
1

Model-checking TRIO specifications in SPIN
*

Angelo Morzenti1, Matteo Pradella2, Pierluigi San Pietro1, Paola Spoletini1

1Dipartimento di Elettronica e Informazione, Politecnico di Milano,

P.za Leonardo da Vinci 32,

20133 Milano, Italia
2CNR Istituto di Elettronica e di Ingegneria dell’Informazione e delle Telecomunicazioni, sez. Milano

Via Ponzio 34/5,

20133 Milano, Italia

email: {morzenti, pradella, sanpietr, spoleti}@elet.polimi.it

Abstract. We present a novel application on model checking through SPIN as a means for

verifying purely descriptive specifications written in TRIO, a first order, linear-time temporal

logic with both future and past operators and a quantitative metric on time. The approach is based

on the translation of TRIO formulae into Promela programs guided by an equivalence between

TRIO and 2-way alternating Büchi automata. An optimization technique based on the

modularized TRIO specifications is also shown. The results of our experimentation are quite

encouraging, as we are able to verify properties of the Railway Crossing Problem, a well-known

benchmark used in the Formal Methods community, for values of the temporal constants that

make the verification totally infeasible with traditional tools and approaches.

Keywords: temporal logic, model checking, modular specifications, Spin.

1. Introduction

TRIO is a first order, linear-time temporal logic with both future and past operators and a quantitative
metric on time, that has been extensively applied to the specification, validation and verification of
critical, real-time systems [13]. The logic TRIO has also been enriched with constructs, inspired by
Object-Oriented Analysis and Design, for structuring specifications into a set of modules with clearly
defined interfaces, thus providing a very useful support to the structuring and management of
specification of highly complex systems, and at the same time building a bridge from requirements
specification to high-level design. Over the years a variety of methods and tools have been defined to
support typical V&V activities in TRIO. Validation of TRIO specification is obtained through
generation of execution traces or checking of such simulations for consistency against the TRIO
specification [14]. The execution traces derived from TRIO specifications, suitably classified and
annotated, can be employed as functional test cases to support post-design verification [15]. A more
systematic and general means of validation and verification can be pursued through proof of

* Work partially supported by the MIUR projects: “QUACK: Piattaforma per la qualità di sistemi embedded

integrati di nuova generazione” and “FIRB: Applicazioni della Teoria degli Automi all'Analisi, alla
Compilazione e alla Verifica di Sistemi Critici e in Tempo Reale.”

2

properties derivable from the TRIO axioms composing the specification. As TRIO is a first order
logic that includes arithmetic on the temporal domain, it is undecidable in the general case, hence two
basic approaches were devised to address the goal of providing mechanical support to the verification
of TRIO specifications. One consists of adopting a deductive approach, based on the definition of a
suitable axiomatization of the logic and on its encoding in the notation of a general purpose theorem
prover, such as PVS [16]; this allows the construction of a tool supporting the semiautomatic (i.e.,
manual with assistance from the tool) derivation of system properties in the form of theorems. In this
approach one maintains the generality and expressive power of the full language, at the price of
sacrificing the construction of a completely automatic (so-called push-button) tool. Another,
complementary approach to verification aims at the construction of tools that are fully automatic, or at
least provides a quite strong support to the designer: it consists of defining a decidable approximation
of a specification, upon which applying methods and algorithms for deciding satisfiability or, less
generally but more efficiently, for checking satisfaction with respect to a given interpretation
structure. In the past, the latter approach has been based on finitizing the domains of the variables that
appear in the specifications [7], leading to the construction of tools built either on tableaux-based
verification procedures [7, 14, 15] or on the encoding of TRIO into propositional languages and the
use of sophisticated SAT-solvers [17]. This approach has the advantage of allowing the development
of “pushbutton” tools, such as the cited [17], but the approximations introduced to make verification
decidable (and feasible) may not assure the conservation of properties of the original specification.
For instance, time must be finite rather than infinite for a SAT-solver to be used, making the
verification of various fairness and liveness properties hard or even impossible.

In the present paper, we pursue a different approach for the mechanical verification of TRIO
specifications, namely the definition of a decidable fragment of the logic that includes a suitable
subset of its original operators, and the use of a well-known model checker such as SPIN [18] to
perform proof of properties and simulation (in the form of generation of execution traces).

A TRIO specification consists of a set of temporal logic formulae that describe the desired
properties of the system being designed; this kind of specification does not include any operational
component (such as a state-transition system) that can generate values for the elements of the alphabet
of the specification (predicates and variables representing the state of the various parts composing the
system under design); on the contrary, and similarly to what occurs in any other purely descriptive
specification notation, TRIO formulae define constraints on the values that the items appearing in the
specification can assume in the “legal” (i.e., consistent with the specification) evolutions. Therefore,
the problem of property proving in TRIO, when addressed in a model-checking approach, takes a
form that is rather different from the one typically encountered in the literature on the subject. It is
formulated in terms of the validity of a logic formula of the kind specification → property, where the
premise specification is still a set of TRIO formulae describing properties that are assumed to hold for
the analyzed system, and property is another TRIO formula describing the conjecture that we want to
prove to be implied by the properties stated in the premise. As it happens in some other approaches
based on model-checking, what we actually check might in fact be the negation of the above
implication, i.e., ¬(specification → property) and the counterexamples generated by the model-
checker in this case can be used as simulations or functional test cases for the desired property.
Therefore, in our approach what we call specification has a role similar to the one played by the so-
called model in the usual model checking scenery (e.g., a Promela program in SPIN) while what we

3

call property in the above implication is usually called specification and takes the form of a formula in
temporal logic (e.g., an LTL formula in SPIN).

