Higher-Order TRIO

Carlo A. Furia, Dino Mandrioli, Angelo Mor zenti,
Matteo Pradella’, Matteo Rossi, Pierluigi San Pietro
Dipartimento di Elettronica ed Informazione
Politecnico di Milano,
"CNR IENT-MI
{furia, mandrioli, morzenti, pradella, rossi, sanpietro}@elet.polimi.it

0 Index
0 Index 3
1 Introduction: Why Higher-Order TRIO 5
2 Someterminology and basic definitions 5
3 Syntax 6
4 Semantics (of Basic HOT) 9
5 Syntactic sugar 13
51 non-contextual andi nfi x keywords 13
52 Modules 15
5.3 Quantification over the modules of a class 16
54 Keyof aHOT class 16
6 A different approach: set theory 17
6.1 Syntax 18
6.2 Semantics 18
6.3 Examples 20
7 Genericity 22
8 Conclusions and future work 23
9 References 24
10 Appendix A: | nvoi ce and Sensor revised 24

1 Introduction: Why Higher-Order TRIO

TRIO [C3M399] is a first-order metric temporal logic with object-orientexlstructs
that is suitable to describe time-critical systems. TRIO is typed, but thieamnof
types available in TRIO is limited to a small set. To model general carapitems
(that is systems ranging from invoice management applications to poweij,plants
however, we feel that great flexibility in defining what are the objecmposing the
system is needed.

Higher-Order TRIO (HOT for short) is a thorough revisitation of the TRi@uage,
one in which the user can freely define new types, which can be complex (orf for tha
matter, simple and basic) at will.

In fact, in origin, HOT derives from a very specific need, which is to efielgti

model system (software) architectures, that require suitable metisaens
constructs to easily represent information such as "object A sends objsathiBra
object C", etc.

Representing this kind of information in usual TRIO would not be impossible, but
certainly complicated and cumbersome (in two words, practically unfeasible

For this, we need a new definition of types in TRIO. More precisely, we will sta
from the idea thaClass = Type.

As a consequence, TRIO becomes a higher-order temporal logic, as it is nowepossibl
to quantify over variables that are typed b@lass (which can include functions,
predicates, etc.). We will investigate the consequences of the e@latisy= Typein
the next sections.

This document is structured as follows. Section 2 presents some basic terminology
and definitions. Section 3 introduces the syntax of HOT, while Section 4 gives a
lambda calculus-based semantics for the language. Section 5 adds somie syntact
sugar to basic HOT to simplify writing useful and common properties. Section 6
presents an alternative semantics for HOT based on set theory (Set tssaty-b

HOT, SHOT for short). Section 7 hints at genericity in HOT. Finally, 8e@idraws
some conclusions and outlines future work related to HOT.

Before concluding this introduction, notice that, with respect to TRIO, the modal par
(that is, Time) of the HOT logic remains unchanged. The representation of temporal
evolution of systems in HOT is still built around tbest operator (and all the usual
derived temporal operators). Then, this document will not delve into the details of
HOT temporal operators, whose definition and semantics is the same as in old TRIO

2 Some terminology and basic definitions

In the definition of HOT, let us start with a list of basic concepts and their gyrson
(summarized in Table 1).

Concept Synonyms
ltem Function. Predicate. Relation.
Formula
Class Type (and subtype). Domain. Set. (Module.)
Object Instance. Value (of a type). Model. History.

Tablel- List of HOT concepts and synonyms.

Items are the founding elements of the HOT logic. In HOT (and TRIO) terms, Wwe cal
item what, in usual logic lore, is callddnction or predicate (notice that an item is
either a function or a predicate, but in traditional logic a predicate is not aofuncti
even though it is easy to express the former using the latter, and vice-vé&%a). H
items can have arguments (and return values), whidy@eeelements. The
arguments (and returned values) of HOT items can be of any HOT type (seg below
For example, we might define a HOT iterh to be a predicate with two arguments
of typet 1 andt 2:

itens:

TDit(tl, t2) : bool ean
Notice that, just like in TRIO, HOT items can be defined to be time-depenid@nt (
or time-independentl().

Items are the building blocks for HGdrmulae. HOT (well-formed) formulae are, as
usual, a combination of functions, predicates (that is, items), logical conn>prs (
- >, <-> not, etc.), temporal operatorBit, Futr, Past, etc.) and quantifiera(| ,
exi st s). For example:

pl(f1, f2(cl)) -> Futr(all(o)(p2(0)), t);

Notice that every HOT variable (for examplg, o andt in the formula above)
ranges over the values of some type, which is defined through a HOT class.

So, as stated before, a HO&ss defines aype. A class identifies domain, or,
equivalently, aset of elements.

Given a HOT domain (i.e. class), an element of the domainabjeatt. The term

object is synonym foinstance (of a class) andalue (of a type). A HOTobject
corresponds also toraodel for the corresponding class (or, in TRIO terms, to a
history). We will analyze in Section 4, which defines HOT semantics, the meaning of
makingobject synonym withmodel (andhistory).

3 Syntax

Basic el ements

The basic elements of the HOT language are:

» constants (of a type)

» variables (of a type)

e items

» connectors and quantifiemsdt , & al | , etc.)

* temporal operatord) st and all the usual derived operatbig r , Past ,

etc.)

