being, we will tackle the issue of time later in this 
document): 

class C 
... 
TI f(β) : γ; 
... 
end. 

The first line declares C to be a set of values. Given an item i of class C, let us call 
sigC(i) its signature in class C. For example, the signature of item f is sigC(f) 
= β -> γ, while the signature of item + in class Natural is Natural -> 
Natural. 
 
Definition 1 (time-independent items). A time-independent item i of a class C is 
interpreted as a function i that has domain C and range the signature of i. That is, 

i : C -> sigC(i) 

which means that symbol i has type C -> sigC(i). 
 
For example, item f of class C is interpreted as a function f with domain C and range 
β -> γ: 

f : C -> (β -> γ) 

(or, borrowing a notation from the PVS logic [OSS99] f is a function of type [C -> 
[β -> γ]]; alternatively, using the notation of [And86],  fγβC). 
As additional examples, item + in class Natural is interpreted as 

+ : Natural -> (Natural -> Natural) 

item val of class NatPredicate corresponds to the following function 

val : NatPredicate -> (Natural -> bool) 

and item sr_num of class Sensor is interpreted as 

sr_num : Sensor -> Natural 

 
Then, to each HOT class C that has items i1, ..., in correspond n functions ij 
(j = 1, ... n) that have type C -> sigC(ij). That is, every value c of type 
C is associated with n values ij(c), each one with type sigC(ij). 
The n values associated with value c uniquely identify c. That is, a value c of class C 
is identified by the set of its images through functions i1, ... in. 
 
Definition 2. Given a HOT class C with items i1, ..., in every value c of type 
C is uniquely identified by the n images associated with c through functions i1, 
... in. More precisely, using the interpretation of HOT as typed lambda calculus 
and classic logic notation: 

∀c1,c2:C  (i1(c1) = i1(c2) ∧  
           i2(c1) = i2(c2) ∧ 
           ... ∧ 
           in(c1) = in(c2) 
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           → 
           c1 = c2) 

 
For example, definition 2 for class Natural presented above translates to 

∀n1,n2:Natural (isZero(n1) = isZero(n2) ∧  
                 succ(n1) = succ(n2) ∧ 
                 +(n1) = +(n2) 
                 → 
                 n1 = n2) 

while for class NatPredicate definition 2 corresponds to 

∀np1,np2:NatPredicate (val(np1) = val(np2) 
                        → 
                        np1 = np2) 

and for class Invoice to 

∀i1,i2:Invoice (sr_num(i1) = sr_num(i2) ∧  
                 amount(i1) = amount(i2) ∧ 
                 date(i1) = date(i2) 
                 → 
                 i1 = i2) 

Notice that axiom Peano3 of class Natural and sr_num_unique of class 
Invoice are stronger than definition 2 for those two classes, which is entirely 
admissible. 
 
Then, a HOT class is defined by its axioms in the sense that its axioms constrain the 
values of its items, and the values of its items define entirely a HOT class. 
 
Time 
 
A temporal domain τ in HOT can be any type with a total order and metric (that is, a 
notion of distance between instants is defined). HOT items can be time-dependent or 
time-independent. Time-dependent items can vary over time, meaning that they 
evaluate to different values depending on the instant in which they are evaluated. 
 
Definition 3 (time-dependent items). A time-dependent item td_i of a class C with 
temporal domain τ is interpreted as a function td_i that has domain C and range the 
functions from τ to the signature of td_i. That is, 

td_i : C -> (τ -> sigC(i)) 

which means that symbol td_i has type C -> (τ -> sigC(i)). 
 
For example, item measure of class Sensor (which has temporal domain Real) is 
interpreted as 

measure : Sensor -> (Real -> Real) 

while item s1 of class Controller corresponds to 

s1 : Controller -> (Real -> Sensor) 
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As usual with TRIO, however, in formulae time is implicit, so it is never explicitly 
represented or cited; for example, if s is a variable of type Sensor, s.measure is 
interpreted as measure(s)(t), where t (t ∈ τ) is the current instant. 
The usual Dist temporal operator of TRIO is used to manipulate the implicit temporal 
variable of type τ. 
 