Our approach to model checking TRIO specifications is based on the translation of the TRIO
formulae into a set of Promela processes, derived from a well known correlation between temporal
logic and alternating automata [10]. As opposed to previous approaches, however, the Promela code
generated from TRIO formulae performs an actual simulation of an alternating automaton, rather than
simulating a Büchi automaton equivalent to the alternating one, resulting in a Promela code whose
size is essentially proportional to the length of the TRIO specification (although of course the state
space may not be affected in either way). This is by itself a remarkable result since the TRIO logic,
which contains metric and past operators, is quite concise compared with propositional, future-time
temporal logics like LTL. Our approach can be naturally compared with recent works appeared in the
literature (such as those on LTL2BA [2] and Wring [11]) that aim at the translation of LTL properties
into Büchi automata and then Promela programs--such comparison will be provided in Section 4). We
point out, however, that the result of those tools is usually the construction, as in the traditional
model-checking scenario, of a so-called never claim, i.e., an automaton specifying the negation of a
temporal logic property over an already available state-transition system. In our approach, instead, the
Promela processes obtained from the translation of the TRIO specification act globally as an acceptor
of a language defined over the alphabet of the specification, and therefore they must be coupled with
some additional Promela program fragments generating the values, over time, for the logical variables
that constitute the specification alphabet. This ”generative” component of the Promela program can
trivially be obtained by encoding a systematic, exhaustive enumeration of all possible variable values
over time, but this can potentially lead to a combinatorial explosion of the search state space, thus
making the proposed approach infeasible in practice. To address this issue we adopt two basic
techniques, which can be roughly described as follows. First, we exploit the modular structure of
TRIO specifications to obtain a maximum of encapsulation in the verification process, so that the
execution of any Promela process verifying a TRIO subformula will be affected only by the values for
the elements of the alphabet occurring in that subformula, and not by other ones. Second, we restrict
the purely combinatorial generation of values to those variables that are truly independent from every
other one; from a methodological standpoint, these variables can be easily recognized as the elements
of the specification alphabet corresponding to components of the specified system that are a “pure
input”, thus ruling out any computed state or output value. These translation techniques, combined
with other minor optimizations, related for example with the management of TRIO past-time
operators, allowed us to perform efficiently the verification in SPIN of a system which is universally
adopted as a benchmark in the verification of time-critical systems, namely the Railroad Crossing
Example, fully described by a TRIO specification.

The remaining sections are organized as follows. To make the paper self-contained, Section 2
provides a brief introduction to the TRIO logic and outlines the decidable subset of the language on
which we perform verification via model checking. Section 3 discusses the relation between TRIO
and 2-way alternating automata (also introducing an extension of the classical model that explicitly
deals with finite counters to account for TRIO’s quantitative notion of time) and the translation
schema from TRIO to Promela. Section 4 deals with specific issues related with verification via
model-checking: it motivates the introduction of a network of processes, gives a rationale for the
optimization performed, and discusses the results obtained on the case study, occasionally providing

4

comparisons with related approaches. Finally, Section 5 draws conclusions and outlines directions of
future research.

2. A brief introduction to TRIO

TRIO formulae are built much in the same way as in traditional mathematical logic, starting from
variables, functions, predicates, predicate symbols, and quantifiers (a detailed and formal definition of
TRIO can be found in [7]).

In TRIO, first-order variables and quantifiers are allowed over finite or infinite, dense or discrete,
domains, including the time domain. Besides the usual propositional operators and the quantifiers, one
may compose TRIO formulae by using a single basic modal operator, called Dist, that relates the
current time, which is left implicit in the formula, with another time instant: the formula Dist(F, t),
where F is a formula and t a term indicating a time distance, specifies that F holds at a time instant at t
time units from the current instant. Many derived temporal operators can be defined from the basic
Dist operator through propositional composition and first order quantification on variables
representing a time distance. The traditional operators of linear temporal logics can be easily obtained
as TRIO derived operators. For instance, SomF (Sometimes in the Future) corresponds to the
“Eventually” operator of temporal logic. Moreover, it can be easily shown that the operators of several
versions of temporal logic (e.g., interval logic) can be defined as TRIO derived operators. This argues
in favor of TRIO's generality since many different logic formalisms can be described as particular
cases of TRIO.

For instance, the following TRIO formula specifies that every message m entering a channel is
always delivered within 10 time instants. The meaning of the various symbols is obvious once the
(bounded) derived temporal operator WithinF(A,t) is interpreted as “A will hold within t instants in
the future”:

AlwF(∀m (in(m) → WithinF(out(m),10))).