Constants and variables must hawgpe, which corresponds to the name of a HOT
class. The typebool ean corresponds to the truth valuesue andf al se.

Items can only be declarécside HOT classes.

Terms

* aconstant of type is a term of typé
» avariable of type is a term of typé

« ifi(T1, ... Tn):Tret isanitem declared in cla€swhere
T1, ... TnandTret are all type names, and, ... vn areterms of
typeTl, ... Tnandc is aterm of typ&, thenc.i (vl, ... vn) isa

term of typeTr et .
* nothing else is a term.

Predicates are terms of typeol ean.

Formulae

* apredicate is a formula

o iff1andf2 are formulaenot f1landfl & f2 are formulae (all other
usual logic connectors can be defined froot and&)

» if v is a variable of some type(that is, ranging over the values of a clays
andf is a formula, al(f) is a formulaéx, as usual, is defined ast
all not)

o iff isaformula and is a term of typé enpor al domai n,Di st (f,
t) is aformula

* nothing else is a formula.

HOT formulae can be declared omhgide HOT classes.
Examples

Here are some examples of definitions of HOT classes.
The first example defines the natural numbers using Peano's axiomd\&ilassl
has three items,sZer o, succ, and+. i sZer o identifies the natural number 0O, that
is, there is only one natural number such tiser o is true. For short, we refer to
this particular natural number with constant O in the axioms of Blisar al . succ
is a function that returns the successor of a natural number, while + reprlesents t
usual additionNat Pr edi cat e is a class (i.e. a type) representing the set of
possible predicates on natural numbers (that is, the set of functions from naturals to
booleans), and is defined below.

cl ass Nat ur al

vi sible: isZero, succ, +;

items:

Tl isZero : bool ean;

Tl succ : Natural;
Tl +(Natural): Natural;

axi ons:
vars:
n, nl, n2 : Natural;
Z . Natural;
p : NatPredicate; /* defined bel ow */
formul ae:
Peanol: ex z(z.isZero); [* call it 0 */

Peanol bis: nl.isZero & n2.isZero -> nl = n2;

Peano2 : all nl(ex n2(n2 = nl.succ));

Peano3: nl.succ = n2.succ -> nl = n2;
Peano4: not ex i(ex z(z.iszero & (z = i.succ)));

Peano5: all p(p.val (0) ->
(all i(p.val(i) -> p.val(i.succ))
->

all i(p.val(i))));
ax+_1: all nl, n2(nl.+(n2.succ) = (nl.+(n2)).succ);
ax+_2: all nl1 (nl.+(0) = nl);
end

Notice that, to represeat + b given the definition above one should write
a. +(b), since + is an item of class Natural. However, HOT allows also the classic
(and more natural) syntax + b. Section 5 deals with this (and other) syntactic
features of the language.

ClassNat Pr edi cat e defines (a class corresponding to) the set of all predicates on
natural numbers. In classic logicpifs a predicate over natural numbers arnsla
natural number, we would writgn) to signify the value of predicapein n. Again,
the syntax for pure HOT is a little more cumbersome, as we define arvaém,
which takes a natural number as argument, and corresponds to the value of the
predicate in that natural number. Then, instega{gf in HOT we writep. val (n) .
Again, shortcuts for notations suchmsval (n) might be devised in the future, if
necessary.

cl ass Nat Predicate

vi sible: val;

items:

Tl val (Natural) : bool ean
end

Classl nvoi ce defines invoices. It has only one axiom, which states that the serial
number of an invoice separates it from other invoices (that is, no two invoices have
the same serial number).

class I nvoice
visible: sr_num anount, date;
itens:

Tl sr_num: Natural

Tl anmount : Real

Tl date : Date;

axi ons:

vars:

il, i2: Invoice

formul ae

Sr_numunique: all i1, i2(il.sr_num=i2.sr_num->i1l =i2);
end

Class Sensor defines the behavior of any possible sensor of a system. Es@ry se

has a serial number, which separates it from every other sensors. The quantity
measured by the sensor is represented byneasur e, iteml i m t is a threshold

that said quantity should not exceed, while predioatr | i m t is true when the
measured quantity is above its limit. Finally, predicade ki ng is true when the

sensor is correctly functioning (false otherwise).

The two axioms of the class state the uniqueness of serial numbers for sensors, and
the behavior of predicatever _|imt.

cl ass Sensor

visible: measure, limt, over_limt, working;
tenporal donai n: Real;
itens:

Tl sr_num Natural;

TD total neasure: Real;
Tl limt: Real;

TD over linmt : bool ean;
TD wor ki ng : bool ean;

axi ons:
vars:
sl, s2: Sensor;

for mul ae:

def over limt: over limt <-> nmeasure > linmt;

sr_num.uni que: all s1, s2(sl.sr_num = s2.sr_num-> sl = s2);
end

Finally, classCont r ol | er models controllers provided with two sensors. The
hypothesis is that the two sensors monitor the same quantity, anaMitekeeps
track of the average of the two measurements (as defined by dgfonavg). The
sensors of the controller can be replaced if they stop working. Axiom
sensor 1_change states exactly this property for sensdr, that is, that if sensor
s1 stops working, it will be replaced withdefferent sensor withirSUBS_ Tl ME time
units.
Axiom sensor s_never _t he_sane states that it is not possible to wire the
controller in a way such that it reads data from just one sensor.