Objects as histories 
 
Given the definitions presented above (and in particular definitions 2 and 3), the 
values of a class C correspond to the histories of C. 
Take, for example, class Controller. Definition 2 for class Controller 
translates to 

∀c1,c2:Controller  (s1(c1) = s1(c2) ∧  
                    s2(c1) = s2(c2) ∧  
                    avg(c1) = avg(c2) 
                    → 
                    c1 = c2) 

which means that two different controllers have different behaviors over time (so that 
every controller is identified by a precise history). 
 
Now, take class Sensor as further example. Definition 2 for class Sensor 
translates to 

∀s1,s2:Sensor (sr_num(s1) = sr_num(s2) ∧  
               measure(s1) = measure(s2) ∧ 
               over_limit(s1) = over_limit(s2) ∧ 
               working(s1) = working(s2) 
               → 
               s1 = s2) 

However, axiom sr_num_unique of class Sensor states that the serial number is 
enough to identify sensors: if two sensors have different serial numbers, then they are 
different values of class Sensor. This means that different sensors can have the 
same interpretation on measure, over_limit and working items, but they have 
different serial numbers (that is, they have different histories, as the serial number is 
part of them, too). 
 
Implicit quantification over the values of a class (explained through an example) 
 
Let us consider axiom def_over_limit of class Sensor. Let us repeat the 
axiom here for the sake of clarity, making explicit the implict temporal closure: 

def_over_limit: Alw(over_limit <-> measure > limit). 

As mentioned above, over_limit, measure and limit are in fact to be 
interpreted in the following way: 

over_limit : Sensor -> (Real -> bool) 
measure    : Sensor -> (Real -> Real) 
limit      : Sensor -> Real 

As axiom def_over_limit is, by definition, valid for all sensors, it is in fact to be 
interpreted as the higher-order formula: 
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∀s:Sensor (Alw(over_limit(s) <-> measure(s) > limit(s))). 

That is, given an axiom of a class C in which unqualified references to class items 
appear (i.e. references without explicit mention of the containing class, such as all 
references in axiom def_over_limit), the unqualified references are implicitly 
universally quantified over all values of C. 
 
 
 
 
 
Semantic remark (just to be precise). HOT domains can be infinite (we need to be 
able to represent numbers of various kinds, from naturals to reals), so HOT type 
theory includes an axiom of infinity1. 
 

5 Syntactic sugar 

5.1  non-contextual and infix keywords 
Consider class Natural defined in Section 3. In that class, operator + is defined as 
follows: 

TI +(Natural) : Natural 

which implies that in classic, pure object-oriented notation, to represent a + b one 
should write a.+(b), since + is an item of class Natural (which takes a single 
Natural as argument, and returns the sum of its argument and the Natural value to 
which it is applied). However, sometimes it is useful (and more intuitive for the 
specifier) to be able to use the classic mathematical notation. 
To this end, HOT allows the following declaration: 

non-contextual TI + (Natural, Natural) : Natural 

in which case axioms ax+_1 and ax+_2 of class Natural are rewritten as follows: 

  ax+_1: all n1, n2(+(n1, n2.succ) = (+(n1, n2)).succ); 
  ax+_2: all n1 (+(n1, 0) = n1); 

The precise meaning of the non-contextual keyword is detailed below, in this 
same section. 
To simplify syntax further and make it more similar to usual notations, HOT 
introduces another keyword, infix, which allows one to use an infix notation for 
(non-contextual) binary items. By using the infix keyword, the declaration of item 
+ above becomes: 

infix non-contextual TI + (Natural, Natural) : Natural 

in which case axioms ax+_1 and ax+_2 are rewritten as follows: 

  ax+_1: all n1, n2(n1 + n2.succ = (n1 + n2).succ); 
  ax+_2: all n1 (n1 + 0 = n1); 

                                                 
1 This causes the HOT logic to be incomplete with respect to standard models (that is, models in which 
every function type is required to represent the set of all possible functions from the domain set, to the 
range set). 
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Keyword infix can be used only in conjunction with keyword non-contextual, and 
can be applied only to (non-contextual) items with exactly two arguments. Other that 
that, infix has no additional semantics, and is pure syntactic sugar. 
 