A decidable subset of TRIO

In general, TRIO formulae, adopting the full-fledged power of first-order logic are undecidable. In
this paper, however, we consider a decidable subset of TRIO, where the time domain is the set of
natural numbers, no time variable is allowed and every other domain is finite. This version of TRIO is
basically a syntactically sugared, more concise version of PLTLB, Propositional Linear Time
Temporal Logic with Both past and future operators (here we follow the terminology introduced by
[1], while using the standard name “LTL” to denote the future fragment of PLTLB).

The syntax of TRIO formulae is described by the following grammar, where φ is the axiom, p
stands for any element in a finite set Ap of atomic propositions, c stands for any element of a finite set
of natural numbers, and {Since, Until, Futr, Past, Lasts, Lasted, (,)} is the set of terminal symbols:

φ ::= p | φ ∧ φ | ¬ φ | Until(φ,φ) | Since(φ,φ) | Futr(φ,c) | Past(φ,c) | Lasts(φ,c) | Lasted(φ,c)

5

Usual shorthands for logical symbols such as true, false, ∨, →, ≡ are standard. Notice that, to rule
out negative numbers, a pair of operators, namely Futr and Past, replace the basic TRIO Dist operator.
Table 1 introduces a few derived temporal operators, with a short definition and explanation.

Operator Definition Intuitive Meaning
SomF(F) Until(true, F) Sometimes F holds

SomP(F) Since(true, F) Sometimes F held

AlwP(F) ¬SomP(¬F) F always held in the past
AlwF(F) ¬SomF(¬F) F will always hold

Sinceii(F1, F2) F1 ∧ Since(F1, F1 ∧ F2) Since, both temporal extremes included

UntilWie(F1, F2) F1 ∧ (Until(F1,F2) ∨ AlwF(F1)) Weak until

WithinF(F,c) ¬Lasts(¬F,c) F will hold within c instants in the future

WithinP(F,c) ¬Lasted(¬F,c) F held within c instants in the past

Lastsie(F,c) F ∧ Lasts(F,c) Lasts(F,c) with the current instant included

Lastedie(F,c) F ∧ Lasted(F,c) Lasted(F,c) with the current instant included
WithinFii(F,c) F ∧ WithinF(F,c) ∧ Futr(F,c) WithinF, both temporal extremes included

WithinPii(F,c) F ∧ WithinP(F,c) ∧ Past(F,c) WithinP, both temporal extremes included

UpToNow(F) Past(F,1) F held (for at least one instant) until now

Table 1. A sample of derived temporal operators in TRIO.

For instance, the formula AlwF(push → Lasts(on, 6)) may specify the property that from now on
the event of pushing a button causes a lamp to be on for the next 6 instants.

Semantics

The standard TRIO semantics is called model parametric semantics [7], and it is based on Kripke
structures that can accommodate different time domains. However, since the version of TRIO used in
this paper is equivalent to PLTLB, we simply define the semantics of basic TRIO formulae as a
translation into the standard PLTLB.

A PLTLB formula has the following syntax:
φ ::= p | φ ∧ φ | ¬ φ | φ Uφ | φ Sφ | Xφ | Pφ
where U and S are the Until and Since operators, respectively, and X and P are the Next and

Previous operators. We also define, for every integer constant t≥0, Xt φ as X X…X φ (X repeated t
times) if t>0, φ if t =0. Pt φ is its past conterpart and is defined analogously. Other standards operators,
such as the eventually operator F (also denoted as <>) and the globally operator G (also denoted as [])
can be defined as usual, e.g.: F φ = true U φ, G φ = ¬F¬φ.

The translation δ from TRIO formulae to PLTLB formulae is defined inductively as follows:
δ(φ) = φ if φ ∈ Ap
δ(φ1 ∧ φ2) = δ(φ1) ∧ δ(φ2)
δ(¬φ) = ¬δ(φ)
δ(Until(φ1, φ2)) = δ(φ1) U δ(φ2)
δ(Since(φ1, φ2)) = δ(φ1) S δ(φ2)

6

δ(Futr(φ,t)) = Xt δ(φ)
δ(Past(φ,t)) = Pt δ(φ)
δ(Lasts(φ,t)) = true if t =0, X δ(φ) ∧ X2 δ(φ) ∧ … ∧ Xt-1 δ(φ) if t>0.
δ(Lasted(φ,t)) = true if t =0, P δ(φ) ∧ P2 δ(φ) ∧ … ∧ Pt-1 δ(φ) if t>0.

Notice that the usage of both past and future operators is widely recognized [5] as making

specifications simpler and more concise than using either only future or only past operators. TRIO
adds another level of succinctness because of the metric operators Lasts and Lasted (and their duals
WithinF and WithinP).

For instance, a simple TRIO formula such as:

WithinF(Lasts(B,h), k)

for some h, k > 0, may be expressed only with a LTL formula, whose length is proportional to h⋅k.