class Controller

t empor al donmai n: Real

items:

TD sl1: Sensor;

TD s2: Sensor;
TD avg: Real;

axi ons:
vars:
sidl, sid2: Natural;

formul ae:
sensors_never _the_sanme: AlwWsl != s2);
def _avg: avg = (sl.measure + s2.neasure)/2;

sensor 1l _change:

not sl.working & sl.sr_num = sidl

->

Wt hinF(sl.working & sl1.sr_num!= sidl, SUBS TIME);
/* SUBS TIME is a pre-defined positive real constant */
end

4 Semantics (of Basic HOT)

The semantics of HOT is given in terms of typed lambda calculus, as used in the type
theory presented in [And86]. Then, HOT classes are to be interpredeid afs

values, and everything else isfanction (even connectors and quantifiers, as shown in
[And86]). Most notably, items of classes are functions.

Suppose, for example, that we declare in HOT the following class C (let us focus on
time-independent items for the time being, we will tackle the issue of ateeih this
document):

class C

T f(B) : v

end.
The first line declares C to be a set of values. Given aniitefrclassC, let us call
si go(i) its signature in clasS. For example, the signature of itéms si g¢(f)

= B -> vy, while the signature of itemin classNat ur al isNatural ->
Nat ur al .

Definition 1 (time-independent items). A time-independent item of a clas< s

interpreted as a functianthat has domai@ and range the signatureiaf That is,
i : C->sigdi)

which means that symbplhas typeC - > sigc(i).

For example, itemh of class C is interpreted as a function f with domain C and range
B->
froC->(B->y
(or, borrowing a notation from the PVS logic [OSSP3% a function of typ¢ C - >
[B -> v]],; alternatively, using the notation of [And86]gc).
As additional examples, itemin classNat ur al is interpreted as
+ : Natural -> (Natural -> Natural)

itemval of class NatPredicate corresponds to the following function
val : NatPredicate -> (Natural -> bool)

and itemsr _numof classSensor is interpreted as

sr_num : Sensor -> Natural

Then, to each HOT classthat has itemsy, ..., i, corresponch functionsi

G =1, ... n)thathavetyp€ -> sigdi;). Thatis, every value of type
Cis associated with valuesi j (c) , each one with typsi gc(i ;) .

Then values associated with valaeuniquely identifyc. That is, a value of classC
is identified by the set of its images through functions ... i ,.

Definition 2. Given a HOT class C with itemsg, ..., i,everyvalue of type
Cis uniquely identified by the images associated withthrough functions 4,
i n. More precisely, using the interpretation of HOT as typed lambda calculus
and classic logic notation:
Ocl,c2: C (ii(cl) =i4(c2) O
i(cl) = iyc2) O
0

i (1) = i(c2)

10

-

cl = c2)

For example, definition 2 for clad&at ur al presented above translates to

Onl, n2: Natural (isZero(nl) = isZero(n2) O
succ(nl) = succ(n2) O
+(n1) = +(n2)

-

nl = n2)
while for clasdNat Pr edi cat e definition 2 corresponds to
Onpl, np2: Nat Predi cate (val (npl) = val (np2)
erl = np2)
and for clas$ nvoi ce to

Oi1,i2:Invoice (sr_num(il) = sr_num(i2) O
anount (i 1) = amount (i 2) O
date(il) = date(i?2)

-

i1=i2)

Notice that axionPeano3 of classNat ur al andsr _num uni que of class
| nvoi ce are stronger than definition 2 for those two classes, which is entirely
admissible.

Then, a HOT class is defined by its axioms in the sense that its axiomsiodhstra
values of its items, and the values of its items define entirely a HOT class.

Time

A temporal domairt in HOT can be any type with a total order and metric (that is, a
notion ofdistance between instants is defined). HOT items can be time-dependent or
time-independent. Time-dependent items can vary over time, meaning that they
evaluate to different values depending on the instant in which they are evaluated.

Definition 3 (time-dependent items). A time-dependent iterhd_i of a classC with
temporal domain is interpreted as a functiard_i that has domai@ and range the
functions fromt to the signature dfd_i . That is,

td_i : C-> (1 ->sigdi))

which means that symbbd_i hastypeC -> (1 -> sigc(i)).

For example, itemmeasur e of classSensor (which has temporal domakeal) is
interpreted as

neasure : Sensor -> (Real -> Real)

while items1 of classCont r ol | er corresponds to

sl : Controller -> (Real -> Sensor)

11

As usual with TRIO, however, in formulae time is implicit, so it is never eiiyli
represented or cited; for examplesifs a variable of typ&ensor,s. neasure is
interpreted ageasure(s) (t),wheret (t O 1)is the current instant.

The usuaDist temporal operator of TRIO is used to manipulate the implicit temporal
variable of type.

Objectsas histories

Given the definitions presented above (and in particular definitions 2 and 3), the
values of a clas§ correspond to thiistories of C.

Take, for example, clag®nt r ol | er . Definition 2 for clas€ont rol | er
translates to

Ocl,c2:Controller (sl(cl) = sl(c2) O
s2(cl) = s2(c2) O
avg(cl) = avg(c2)

cl = c2)

which means that two different controllers have different behaviors overgorbdt
every controller is identified by a precisistory).