Semantics of the non-contextual keyword 
 
From the discussion of Section 4 it is clear that the interpretation of an item of a class 
can differ between two values of the same class; for example, item measure of class 
Sensor can have different temporal profiles for different values of class Sensor 
(say , for 

ŝ
1 ∈ Sensor measure at time instant 1 might have image 5.5, while for ŝ

2 ∈ Sensor measure at the same time instant 1 might have image 8.3). 
That is, the interpretation of an item it of class C depends on the context in which it 
is evaluated, where by the term context we mean the actual value of class C that is 
being considered (given c1,c2 ∈ C, with c1≠c2, c1.it can have different 
interpretation from c2.it). 
On the other hand, we might want to state that the value returned by a function is 
independent of the context in which it is applied, but depends only on its arguments. 
Operator (i.e. function) + (the version with two arguments, one for each operand) of 
class Natural is such an example: if we define + as follows: 

TI + (Natural, Natural) : Natural 

we expect that, if n1,n2 ∈ Natural, even if n1≠n2, 
n1.+(n3,n4)=n2.+(n3,n4) and it corresponds to the usual num n3+n4 for 
natural numbers). Unless we state otherwise with a suitable axiom, the declaration 
above does not rule out that for n1,n2 ∈ Natural and n1≠n2, it might happen 
that n1.+(n3,n4)≠n2.+(n3,n4) (where n3,n3 ∈ Natural). 
So, we might like to have a syntactic mechanism to state that the interpretation of an 
item is independent of the context in which is it evaluated, and is entirely determined 
by its arguments. 
Keyword non-contextual achieves exactly this: it says that the interpretation of 
the item is independent of its context. 
 
Definition 4 (semantics of keyword non-contextual). For every non-contextual 
item nci (either time-independent or time-dependent) of a class C (with signature 
sigC(nci)) the following holds: 

∀c1,c2:C (nci(c1) = nci(c2)) 

 
So, given the following declaration in class Natural,  

non-contextual TI + (Natural, Natural) : Natural 

the following formula holds: 

∀n1,n2:Natural (+(n1) = +(n2)) 

which, in HOT terms, corresponds to saying that 

all n1,n2(all n3,n4( n1.+(n3,n4) = n2.+(n3,n4) )) 

Then, for non-contextual items, the specific value in which they are evaluated 
(n1, and n2, in the formula above) is irrelevant, and can be skipped altogether. We 
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can then write +(n3, n4) (or, better, n3+n4 if we declare + to be also infix) 
directly, instead of referring to a specific value as in n1.+(n3, n4), without risk 
of ambiguities. 

5.2 Modules 
TRIO has a notion of module: a TRIO module is an instance of a TRIO class 
contained in another TRIO class. Furthermore, in TRIO the notion of module is 
primitive. 
HOT does not have a primitive notion of module. Rather, it has linguistic constructs 
that allow one to obtain the same semantics of TRIO modules in HOT from basic 
HOT concepts. 
HOT offers the keyword module as a shortcut to automatically introduce the HOT 
axioms and definitions corresponding to the semantics of TRIO modules. 
HOT allows the following syntax: 

module <module_name> : [array <array_range> of] <module_type> 

where module, array and of are terminals, <module_name>, 
<module_type> and <array_range> nonterminals which expand, respectively, 
to two identifiers (the name and type of the module) and one domain (the range of the 
array). 
The syntax above is translated in either of the two following HOT declarations, 
depending on the fact that the module is an array or not: 

TI <module_name> : <module_type; 

TI <module_name>(<array_range>) : <module_type>; 

Every module defines a different value of type <module_type>, as defined by the 
following definition. 
 