Modular TRIO specifications

The TRIO logic is augmented with object-oriented constructs for supporting modular specifications
[6]. A modular TRIO (often called TRIO+) specification is built by defining suitable classes. Classes
can be simple or structured. Simple classes contain a set of logic axioms along with the declaration of
the elements of the alphabet (i.e., the predicate and function signatures) and a definition of those
predicates, variables, and functions that belong to the class interface. Predicates, variables, and
functions are collectively called items. Simple classes are graphically represented as boxes with
arrows representing input and output items in the interface. Truly modular specifications are obtained
by defining structured classes, i.e., classes whose instances have components –called modules– that
are instances of other classes.

Items in the interface of the whole structured class and of the composing modules may be
connected to denote an identity or equivalence that, for instance, may abstractly describe an
information flow. A structured class may also include axioms, called global axioms, involving its own
items and the interface items of its modules. Since the items of the component modules satisfy the
axioms of their original class, the overall semantics of a structured class is given by the conjunction of
the axioms of the class with those of the class of the component modules (if several instances of a
class are included as modules of a structured class, then the axioms of the composing class are
“duplicated” i.e., applied to duplicates of the class items (see [6]). From a strictly semantic viewpoint
a structured class is thus equivalent to a TRIO formula obtained by flattening the modular structure
and conjoining the axioms of the various modules. Figure 2 shows a structured class KRC (Kernel
Railroad Crossing), describing a TRIO version of the standard railroad crossing problem [3], with
three modules specifying the trainModel, the controller and the gate. More details on this example
will be provided in the presentation of the case study illustrated in Section 4.

7

KRC trainModel enterR

exitI

controller

command

bargate

Fig. 1. An example of a TRIO structured class.

3. Translation

A TRIO specification can be translated into Promela, by introducing a network of communicating
processes (process network), that may exchange truth values. When the process representing the
whole specification returns false, the execution of the program is blocked. The translation is
conceptually based on Alternating Automata and is presented in this section.

2-way Alternating Modulo Counting Automata (2AMCA)

We introduce an intermediate notation useful to define our TRIO-to-Promela translation, namely 2-
way Alternating Modulo Counting Automata (or 2AMCA for short). Conceptually, a 2AMCA is a
version of Büchi alternating automata (see for instance [12,4]). A brief and intuitive description of
alternating automata is the following. In a deterministic automaton, the transition function maps a
〈state, input symbol〉 pair to a single state, called the next state. The automaton accepts its input if
either state is final and the input is finished, or from the next state the remaining suffix of the input
word is accepted. On the other hand, in a nondeterministic automaton a 〈state, input symbol〉 pair is
mapped to a set of states. Here we have two possible different interpretations of the transition
function: either as an existential branching mode, or as a universal branching mode. In the existential
mode, which is the standard interpretation of nondeterminism, the automaton accepts if at least one of
the states of the set accepts the remaining input suffix; in the universal mode, it accepts if all the states
of the set accept the remaining input suffix. An alternating automaton provides both existential and
universal branching modes. Its transition function maps a 〈state, input symbol〉 pair into a (positive)
boolean combination of states. Quite naturally, ∧ is used to denote universality, while ∨ denotes
existentiality. Alternating automata are a very convenient tool since they may be exponentially more
concise than nondeterministic automata and are very well suited for dealing with logic formulae.

To define properly TRIO’s metric temporal operators, we use internal finite counters, associated
with states. Moreover, we use bidirectionality for defining the past tense operators, following an
approach presented in [5,9].

8

Here are some preliminary definitions, following standard terminology (e.g., [19]). Let be the set
of natural numbers, and let x ∈ * and c ∈ A tree is a set T ⊆ * such that x.c ∈ T ⇒ x ∈ T (c is
called a children of x). The empty word ε is called the root of T. Elements of T are called nodes. A
node is a leaf if it has no children. A path P of a tree T is a set P ⊆ T which contains ε and such that
for every x ∈ P, either x is a leaf or there exists a unique c such that x.c ∈ P.

An infinite word over ∑ is a sequence w = a0 a1 a2 ..., with aj ∈ ∑. We will indicate an element aj of
w as w(j). Moreover, we will denote the set of all infinite word over ∑ as ∑ω.

A 2-way Alternating Modulo Counting Automata (2AMCA) is a six-tuple A = (∑,Q,µ,q0,τ,F),
where ∑ is the (finite) alphabet, Q is the set of states, µ is a positive integer, q0 ∈ Q is the initial state,
τ is the transition function, F ⊆ Q is the set of final states. Call Cnt = [0..µ] the counter set. The
transition function is τ: Q × Cnt × ∑ → B+({-1,+1} × Q × Cnt), where, for every M, B+(M) indicates a
positive boolean combination of elements in M, i.e. a boolean combination using ∧ and ∨ but not
using ¬. The set {+1,-1} denotes the possible relative movements of the reading head. To improve
readability, we will use the symbol ‘/’ to separate Q from Cnt, and we will use +q or -q to denote
(+1,q), (-1,q), respectively.