Now, take clasSensor as further example. Definition 2 for claSsnsor
translates to
Osl, s2: Sensor (sr_num(sl) = sr_num(s2) O
nmeasure(sl) = measure(s2) O

over_limt(sl) = over_limt(s2) O
wor ki ng(s1) = working(s2)

sl = s2)

However, axionsr _num uni que of classSensor states that the serial number is
enough to identify sensors: if two sensors have different serial numbers, therethey ar
different values of clasSensor . This means that different sensors can have the
same interpretation areasur e, over _| i m t andwor ki ng items, but they have
different serial numbers (that is, they have different histories, asribbraenber is

part of them, too).

Implicit quantification over the values of a class (explained through an example)

Let us consider axiomef over |i mt of classSensor . Let us repeat the
axiom here for the sake of clarity, making explicit the implict tempdoaiuce:

def _over limt: Alw(over _limt <-> neasure > |linit).
As mentioned aboveyver |imt,neasure andlint arein factto be
interpreted in the following way:

over limt : Sensor -> (Real -> bool)
neasur e . Sensor -> (Real -> Real)
limt . Sensor -> Real

As axiomdef _over _|i mt is, by definition, valid for all sensors, it is in fact to be
interpreted as the higher-order formula:

12

Os: Sensor (Alw(over _limt(s) <-> nmeasure(s) > limt(s))).

That is, given an axiom of a cla8sn which unqualified references to class items
appear (i.e. references without explicit mention of the containing classasath
references in axiordef _over _|i m t), the unqualified references are implicitly
universally quantified over all values ©f

Semantic remark (just to be precise). HOT domains can be infinite (we need to be
able to represent numbers of various kinds, from naturals to reals), so HOT type
theory includes an axiom of infinity

5 Syntactic sugar

5.1 non-contextual andi nfi x keywords

Consider clasblat ur al defined in Section 3. In that class, operator + is defined as
follows:

Tl +(Natural) : Natural

which implies that in classic, pure object-oriented notation, to reprasento one
should writea. +(b) , since + is an item of class Natural (which takes a single
Natural as argument, and returns the sum of its argument and the Natural value to
which it is applied). However, sometimes it is useful (and more intuitive for the
specifier) to be able to use the classic mathematical notation.

To this end, HOT allows the following declaration:

non-contextual Tl + (Natural, Natural) : Natura

in which case axiomax+_1 andax+_2 of classNat ur al are rewritten as follows:

ax+_ 1. all nl, n2(+(nl, n2.succ) = (+(nl, n2)).succ);

ax+ 2: all nl (+(nl, 0) = nl);
The precise meaning of tm@n- cont ext ual keyword is detailed below, in this
same section.
To simplify syntax further and make it more similar to usual notations, HOT
introduces another keywordnf i x, which allows one to use an infix notation for
(non-contextual) binary items. By using thef i x keyword, the declaration of item
+ above becomes:

i nfix non-contextual Tl + (Natural, Natural) : Natura
in which case axiomax+_1 andax+_2 are rewritten as follows:

ax+_1: all n1, n2(nl + n2.succ = (nl + n2).succ);
ax+_2: all nl (n1 + 0 = nl);

! This causes the HOT logic to breomplete with respect to standard models (that is, modeishich
every function type is required to represent thetall possible functions from the domain setthe
range set).

13

Keywordi nf i x can be usednly in conjunction with keyword non-contextual, and
can be applied only to (non-contextual) items wveiéctly two arguments. Other that
that,i nfi x has no additional semantics, and is pure syntactic sugar.

Semantics of thenon- cont ext ual keyword

From the discussion of Section 4 it is clear that the interpretation of an itentasfa c
can differ between two values of the same class; for examplengasur e of class
Sensor can have different temporal profiles for different values of Gassor
(say, fors; 0 Sensor measur e at time instant 1 might have image 5.5, while for
§, 0 Sensor nmeasur e at the same time instant 1 might have image 8.3).
That is, the interpretation of an itam of classC depends on theontext in which it
is evaluated, where by the tenontext we mean the actual value of cl&that is
being considered (givenl, c2 [0 C, withc1#c2,cl. i t can have different
interpretation front2. i t).
On the other hand, we might want to state that the value returned by a function is
independent of the context in which it is applied, but depends only on its arguments.
Operator (i.e. function¥ (the version with two arguments, one for each operand) of
class Natural is such an example: if we defirees follows:

TI + (Natural, Natural) : Natural
we expect that, ihl, n2 [0 Nat ural , even ifnl#n2,
nl. +(n3, n4) =n2. +(n3, n4) and it corresponds to the usual naB+n4 for
natural numbers). Unless we state otherwise with a suitable axiom, thateclar
above does not rule out that fot, n2 [0 Nat ur al andnl1#n2, it might happen
thatnl. +(n3, n4) #n2. +(n3, n4) (wheren3, n3 [0 Nat ural).
So, we might like to have a syntactic mechanism to state that the integoretedin
item is independent of the context in which is it evaluated, and is entirely detérmine
by its arguments.

Keywordnon- cont ext ual achieves exactly this: it says that the interpretation of
the item is independent of its context.