Definition 5 (semantics of keyword module). Given a class C with modules m1, ... 
mn and ma1, ... mam, all of the same type t (where m1, ... mn are single modules, while 
ma1, ... mam are arrays of modules with ranges r1, ... rm), the following formula 
holds: 

m1 ≠ m2 ∧ m1 ≠ m3 ∧ ... ∧ m1 ≠ mn ∧ (∀i∈r1)(m1 ≠ ma1(i)) ∧  
                                  (∀i∈r2)(m1 ≠ ma2(i)) ∧ ... ∧ 
                                  (∀i∈rm)(m1 ≠ mam(i)) ∧ 
m2 ≠ m3 ∧ ... ∧ m2 ≠ mn ∧ (∀i∈r1)(m2 ≠ ma1(i)) ∧ ... ∧ 
                         (∀i∈rm)(m2 ≠ mam(i)) ∧ 
... ∧ 
(∀i1,i2∈r1)(i1 ≠ i2 → ma1(i1) ≠ ma1(i2)) ∧  
(∀i1∈r1)(∀i2∈r2)(ma1(i1) ≠ ma2(i2)) ∧ ... ∧ 
(∀i1∈r1)(∀im∈rm)(ma1(i1) ≠ mam(im)) ∧ 
... ∧ 
(∀i1,i2∈rm)(i1 ≠ i2 → mam(i1) ≠ mam(i2)) 

 
Then, if class UnmodifiableController contains the following declarations: 

class UnmodifiableController 
... 
module uc_s1 : Sensor; 
module uc_s2 : Sensor; 
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... 
end 

the following definitions and formula hold for the class: 

TI uc_s1 : Sensor; 
TI uc_s2 : Sensor; 
 
uc_s1 != uc_2; 

5.3 Quantification over the modules of a class 
To make writing HOT specifications lighter, a shortcut that allows users to easily 
express quantification over all the modules (in the sense defined in Section 5.2) of a 
class that have a certain type is defined. 
So, if v is a variable of type t and f is a HOT formula, allmod v(f) is also a 
HOT formula, whose semantics is given by the following definition. 
 
Definition 6 (semantics of quantifier all modules). Given a class C with 
modules m1, ... mn and ma1, ... mam, all of the same type t (where m1, ... mn are single 
modules, while ma1, ... mam are arrays of modules with ranges r1, ... rm), and given a 
variable v of type t and a formula f(v) (where v is free in f), formula allmod 
v(f(v)) corresponds to: 

f(m1) ∧ f(m2) ∧ ... ∧ f(mn) ∧ 
(∀i∈r1)(f(ma1(i)) ∧ ... ∧ (∀i∈rm)(mam(i)) 

 
Notice that this is not a quantification over all instances of type t, but only on those 
instances that correspond to modules of class C. 
For example, if in class UnmodifiableController outlined in Section 5.2 one 
writes allmod s(f(s)), where s is a variable of type Sensor and f a formula 
in which s is free, this would simply correspond to writing 
f(uc_s1) ∧ f(uc_s2), which is not the same as all s(f(s)). 
 
exmod v(f(v)) is naturally defined as not allmod v(not f(v)). 
 

5.4 Key of a HOT class 
Every value of a HOT class corresponds to an interpretation (an assignment to the 
items of the class), that is, in usual TRIO terms, a history: different instances of the 
same TRIO class differ for at least the value of one of their items in one time instant 
(see definition 2 of Section 4). This means, conversely, that two instances of a TRIO 
class are in fact the same if they have the same interpretation for all their items. 
In some cases, however, the condition that identifies the instances of a class could be 
stronger (for example, for the sensors modeled in Section 3, it is enough that two 
instances have the same serial number for them to be the same). 
HOT offers the keyword key to explicitly state a condition that is enough to uniquely 
identify the values of a class. 
Keyword key is used in the formulae subsection in the axioms declaration, and 
has the following syntax: 

key: <condition>; 
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Only one key declaration is allowed in each class. 
In the formula corresponding to a key declaration a class C, there must be exactly 
two free variables of type C. For example, the property defined by axiom Peano3 of 
class Natural of Section 3 might be used as key for the class, but in this case it 
should be declared as follows: 

class Natural 
... 
axioms: 
  vars: 
    n1, n2: Natural 
... 
  key: n1.succ = n2.succ; 
... 
end 

The precise semantics of a key declaration is given by the following definition. 
 