Consider a word w ∈ ∑ω. A run of A on w is a Q × Cnt × -labeled tree (T, ρ), where ρ is the
labeling function, such that ρ(ε) = (q0/0,0) and for all x ∈ T, with ρ(x) = (q/k,n), the set {(q’/h,d) | c ∈

, x.c ∈ T, h ∈ Cnt, d ∈ {-1,+1}, ρ(x.c) = (q’/h,n+d)} satisfies the formula τ(q/k,w(n)).
For a path P, Inf(ρ, P) := {s | there are infinitely many x ∈ P with ρ(x) ∈ {s}× }. A run (T, ρ) of a

2AMCA is accepting if all infinite path P in T have Inf(ρ,P) ∩ F ≠ ∅.

From TRIO to 2AMCA

The translation of TRIO formulae into their equivalent 2AMCA follows the approach presented in
[10].

Let Ap be a finite set of atomic propositions, and let ϕ be a TRIO formula on Ap and Sf(ϕ) be the
set of subformulae of ϕ.
The 2AMCA automaton for ϕ is Aϕ = (∑,Q,µ,q0,τ,F) where:

∑ = ℘(Ap), Q = {φ | φ ∈ Sf(ϕ) or ¬φ ∈ Sf(ϕ)}, q0 = ϕ,
µ is the greatest bounded temporal distance occurring in ϕ, and
F = {φ | φ ∈ Q and φ | φ has the form ¬Until(A,B) }

The dual operation dual(φ) is defined for every formula φ as the formula φ' obtained from φ, by
switching true and false, ∨, ∧, and by complementing all subformulae of φ.
The transition function is defined as follows:

τ(C/0, a) = +true/0 for C∈Ap and C∈a
τ(C/0, a) = +false/0 for C∈Ap and C∉a
τ(A∧B/0, a) = τ(A/0, a) ∧ τ(B/0, a)
τ(¬A/0, a) = dual(τ(A/0, a))
τ(Futr(A,n)/n, a) = τ(A/0, a)
τ(Futr(A,n)/k, a) = +Futr(A,n)/k+1, where 0 ≤ k < n
τ(Past(A,n)/n, a) = τ(A/0, a)
τ(Past(A,n)/k, a) = -Past(A,n)/k+1, where 0 ≤ k < n
τ(Lasts(A,n)/n-1, a) = true/0

9

τ(Lasts(A,n)/k, a) = A/0 ∧ +Lasts(A,n)/k+1, where 0 ≤ k < n-1
τ(Lasted(A,n)/n-1, a) = true/0
τ(Lasted(A,n)/k, a) = A/0 ∧ -Lasted(A,n)/k+1, where 0 ≤ k < n-1
τ(Until(A,B)/0, a) = τ(B/0, a) ∨ (τ(A/0, a) ∧ +Until(A,B)/0)
τ(Since(A,B)/0, a) = τ(B/0, a) ∨ (τ(A/0, a) ∧ -Since(A,B)/0)

The transition function is undefined for every case not listed above.

From 2AMCA to Promela

The outcome of the previous step is a 2AMCA equivalent to the original TRIO specification. The
expressive richness of the Promela language makes the 2AMCA-to-Promela translation a simple task,
if we do not take into account optimizations. Indeed, we use the Promela code to directly simulate the
alternating automaton equivalent to the original TRIO specification.

Conceptually, every state of the automaton will correspond to a single type of process (proctype).
As in classical nondeterministic automata, an or-combination of states (s1 ∨ s2) in the transition
function will correspond to a nondeterministic choice (if ::s1; ::s2; fi). Analogously, an and-
combination s1 ∧ s2 will correspond to the starting of two new processes, having type s1 and s2,
respectively.

As far as process synchronization is concerned, we have to proceed bottom-up: quite naturally,
processes corresponding to simpler subformulae must be evaluated before more complex ones. The
system does not require asynchronous communication among processes. In fact, it is possible to
determine an arbitrary total evaluation order, starting from the original partial order defined by the
relation “subformula of”. Therefore, we used a single rendezvous channel.

Bounded temporal operators (Futr, Lasts and WithinF) use simple counting loops and variables to
determine where to start and stop evaluating, and to store partial evaluations.

As an example, consider the formula: AlwF(push → Lasts(on, 7)).
The non-optimized Promela code contains two process types, one for AlwF and one for Lasts. In

general, it is not necessary to define multiple process types for boolean operators applied to atomic
propositions. For instance, in our example the implication ‘push →’ can be handled directly within the
AlwF process.