Definition 4 (semantics of keyword non- cont ext ual). For every non-contextual
itemnci (either time-independent or time-dependent) of a €ggdth signature
si go(nci)) the following holds:

Ocl,c2:C (nci(cl) = nci(c2))

So, given the following declaration in clasat ur al ,
non-contextual TlI + (Natural, Natural) : Natura
the following formula holds:
Onl, n2: Natural (+(nl) = +(n2))
which, in HOT terms, corresponds to saying that
all ni1,n2(all n3,n4(nl.+(n3,n4) = n2.+(n3,n4)))

Then, fornon- cont ext ual items, the specific value in which they are evaluated
(n1, andn2, in the formula above) is irrelevant, and can be skipped altogether. We

14

can then writer(n3, n4) (or, bettern3+n4 if we declaret to be alsa nfi x)
directly, instead of referring to a specific value anin +(n3, n4), without risk
of ambiguities.

5.2 Modules

TRIO has a notion ahodule: a TRIO module is an instance of a TRIO class
contained in another TRIO class. Furthermore, in TRIO the notion of module is
primitive.

HOT does not have@imitive notion of module. Rather, it heisguistic constructs
that allow one to obtain the same semantics of TRIO modules in HOT from basic
HOT concepts.

HOT offers the keywordodul e as a shortcut to automatically introduce the HOT
axioms and definitions corresponding to the semantics of TRIO modules.

HOT allows the following syntax:

nmodul e <nmodul e_name> : [array <array_range> of] <nodul e_type>

wherenodul e, ar r ay andof are terminalsgnodul e_nane>,

<nodul e_t ype> and<ar r ay_r ange> nonterminals which expand, respectively,

to two identifiers (the name and type of the module) and one domain (the range of the
array).

The syntax above is translated in either of the two following HOT declarations,
depending on the fact that the module is an array or not:

Tl <nodul e_nanme> : <nodul e_t ype;

Tl <npdul e_nanme>(<array_range>) : <nodul e_type>;

Every module definesdifferent value of type<nodul e_t ype>, as defined by the
following definition.

Definition 5 (semantics of keyword nodul e). Given a clas€ with moduleam, ...
m, andmay, ... man, all of the same type (wherem, ...m, are single modules, while

mai, ...Myare arrays of modules with ranges ...r), the following formula
holds:

mmOm=zm O... Om£zm O(0i0r)(m # m(i)) O
(QiOr)(m #may(i)) O... O
(OiOry)(m # mai)) O

mzmO... Omm O(0i0r)(m #m(i)) O... O

(OiOry)(m # ma,(i)) O

... 0O

(Oig,i20r)(ig #i2 > mag(iy) # ma(iz)) O

(Oi1Or) (Oi20r2) (mag(ig) # mag(iz) O... O

(O 10r) (O oJr) (mau(i) # mag(ing) U

... O

(Oig, 020 (11 202 > mag(ia) # mafisz))

Then, if classJnnodi f i abl eCont r ol | er contains the following declarations:

cl ass Unnodi fi abl eControll er

nodul e uc_sl1 : Sensor;
nodul e uc_s2 : Sensor;

15

end
the following definitions and formula hold for the class:

Tl uc_sl1 : Sensor;
Tl uc_s2 : Sensor;

uc_sl !'= uc_2;

5.3 Quantification over the modules of a class

To make writing HOT specifications lighter, a shortcut that allows ueezasily
express quantification over all th@dules (in the sense defined in Section 5.2) of a
class that have a certain type is defined.

So, ifv is a variable of typé andf is a HOT formulaal | nod v(f) is also a
HOT formula, whose semantics is given by the following definition.

Definition 6 (semantics of quantifier al I nodul es). Given a clas€ with
modulesm, ...m, andmay, ...may, all of the same type (wherem, ...m, are single
modules, whilera,, ...mayare arrays of modules with ranges ...r o), and given a
variablev of typet and a formuld (v) (wherev is free inf), formulaal | nod
v(f(v)) corresponds to:

f(m) Of(m) O... Of(m) O
(00 Ora) (F(mea(i)) O ... O (0iOr)(mai))

Notice that this isiot a quantification oveall instances of type, but only on those
instances that correspond to modules of dlass

For example, if in classnnodi f i abl eCont r ol | er outlined in Section 5.2 one
writesal | nod s(f(s)), wheres is a variable of typSensor andf a formula
in whichs is free, this would simply correspond to writing

f(uc_sl) O f(uc_s2),whichisnotthe sameaal | s(f(s)).

exmod v(f(v)) isnaturally defined asot al | nrod v(not f(v)).

5.4 Key of a HOT class

Every value of a HOT class corresponds to an interpretation (an assignment to the
items of the class), that is, in usual TRIO termiastory: different instances of the
same TRIO class differ for at least the value of one of their items inmaertstant
(see definition 2 of Section 4). This means, conversely, that two instances of a TRIO
class are in fact the same if they have the same interpretation fozialtéms.

In some cases, however, the condition that identifies the instances of aalddsec
stronger (for example, for the sensors modeled in Section 3, it is enough that two
instances have the same serial number for them to be the same).

HOT offers the keywortétey to explicitly state a condition that is enough to uniquely
identify the values of a class.