Definition 7 (semantics of keyword key). Given a HOT class C with condition 
cond declared as key, every value c of type C is uniquely identified by condition 
cond. More precisely, using again the interpretation of HOT as typed lambda 
calculus: 

∀c1,c2:C  (cond(c1, c2) 
           → 
           c1 = c2) 

 
From definition 7 it descends that in the above revised declaration of class Natural, 
the key declaration translates to the following formula: 

∀n1,n2:Natural  (n1.succ = n2.succ → n1 = n2) 

which corresponds to axiom Peano3 of the original declaration. 
Take now, as a second example, class Sensor also of Section 3. We could revise its 
definition and substitute axiom sr_num_unique with the following key 
declaration: 

key: s1.sr_num = s2.sr_num; 

which translates to the following formula: 

∀s1,s2:Sensor  (s1.sr_num = s2.sr_num → s1 = s2) 

which is precisely axiom sr_num_unique. 
 

6 A different approach: set theory 
So far we have based HOT on lambda calculus, but it is worth exploring a different 
approach to found HOT on: set theory (see for example [Men97]). To separate this 
second approach from the first one, we call it SHOT (Set theory-based Higher Order 
Trio). 
SHOT is very similar to HOT, but employs a different semantic approach, which is 
reflected also in few selected syntactic aspects. In the rest of this section we present 
SHOT by highlighting its differences with respect to HOT (which will be graphically 
stressed). 
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6.1 Syntax 
Basic elements 
 
The basic elements of the SHOT language are: 

• constants 
• variables 
• items 
• operations 
• (types) 

Constants and variables must have a type, which corresponds to the name of a HOT 
class.  
We will write x : D to stress that x has type D, and x(D1) : D2 for functions 
with signature D1 -> D2 (the latter like in good old first-order TRIO) . 
 
Type Bool is defined as {true, false}. 
 
Items and operations can only be declared inside SHOT classes. 
 
Terms 

• a constant is a term 
• a variable is a term 
• if  i : T1 × T2 × .. × Tn -> Tret is an item declared in class C, 

and v1, ... vn are terms of type T1, ... Tn and c is a term of type C, 
then c.i(v1, ... vn) is a term of type Tret. 

• an operation f : A -> B, applied to a term a : A is a term f(a): B 
• nothing else is a term. 

 
Logical connectives (and, or, implies, not) are constants having type Bool × 
Bool -> Bool, and Bool -> Bool respectively. Formulae and predicates are 
terms of type D1 × D2 × .. Dk -> Bool, where Di are types of free variables. 
Moreover SHOT has the usual quantifiers for every type: all t : T; ex t : T. 
 

6.2 Semantics 
SHOT is an extensional logic: two types or functions or anything else are equal iff 
they have the same type and are equal on all their arguments. 
 
Classes define new types, and may be based on existing types. 
In fact, we separate two types of classes: classes defining primitive types, and classes 
defining (derived) types based on other types. They differ on the number of items 
declared in them: classes defining primitive types do not have any items declared in 
them, while classes defining derived types contain at least one item declaration. 
 
The declaration of a primitive type PC simply corresponds to stating that there is a set 
of name PC, and its axioms define it (see class Natural declared below in Section 
6.3).. 
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Suppose instead we have a class C with N (N > 0) items i1...iN (where the first P 
items are time-independent, and the other N-P ones are time-dependent) and M (M ≥ 
0) operations op1...opM (of which the first L ones are time-independent, the others 
time-dependent); suppose also that every item i has signature sigC(i), and every 
operation op has signature sigC(op) (see also Section 4 for the definition of sigC). 
The declaration of class C would roughly be the following one: 

class C 
temporal domain: τ; 

items: 
  TI i1 : sigC(i1); 
  ... 
  TI iP : sigC(iP); 
  TD iP+1 : sigC(iP+1); 
  ... 
  TD iN : sigC(iN); 