#define MAXP 6 /* maximum number of launched Lasts processes */

proctype AlwF(chan environment; chan sync) {
bool push,on;
byte n;
bool ex[MAXP], dying, result;
chan to_lasts = [0] of {bool, byte};
chan from_lasts = [0] of {bool, bool, byte};
do
:: environment?push,on;

n = 0;
do
:: n < MAXP ->
if
:: ex[n] -> to_lasts!on,n;
from_lasts?dying,result,eval(n);
if
:: dying -> ex[n] = 0;
:: else;
fi;
if

10

:: !result -> sync!0; goto stop; /* error */
:: else;
fi;

:: else;
fi;
n++;

:: n == MAXP -> break;
od;
if
:: !push -> sync!1;
:: push -> n = 0;
do
:: n < MAXP ->
if
:: !ex[n] -> break;
:: else -> n++;
fi

:: n == MAXP -> sync!0; goto stop; /* overflow */
od;
ex[n] = 1;
run Lasts(to_lasts,from_lasts,MAXP,n);
sync!1;

fi;
od;
stop: skip;
}

proctype Lasts(chan from_alw; chan to_alw; byte k; byte id) {
bool on;
do
:: from_alw?on,eval(id);

if
:: on && k == 1 -> to_alw!1,1,id; break;
:: on && k > 1 -> to_alw!0,1,id; k--;
:: !on -> to_alw!1,0,id; break;
fi;

od;
}

In this case, the AlwF process may launch at most six different instances of the Lasts process, since
the boolean argument of Lasts must be checked in six different instants. This bound is dealt with by
the constant definition of MAXP in the very first line of the Promela code

In the previous piece of code, we use two channels to manage the communication between the
AlwF process and its children. First, AlwF sends to every alive instance of its children the value of on
coming from the environment, then it reads the results of their evaluation. A Lasts process may send
two boolean signals to AlwF: the first is about its immediate termination, while the second is the
result of its evaluation. Both the AlwF process and the Lasts processes use an identifier (n and id,
respectively) for synchronization purposes.

Past operators are treated a bit differently. The actual Promela code does not directly implement a
back movement of the reading head of the automaton. On the contrary, it follows some of the ideas
presented in [9,8] for obtaining a 1-way automaton from a 2-way one, specifically tailored and
optimized for the TRIO language. For instance, bounded past operators, instead of “going back in
time” and evaluating subformulae, use arrays to store a bounded amount of previous subformula
evaluations, so that they may directly access to them. Unbounded operators are implemented by
means of processes which check, and properly store, past subformula evaluations.

A first comparison with LTL2BA
LTL2BA (LTL to Büchi Automata) [2] is a tool that translates LTL formulae into Promela never
claims. The formula of the previous example, AlwF(push → Lasts(on, 7)), can be written in LTL as

11

follows: G(push → X(on ∧ X(on ∧ X(on ∧ X(on ∧ X(on ∧ X(on))))))). LTL2BA uses alternating
automata as an intermediate notation - the resulting Promela code is a direct representation of the
equivalent (and simplified) Büchi automaton. In our example, we obtain the following code:

never {
accept_init:

if
:: (!push) -> goto accept_init
:: (1) -> goto accept_S2
fi;

accept_S2:
if
:: (!push && on) -> goto accept_S9
:: (on) -> goto accept_S2
fi;

accept_S9:
if
:: (!push && on) -> goto accept_S17
:: (on) -> goto accept_S2
fi;

accept_S17:
if
:: (!push && on) -> goto accept_S29
:: (on) -> goto accept_S2
fi;

accept_S29:
if
:: (!push && on) -> goto accept_S31
:: (on) -> goto accept_S2
fi;

accept_S31:
if
:: (!push && on) -> goto accept_S33
:: (on) -> goto accept_S2
fi;

accept_S33:
if
:: (!push && on) -> goto accept_init
:: (on) -> goto accept_S2
fi;

}

The major difference is that LTL does not support metric operators; therefore both the formula and the
resulting code size depend on the constants (only 7 in this case). With our technique, the Promela code
for AlwF(push → Lasts(on, k)), for any given k, is not dependant on k, apart from the definition of
MAXP. Hence, in general the size of the code does not depend on the values of the temporal
constants, making the translation very concise. In this case, the size depends linearly on the size of the
formula, because all the occurrences of bounded temporal operators (one in this case, namely Lasts)
are not nested. Other techniques, such as LTL2BA, even though based on sophisticated optimizations
to reduce the size of the resulting code, always enumerate explicitly all states of the Büchi automaton
equivalent to the intermediate alternating automaton, which may have up to n⋅2n states, where n is the
number of states of the alternating automaton (see [2] for details). Of course, SPIN is an exhaustive
model checker, enumerating all reachable states, and the constants like MAXP do increase the state
space. However, applying a translation process like LTL2BA to TRIO specifications may not be able
to generate Promela code short enough to attempt verification, even in those cases, as shown below,
where verification is actually feasible.

12

4. Verification

In traditional model checking, a property (e.g., a LTL formula) is verified against a model of the
system (an automaton such as a Promela program). When translating a whole TRIO specification in
order to check its satisfiability, however, no automaton model is already present. As a result, a special
automaton, called a generator, is introduced and added to the process network. The generator
exhaustively produces random input values, then it sends them to the Promela program; hence, the
generator is able to generate any system behavior. These behaviors are verified by the process
network. An event generator allows model checking of resulting Promela code, corresponding to
satisfiability verification of the original TRIO specification. The event generator may however
increase the number of reachable state of the resulting system. As shown below, modularity in the
specification may be used to introduce modular generators, significantly reducing this increase.

The Promela representation of a 2AMCA may however be further optimized in order to obtain
compact and easily verifiable code. Some optimizations are:
• Each occurrence of a bounded operator Lasts is translated using only one process that is updated

whenever the temporal subformula has to be checked.