Keywordkey is used in thé or mul ae subsection in thaxi ons declaration, and
has the following syntax:

key: <condition>;

16

Only one key declaration is allowed in each class.

In the formula corresponding tckay declaration a clags, there must be exactly
two free variables of typ€. For example, the property defined by axiBeano3 of
classNat ur al of Section 3 might be used as key for the class, but in this case it
should be declared as follows:

cl ass Nat ur al
axi ons:
vars:
nl, n2: Natura

..key: nl. succ = n2.succ;
end
The precise semantics okay declaration is given by the following definition.

Definition 7 (semantics of keyword key). Given a HOT class C with condition
cond declared akey, every value of typeCis uniquely identified by condition
cond. More precisely, using again the interpretation of HOT as typed lambda
calculus:

Ocl,c2: C (cond(cl, c2)

cl = c2)

From definition 7 it descends that in the above revised declaration of\elbas al |,
thekey declaration translates to the following formula:

Onl, n2: Natural (nl.succ = n2.succ - nl = n2)

which corresponds to axioReano3 of the original declaration.

Take now, as a second example, clBesssor also of Section 3. We could revise its
definition and substitute axiosr _num uni que with the following key
declaration:

key: sl.sr_num = s2.sr_num
which translates to the following formula:

Os1, s2: Sensor (sl.sr_num = s2.sr_num - sl = s2)

which is precisely axiorsr _num uni que.

6 A different approach: set theory

So far we have based HOT on lambda calculus, but it is worth exploring a different
approach to found HOT on: set theory (see for example [Men97]). To separate this
second approach from the first one, we call it SHOT (Set theory-based Higlegr Or
Trio).

SHOT is very similar to HOT, but employs a different semantic approacbhvghi
reflected also in few selected syntactic aspects. In the rest oéthisnswe present
SHOT by highlighting its differences with respect to HOT (which wilgbephically
stressed).

17

6.1 Syntax
Basic elements

The basic elements of the SHOT language are:
* constants

* variables

* items

e oOperations
* (types)

Constants and variables must hawgpe, which corresponds to the name of a HOT
class.

We will write x : Dto stress that has typeD, andx(D1) : D2 for functions
with signatureD1 - > D2 (the latter like in good old first-order TRIO) .

TypeBool is defined agtrue, false}.
Items and operations can only be declansale SHOT classes.
Terms

e aconstantis aterm
e avariable is a term

e ifi : T1 x T2 x .. x Tn -> Tret is anitem declared in cla€s
andvl, ... vnaretermsoftyp&l, ... Tn andc is aterm of typ&,
thenc.i(vl, ... vn) isaterm of typdret.

 anoperatiod : A -> B,appliedtoaterm : Aisaternf(a): B
* nothing else is a term.

Logical connectivesand, or , i npl i es, not) are constants having tygeol x
Bool -> Bool, andBool -> Bool respectively. Formulae and predicates are
terms of typeDl x D2 x .. Dk -> Bool, whereDi are types of free variables.
Moreover SHOT has the usual quantifiers for every tgpé: t : T,ex t : T.

6.2 Semantics

SHOT is an extensional logic: two types or functions or anything else araféqua
they have the same type and are equal on all their arguments.

Classes define new types, and may be based on existing types.

In fact, we separate two types of classes: classes definindipeitypes, and classes
defining (derived) types based on other types. They differ on the number of items
declared in them: classes defining primitive types do not &iawgems declared in
them, while classes defining derived types corditileast one item declaration.

The declaration of a primitive tygeC simply corresponds to stating that there is a set

of namePC, and its axioms define it (see class Natural declared below in Section
6.3)..

18

Suppose instead we have a cl@sgith N (N> 0) itemsd ;. . . i y (where the firsP
items are time-independent, and the oflidP ones are time-dependent) avigM=>

0) operation®p;. . . opwm(of which the first. ones are time-independent, the others
time-dependent); suppose also that every itémas signatursi go(i) , and every
operationop has signature sifop) (see also Section 4 for the definitiorsofgc).

The declaration of class C would roughly be the following one:

class C
t enmporal donmin: T;

itens:
T iy o sigdii);
Tl ip @ sigdip):
TD iper 0 Si gl psa);
:I'ii).iN cosigdin;
oper ati ons:
Tl op: : sigdopi);

Tl op. : sigdop);
TD opr+1 : sigc(opr+i);

TD opw : sigc(opwm;
axi ons:

end

The first line states that C is a type.

Thei t ens section states that

COO(sigeis) * ... sigdip) X (T ->(sigcip) % ... sigdin)))
Theoper at i ons section defines name and signature of permitted operations on
type C, while actual operations are defined by the axioms.

Axioms define if and howC is a proper subset of

O(sigia) x ... sigcip) X (T -> (sige(ipa) X ... sigdin))), and
its corresponding operations.

An objectc of typeC has type

sige(ii) x ... sigdip x (1 ->(sigdipa) *X ... sigdin)).
An object is completely defined by its items, bat by its operations.