operations: 
  TI op1 : sigC(op1); 
  ... 
  TI opL : sigC(opL); 
  TD opL+1 : sigC(opL+1); 
  ... 
  TD opM : sigC(opM); 

axioms: 
... 
end 

 
The first line states that C is a type. 
The items section states that 
C ⊆ ℘(sigC(i1) × ... sigC(iP) × (τ -> (sigC(iP+1) × ... sigC(iN)))). 
The operations section defines name and signature of permitted operations on 
type C, while actual operations are defined by the axioms. 
Axioms define if and how C is a proper subset of 
℘(sigC(i1) × ... sigC(iP) × (τ -> (sigC(iP+1) × ... sigC(iN)))), and 
its corresponding operations. 
 
An object c of type C has type 
sigC(i1) × ... sigC(iP) × (τ -> (sigC(iP+1) × ... sigC(iN))). 
An object is completely defined by its items, but not by its operations. 
 
While item signatures are used to define C, item names are used as name of 
components. Dot notation is defined as projection. E.g. let t be the current time 
instant and I the interpretation function. Then c.i3 is interpreted at the current time 
instant as I(c)(t)|sigC(i3). (I(c) is a tuple : 

sigC(i1) × ... sigC(iP) × (τ -> (sigC(iP+1) × ... sigC(iN))). 
I(c)(t) is the object value at time t, i.e. I(c)(t) ∈ 
sigC(i1) × ... sigC(iP) × (sigC(iP+1) × ... sigC(iN))). 
 
Notice that item signatures in C must not contain C itself nor of any derived type that 
depends on C (we define the relation "depend on" for types in the following way: if a 
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type C1 has an item with either an argument or the range of type C2, then C1 depends 
on C2 and, recursively, on all types on which C2 depends). Notice also that, by the 
definition itself of primitive type as introduced above, a primitive type does not 
depend on any other types. 
 
On the other hand, an operation declared in a SHOT class C must have at least one 
argument or the range which is either of type C itself, or of a type that depends on C.2 
 
Finally, notice that, with the new semantics, definitions 1, 2 and 3 of Section 4 are not 
needed any more (in fact, definitions 1 and 3 are made unnecessary by the 
interpretation of classes as subsets of powersets, while definition 2 derives from the 
axioms of the underlying set theory). 

6.3 Examples 
Here we present the examples introduced in Section 3, but with the new separation in 
items and operations. 

class Natural 

/* no items: Natural is a primitive set  
 * (i.e. it is not defined in terms of other sets) 
 */ 

 
operations: 
  TI succ(Natural) : Natural; 
  /* i.e. N -> N */ 

  TI +(Natural, Natural): Natural; 
  /* i.e. N x N -> N */ 

axioms: 
  vars: 
  n, n1, n2 : Natural; 
  p : Natpredicate;   /* defined below */ 

formulae: 
  Peano1: 0 in Natural; 

  Peano2: all n1(ex n2(n2 = succ(n1))); 

  Peano3: succ(n1) = succ(n2) -> n1 = n2; 

  Peano4: not ex n (0 = succ(n)); 

  Peano5: all p (p(0) ->  
                 (all n (p(n) -> p(succ(n))) 
                  -> 
                  all n (p(n)) )); 

  ax+_1: all n1, n2(+(n1,succ(n2)) = succ(+(n1,n2))); 
  ax+_2: all n1 (+(n1,0) = n1); 

end 

As usual, + is more commonly used as infix, so we will write 3 + 4 instead of +(3,4)...  
 

                                                 
2 Notice that, in a SHOT class, it would be possible to separate items from operations without 
explicitly using keywords items and operations (items never include types that depend on the 
enclosing class, while operations always do). However, the keywords help clarify the role of class 
elements, hence their introduction, despite the fact that they are redundant. 
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Class NatPredicate defines the set of all predicates on natural numbers. 

class NatPredicate 
items: 

TI v(Natural) : Bool; 

end 

We can define a useful shortcut for classes C with exactly one item i: given an 
instance c of type C, instead of writing c.i, we decide to simply write c, since c.i 
in SHOT is a projection operation, but if there is only one item, we project on the 
whole class. Hence in axiom Peano5 in class Natural we write p(n) instead of 
p.v(n). 
 