• Bounded operators nested in a Futr or Past operators are translated by shifting the starting point of
the same constant amount used in the Futr (or Past) operator.

• A coordinator process is in charge of managing communication, to reduce the synchronization
effort required by the potentially high number of processes produced by the translation of all
subformulae.

• An additional component of each process manages error propagation to terminate immediately
the whole process network when the specification is violated. More precisely, when a flag
denoting an unacceptable behavior is activated, an error is propagated to kill each currently alive
process. This actually reduces the number of reachable states, since in this way there is only one
“error” state.

A case study

As a case study, the approach was applied to the KRC specification shown in Figure 1. The first
version of the case study is not modularized, even though the original specification was, and later will
be clear how the axioms are distributed among the modules. A “flat list” of the axioms is the
following:

(K1) train = EnterR → Lasts(¬train = EnterR,µ)
(K2) train = EnterI → Lasts(¬train = EnterI,µ)
(K3) train = ExitI → Lasts(¬train = ExitI,µ)
(K4) train = EnterR → Futr(WithinFii(train = EnterI, dM-dm), dm)
(K5) train = EnterI → Futr(WithinFii(train = ExitI, hM-hm), hm)
(K6) train = EnterI → Past(WithinPii(train = EnterR, dM-dm), dm)
(K7) train = ExitI → Past(WithinPii(train = EnterI, hM-hm), hm)
(K8) dM≥dm>0 ∧ hM≥hm>0 ∧ µ>dM+hM ∧ dm>γ
(S1) InR ↔ WithinPii(train = EnterR,dM) ∧ Sinceii(¬train = EnterI, train = EnterR)

13

(S2) InI ↔ WithinPii(train = EnterI,hM) ∧ Sinceii(¬train = ExitI, train = EnterI)
(M1) UpToNow(bar = closed) ∧ command = goUp →

Lastsie(bar = mvUp,γ) ∧ Futr(UntilWie(bar = open,command = goDown),γ)
(M2) UpToNow(bar = open) ∧ command = goDown →

Lastsie(bar = mvDown,γ) ∧ Futr(UntilWie(bar = closed,command = goUp),γ)
(M3) AlwPi(¬command = go(down)) → bar = open
(C1) command = goDown ↔ Past(train = EnterR,dm-γ)
(C2) command = goUp ↔ train = ExitI

The goal of the original KRC specification in TRIO [20] was twofold: a formal definition of the KRC
system, and the proof of the safety property that, whenever the train is inside the railway crossing, the
bar is always down. Notice that KRC is a toy example per se, but in this case we are completely
defining it with a temporal logic specification, thus obtaining a logic formula much bigger and more
complex than those used in traditional model checking, where the KRC is defined with an automaton
and short temporal logic formulae are used only for safety or utility properties.

We encoded the possible values of the train variable as: 1 (EnterR), 2 (EnterI), 3 (ExitI), and 0 for
all the other situations. Likewise, bar may assume values: 0 (open), 1 (closed), 2 (mvUp), 3
(mvDown). command may be: 0 (no indications), 1 (goUp), 2 (goDown). Moreover variables train,
command, bar may take the additional value 4 to signal an erroneous configuration.

For this unmodularized version of the specification, a unique generator for all events is defined, by
means of the following Promela code:

proctype EventGenerator(chan in; chan out){
bool sync;
do

::in?sync,eval(1);
if
::s==0 ->

out!4,0,0,4,4,2; /* train,inR,inI,go,st to */
break; /* Process 2 (Coordinator) */

::else;
fi;
if
::train=0;
::train=1;
::train=2;
::train=3;
fi;
if
::inR=0; inI=0;
::inR=1; inI=0; /* inR, inI are mutually exclusive */
::inR=0; inI=1;
fi;
if
::command=0;
::command=1;
::command=2;
fi;
if
::bar=0;
::bar=1;
::bar=2;
::bar=3;
fi;

out!train,inR,inI,go,st,2;
od
}

14

As already explained, events are nondeterministically generated, then sent to the coordinator through
the channel out. First, the generator waits for the synchronization signal sync from the coordinator.
When a process signals an error to the coordinator, sync takes the value 0, halting the network (train,
command, bar take the error value 4).

K123 K123 K123

K45 K45
K67 K67

S12

S12

C1

C2

M12 M12

NLast NLast NLast

...FutrWit FutrWit FutrWit FutrWit

dM hM

Lasts LastsFUntW FUntW Futr Futr Futr Futr

γ γ

Event
Generator

Coordinator

Fig. 2. The process network (nonmodular case)

The resulting process network for the KRC, depicted in Figure 2, is composed by the following
processes:
• the coordinator, which manages synchronization and checks validity of axiom M3,
• one event generator,
• 2 process instances each for K1, K2 and K3 (those based upon the Lasts operator), having process

type K123 and NLast (a process type that defines Lasts(¬A,k), for some A and k),
• dM-dm and hM-hm process instances for K4 and K5 respectively (bounded eventualities), having

process type K45 and FutrWit (composition of Futr and WithinF),
• a single process type (K67, S12) and two process instances each for the comparatively simpler

K6, K7 and S1, S2 axioms, respectively;
• four process types each for M1 and M2 (M12, Lasts, FUntW, Futr), one instance for each of the

first three types, and γ instances of the last.
Notice that in the picture we used different styles for different channels. For instance, signals are

sent by coordinator to axiom processes through a single channel, denoted by a solid arrow.