While item signatures are used to def)etem names are used as name of
components. Dot notation is defined as projection. E.¢. et the current time
instant and the interpretation function. Then i 3 is interpreted at the current time
instant as 1(c)(Wias)- (I (¢) is atuple:

sigdii) x ... sigelip *x (1 -> (sigdipa) x ... sigdin)).
I (c)(t) isthe object value at tinte i.e.l (¢) (t) O
Sige(ig) x ... sigdip x (sigce(ips) X ... sige(in)).

Notice that item signatures himust not contai€ itself nor of any derived type that
depends o€ (we define the relation "depend on" for types in the following way: if a

19

typeCl has an item with either an argument or the range of@2péhenCl depends
on C2 and, recursively, on all types on whiC depends). Notice also that, by the
definition itself of primitive type as introduced above, a primitive type does not
depend on any other types.

On the other hand, an operation declared in a SHOT Classst haveat least one
argument or the range which is either of type C itself, or of a type that depe@ds on

Finally, notice that, with the new semantics, definitions 1, 2 and 3 of Section 4 are not
needed any more (in fact, definitions 1 and 3 are made unnecessary by the
interpretation of classes as subsets of powersets, while definition 2 derivaldrom
axioms of the underlying set theory).

6.3 Examples

Here we present the examples introduced in Section 3, but with the new separation in
items and operations.

cl ass Nat ur al

/* no itens: Natural is a primtive set
* (i.e. it is not defined in terms of other sets)
*/

operations:
Tl succ(Natural) : Natural;
/* i.e. N->N*/

Tl +(Natural, Natural): Natural;
/* i.e. NX N-> N */

axi ons:
vars:
n, nl, n2 : Natural;
p : Natpredicate; /* defined bel ow */

f or mul ae:
Peanol: 0 in Natural;

Peano2: all nl(ex n2(n2 = succ(nl)));
Peano3: succ(nl) = succ(n2) -> nl = n2;
Peano4: not ex n (0 = succ(n));

Peano5: all p (p(0) ->
(all n (p(n) -> p(succ(n)))

->
all n (p(n))));

ax+_1: all nl, n2(+(nl,succ(n2)) = succ(+(nl,n2)));
ax+ 2: all nl1 (+(nl1,0) = nl);

end

As usual, + is more commonly used as infix, so we will write 3 + 4 instead of +(3,4)...

2 Notice that, in a SHOT class, it would be posstblseparate items from operations without
explicitly using keywords$ t ens andoper at i ons (items never include types that depend on the
enclosing class, while operations always do). Haexethe keywords help clarify the role of class
elements, hence their introduction, despite thetfeat they are redundant.

20

ClassNat Pr edi cat e defines the set of all predicates on natural numbers.
plass Nat Pr edi cat e
Itens:
Tl v(Natural) : Bool
end

We can define a useful shortcut for clasgSegth exactly one item : given an
instancec of typeC, instead of writing. i , we decide to simply write, sincec. i

in SHOT is a projection operation, but if there is only one item, we project on the
whole class. Hence in axioReano5 in classNat ur al we writep(n) instead of

p.v(n).

A new version of thé nvoi ce class, with &opy operation (th&opy operation is
partial, because it may not always be invoked: when it is invoked, it returns a copy of
thel nvoi ce):

cl ass I nvoice
visible: sr_num anount, date;
itens:

TI sr_num : Natural

Tl ampbunt : Real

Tl date : Date;

operations:

TD partial copy(lnvoice) : Invoice;
axi omns:
vars:
il, i2: Invoice
f or mul ae:
sr_numunique: all i1, i2(il.sr_num=i2.sr_num-> il =i2);
copy_def: copy(il) =1i2
->
il.sr_num<>i2.sr_num&
i 1.anpbunt = i2.anpbunt &

il.date = i2.date;
end

An | nvoi ce_DB object has an event such that, when it occurs, a copy of a certain
invoice is made:

class I nvoice DB
vi si bl e: copy_invoi ce;

itens:

TD i nvoi ces(Natural) : Invoice;

event copy_invoice(Natural);
axi oms:

vars:

nl, n2 : Natural

i: lnvoice;

formul ae:

copy_i nvoi ce_def: copy_invoice(nl) &
I nvoi ce. copy(i nvoi ces(nl)) =
->
ex n2(n2 <> nl & NowOn(invoices(n2) =i);
end

21

A new version of th&ensor class, with alest r oy command (when the sensor is
destroyed, it stops working for the rest of the temporal domain):

cl ass Sensor

visible: neasure, limt, over_limt, working;
tenporal donai n: Real;
itens:

Tl sr_num Natural;

TD total neasure: Real;
Tl limt: Real;

TD over limt : bool ean;
TD wor ki ng : bool ean;
event destroy;

axi ons:
vars:
sl, s2: Sensor;

formul ae:
def _over limt: over_ limt <-> nmeasure > limt;
Sr_num.uni que: all sl1, s2(sl.sr_num= s2.sr_num-> sl = s2);

destroy_def: destroy -> Al wF(not working);
end

Notice that neither class Sensor, nor class Controller as declared onSektive to
be modified if one switches from the lambda calculus semantics to the sgt theor
semantics.