A new version of the Invoice class, with a copy operation (the copy operation is 
partial, because it may not always be invoked: when it is invoked, it returns a copy of 
the Invoice): 

class Invoice 
visible: sr_num, amount, date; 
items: 
  TI sr_num : Natural; 
  TI amount : Real; 
  TI date : Date; 

operations:  

  TD partial copy(Invoice) : Invoice; 

axioms: 
  vars: 
  i1, i2: Invoice; 

  formulae: 
  sr_num_unique: all i1, i2(i1.sr_num = i2.sr_num -> i1 = i2); 

  copy_def: copy(i1) = i2 
            -> 
            i1.sr_num <> i2.sr_num & 
            i1.amount = i2.amount & 
            i1.date = i2.date; 
end 

An Invoice_DB object has an event such that, when it occurs, a copy of a certain 
invoice is made: 

class Invoice_DB 
visible: copy_invoice; 
items: 
  TD invoices(Natural) : Invoice; 
  event copy_invoice(Natural); 

axioms: 
  vars: 
  n1, n2 : Natural; 
  i: Invoice; 

  formulae: 
  copy_invoice_def: copy_invoice(n1) & 
                    Invoice.copy(invoices(n1)) = i 
                    -> 
                    ex n2(n2 <> n1 & NowOn(invoices(n2) = i); 
end 
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A new version of the Sensor class, with a destroy command (when the sensor is 
destroyed, it stops working for the rest of the temporal domain): 

class Sensor 
visible: measure, limit, over_limit, working; 
temporal domain: Real; 
items: 
  TI sr_num: Natural; 
  TD total measure: Real; 
  TI limit: Real; 
  TD over_limit : boolean; 
  TD working : boolean; 

  event destroy; 

axioms: 
  vars: 
  s1, s2: Sensor; 

  formulae: 
  def_over_limit: over_limit <-> measure > limit; 
  sr_num_unique: all s1, s2(s1.sr_num = s2.sr_num -> s1 = s2); 

  destroy_def: destroy -> AlwF(not working); 
end 

Notice that neither class Sensor, nor class Controller as declared in Section 3 have to 
be modified if one switches from the lambda calculus semantics to the set theory 
semantics. 

7 Genericity 
HOT/SHOT classes can be parametric with respect to values of classes and with 
respect to classes. The header of a generic HOT/SHOT class has the following 
syntax: 

class <class_name> ( <par_decls> ) 

where nonterminal <par_decl> is defined as follows: 

<par_decls> := <par_decl>; <par_decls> | 
               <par_decl> 
<par_decl> := const <par_name> : <par_type> | 
              domain <par_name> 

For example, the following declarations are admissible in HOT/SHOT: 

class NaturalRange (const lower_bound : Natural, 
                    const upper_bound : Natural) 
... 
end 

class Stack (domain ObjType) 
... 
end 

class MaxDepthBinaryTree (const max_depth : Natural, 
                          domain ObjType) 
... 
end 

It probably makes sense to allow users to define some constraints on the parameters 
passed to the class (for example, one might require for class NaturalRange that 
the upper bound must be greater than or equal the lower bound, or, for class 
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MaxDepthBinaryTree, one might require that a total order is defined for type 
ObjType), but we leave this topic to further revisions of HOT/SHOT. 
 

8 Conclusions and future work 
This document introduced a revised version of the TRIO specification language, one 
in which the concepts of type and class coincide. 
We feel that the resulting language is extremely compact and clean, meaning that it is 
based on a small set of core concepts, and every other concept is derived from it. 
 
A few issues have not been tackled in this document (or have been analyzed only 
superficially), but will be dealt with in the future. 
Most notably, a more thorough discussion of genericity is in order, as we gave only a 
brief idea of how the new type system makes the concept of generic classes simpler 
with respect to usual TRIO. 
 