7 Genericity

HOT/SHOT classes can be parametric with respect to values ofsctassavith
respect to classes. The header of a generic HOT/SHOT class haltothimg
syntax:

cl ass <cl ass_nane> (<par_decl s>)

where nonterminatpar _decl > is defined as follows:

<par _decl s> : = <par_decl >; <par _decl s> |
<par _decl >
<par _decl > : = const <par_nane> : <par_type> |

donmai n <par _nane>

For example, the following declarations are admissible in HOT/SHOT:

cl ass Natural Range (const | ower_bound : Natural,
const upper_bound : Natural)

end
class Stack (domain Obj Type)
end

cl ass MaxDept hBi naryTree (const max_depth : Natural,
domai n Obj Type)

end
It probably makes sense to allow users to define someraints on the parameters

passed to the class (for example, one might require forNédasr al Range that
the upper bound must be greater than or equal the lower bound, or, for class

22

MaxDept hBi nar yTr ee, one might require that a total order is defined for type
Obj Type), but we leave this topic to further revisions of HOT/SHOT.

8 Conclusions and future work

This document introduced a revised version of the TRIO specification language, one
in which the concepts of type and class coincide.

We feel that the resulting language is extremely compact and cleannméaatiit is
based on a small set of core concepts, and every other concept is derived from it.

A few issues have not been tackled in this document (or have been analyzed only
superficially), but will be dealt with in the future.

Most notably, a more thorough discussion of genericity is in order, as we gave only a
brief idea of how the new type system makes the concept of generic clagdes sim
with respect to usual TRIO.

In addition, we feel that the compactness and simplicity of its core is an anport
asset of the HOT/SHOT language. In particular, we intend to exploit thpsetamt
characteristics to rigorously introduce the notions of inheritance and subtyping i
HOT/SHOT.

In fact, we feel that, while the concepts of inheritance and subtyping have been
studied for many years now, and many languages (programming or not) include a
notion of either (or both) of them, the way they have been dealt with is stilljlargel
unsatisfactory.

More precisely, we plan on introducing subtyping in HOT/SHOT as a constrained
(semantic) variant of inheritance.

Finally, the concepts of inheritance and subtyping will evolve into a notion of

refinement for HOT/SHOT classes, which will add a method on top of the rigorously
defined aforemenetioned ideas.

23

9 References
[And86] P. B. AndrewsAn Introduction to Mathematical logic and type theory: to truth

through proof. Academic Press. 1986.

[C3M399] Ciapessoni, E., Coen-Porisini, A., Crivelli, E., Mandyiol, Mirandola, P. and
Morzenti, A. 1999. From Formal models to formal based methods: a
industrial experience ACM Transactions on Software Engineering and
Methodologies 8, 1, 79-113.

[CPRMO03] A. Coen-Porisini, M. Pradella, M. Rossi, D. MandrialFF-ormal Approach for
Designing CORBA-based Applications, ACM Transactions On Software
Engineering and Methodology, vol. 12, n. 2, April 2003.

[Men97] E. Mendelsonlntroduction to Mathematical Logic. Lewis Publishers, "4
edition, 1997

[0S99] S. Owre, N. Shankafhe Formal Semantics of PVS. Technical Report CSL-
97-2R. SRI International. March 1999.

10 Appendix A: I nvoi ce and Sensor revised

Section 6 introduced new operations (in set theory terms) tahei ce and

Sensor classes that were absent in their original definitions given in Section 3. This
appendix presents how the original declarations of Section 3 could be modified to
include the new items, if the semantics of HOT is given in terms of typed lambda
calculus.

The new version of thienvoi ce class, with &opy operation (the&opy operation
is partial, because it may not always be invoked: when it is invoked, it returns a copy
of thel nvoi ce):

cl ass I nvoice
vi sible: sr_num anount, date;
itens:

Tl sr_num: Natural;

Tl amount : Real;

Tl date : Date;

TD partial copy : Invoice;
axi ons:
vars:
il, i2: lInvoice;
formul ae:
sr_numunique: all i1, i2(il.sr_num=i2.sr_num->i1l =i2);

copy_def: il.copy =i2
->
il.sr_num<>i2.sr_num &
i 1. amount = i 2. amount &
i1.date = i 2. date;
end

24

An | nvoi ce_DB object has an event such that, when it occurs, a copy of a certain

invoice is made:

class I nvoice DB
vi si bl e:
itens:

TD i nvoi ces(Nat ural)

copy_i nvoi ce;

| nvoi ce;

event copy_invoice(Natural);

axi ons:
vars:
nl, n2 : Natural;
i: Invoice;
f or mul ae:

copy_i nvoi ce_def:

end

copy_i nvoi ce(nl) &
i nvoi ces(nl).copy =i
->

ex n2(n2 <> nl & NowOn(invoices(n2) =i);

A new version of th&ensor class, with alest r oy command (when the sensor is
destroyed, it stops working for the rest of the temporal domain):

cl ass Sensor

vi si bl e: neasure,
t enmporal donai n:
itens:

limt,
Real ;

over_limt, working;

Tl sr_num Natural;

TD total neasure:
Tl limt: Real;
TD over limt
TD wor ki ng :

event destroy;

axi ons:
vars:
sl, s2: Sensor;

formul ae:
def _over limt:
Sr_num_uni que:

destroy_def:
end

Real ;

bool ean;
bool ean;

over limt <-> nmeasure > limt;
al |

sl, s2(sl.sr_num = s2.sr_num-> sl = s2);

destroy -> AlwkF(not working);

25