In addition, we feel that the compactness and simplicity of its core is an important 
asset of the HOT/SHOT language. In particular, we intend to exploit these important 
characteristics to rigorously introduce the notions of inheritance and subtyping in 
HOT/SHOT. 
In fact, we feel that, while the concepts of inheritance and subtyping have been 
studied for many years now, and many languages (programming or not) include a 
notion of either (or both) of them, the way they have been dealt with is still largely 
unsatisfactory. 
More precisely, we plan on introducing subtyping in HOT/SHOT as a constrained 
(semantic) variant of inheritance. 
 
Finally, the concepts of inheritance and subtyping will evolve into a notion of 
refinement for HOT/SHOT classes, which will add a method on top of the rigorously-
defined aforemenetioned ideas. 
 



   

 24 

9 References 
[And86] P. B. Andrews. An Introduction to Mathematical logic and type theory: to truth 

through proof. Academic Press. 1986. 

[C3M399] Ciapessoni, E., Coen-Porisini, A., Crivelli, E., Mandrioli, D., Mirandola, P. and 

Morzenti, A. 1999. From Formal models to formal based methods: an 

industrial experience, ACM Transactions on Software Engineering and 

Methodologies 8, 1, 79-113. 

[CPRM03] A. Coen-Porisini, M. Pradella, M. Rossi, D. Mandrioli. A Formal Approach for 

Designing CORBA-based Applications, ACM Transactions On Software 

Engineering and Methodology, vol. 12, n. 2, April 2003. 

[Men97] E. Mendelson. Introduction to Mathematical Logic. Lewis Publishers, 4th 

edition, 1997 

[OS99] S. Owre, N. Shankar. The Formal Semantics of PVS. Technical Report CSL-

97-2R. SRI International. March 1999. 

 

10 Appendix A: Invoice and Sensor revised 
Section 6 introduced new operations (in set theory terms) to the Invoice and 
Sensor classes that were absent in their original definitions given in Section 3. This 
appendix presents how the original declarations of Section 3 could be modified to 
include the new items, if the semantics of HOT is given in terms of typed lambda 
calculus. 
 
The new version of the Invoice class, with a copy operation (the copy operation 
is partial, because it may not always be invoked: when it is invoked, it returns a copy 
of the Invoice): 

class Invoice 
visible: sr_num, amount, date; 
items: 
  TI sr_num : Natural; 
  TI amount : Real; 
  TI date : Date; 

  TD partial copy : Invoice; 

axioms: 
  vars: 
  i1, i2: Invoice; 

  formulae: 
  sr_num_unique: all i1, i2(i1.sr_num = i2.sr_num -> i1 = i2); 

  copy_def: i1.copy = i2 
            -> 
            i1.sr_num <> i2.sr_num & 
            i1.amount = i2.amount & 
            i1.date = i2.date; 
end 
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An Invoice_DB object has an event such that, when it occurs, a copy of a certain 
invoice is made: 

class Invoice_DB 
visible: copy_invoice; 
items: 
  TD invoices(Natural) : Invoice; 
  event copy_invoice(Natural); 

axioms: 
  vars: 
  n1, n2 : Natural; 
  i: Invoice; 

  formulae: 
  copy_invoice_def: copy_invoice(n1) & 
                    invoices(n1).copy = i 
                    -> 
                    ex n2(n2 <> n1 & NowOn(invoices(n2) = i); 
end 

A new version of the Sensor class, with a destroy command (when the sensor is 
destroyed, it stops working for the rest of the temporal domain): 

class Sensor 
visible: measure, limit, over_limit, working; 
temporal domain: Real; 
items: 
  TI sr_num: Natural; 
  TD total measure: Real; 
  TI limit: Real; 
  TD over_limit : boolean; 
  TD working : boolean; 

  event destroy; 

axioms: 
  vars: 
  s1, s2: Sensor; 

  formulae: 
  def_over_limit: over_limit <-> measure > limit; 
  sr_num_unique: all s1, s2(s1.sr_num = s2.sr_num -> s1 = s2); 

  destroy_def: destroy -> AlwF(not working); 
end 

 
 