15

Unfortunately, state explosion may be caused by both the exhaustive case enumeration carried on by
the event generator, and by the high number of processes. For instance, consider Table 2, which
contains a summary of our verification results (we used a PC equipped with a Pentium 4 processor @
2GHz, 256 MB of RAM, and every computation took less than 2 minutes). When µ = 30, values of hM
higher than 14 are not tractable (i.e., they cause a memory overflow).

We also ran LTL2BA and Wring on the same specification with µ = 7, hM = dM = 3, hm = dm = 2,
and γ = 1. LTL2BA crashed after a memory overflow, while Wring was still running after three days
and was therefore aborted.

µ dM dm hM hm γ Depth Memory

(KByte)
States Transitions

10 5 4 4 3 2 4813 40644 584216 585504
15 7 4 7 3 2 6739 69419 972878 974738
20 7 5 12 5 3 8009 84369 1086440 1088150
20 10 8 9 5 3 9909 104747 1359000 1361140
25 15 12 9 7 6 15815 203267 2335110 2338110
25 15 12 9 7 9 > 210 MB
30 15 12 14 12 3 16525 204367 2375400 2378400

Table 2. Verification - nonmodular case

MODULAR APPROACH

The results presented above clearly show that our approach is not well suited to large specifications.
Hence, we decided to exploit the modular structure of a TRIO specification, computing, rather than
randomly generating, some of the events.

First, we have to partition the set of atomic propositions into three subsets: input, output, and state
propositions. After that, event generators are associated only with modules that directly deal with
input predicates. On the other hand, output variables tend to be, by their very nature, deterministic,
and therefore the TRIO modules using them do not need a generator.

To show how this approach works, consider the KRC case study, which consists of three modules:
the first module (trainModel) describes the train position with respect to the critical regions R and I
(axioms K1, K2, K3, K4, K5, K6 and K7); the second module (globalAxioms) contains the definition
of inR and inI (axioms S1 and S2); the third module (controller) contains the bar control logic (C1
and C2); the last module (gate) is used to define the position of the bar (axioms M1 and M2).

16

K1, K2, K3,
K4, K5,
K6, K7

GEN
enterR enterR
enterI enterI
exitI exitI

C1, C2

command

GEN bar bar

inR
inI

M1, M2

S1, S2

trainModel

controller

gate

globalAxioms

Fig. 3. Modular structure of KRC

In this case it is quite easy to identify the inputs: enterR, enterI, exitI (i.e., the variable train), and bar;
while inR, inI, command and bar may be computed. In fact, we can identify inR and inI as state
variables, defined by axioms S1 and S2 respectively. On the other hand, command is an output
variable, defined by axioms C1 and C2.

As an example, let us consider the code that corresponds to C1, C2:

proctype CommandGenerator(chan ev; chan sync){ /* axioms C1 and C2 */
byte t,n;
byte memo[Dm]; /* store the last significant values of train */
command=0;
do

::ev?t,eval(3); /* receive ‘train’ from Process 3 */
n=Dm-G;
do
::n>0->memo[n]=memo[n-1];n--;
::n==0 -> memo[n]=t; break;

od;
if
::t==4 -> ev!4,5; goto stop;
::else ->
if
::memo[Dm-G]==1 -> command=2;
::t==3 -> command=1;
::else -> command=0;
fi;
ev!command,5; /* send command to Process 5 */

fi;
od;
stop: skip;
}

The complete modular structure is presented in Figure 3. Compared to the previous case, the
number of processes is smaller, because axioms that are only used to compute variable values can
always be translated into a single process. Moreover, we need one generator and one coordinator for
each one of the two modules trainModel and gate.

17

K123K123 K123

K45K45 K67K67

NLast NLast NLast

...FutrWit FutrWit FutrWit FutrWit

dM hM

M12

Lasts

FUntW

Futr

Futr

Event
Generator 1

Coordinator

Position
Generator

Command
Generator

Coordinator 2

Event
Generator 2

M12

Lasts

FUntW

Futr

Futr

...

Fig. 4. The process network (modular case)

Verification results, with the same system configuration for the results of Table 2, are shown in Table
3. Performance increases noticeably for the same constant values: used memory is more than halved,
and state number considerably decreased (running times are not reported, but always below two
minutes).

µ dM dm hM hm γ Depth Memory (KB) States Transitions
10 5 4 4 3 2 6791 12680 162727 164944
15 7 4 7 3 2 10606 39928 526592 531193
20 7 5 12 5 3 15503 59998 742398 747850
20 10 8 9 5 3 15371 48120 580929 585481
25 15 12 9 7 6 21482 84369 923474 928826
25 15 12 9 7 9 22532 105259 1097340 1102690
30 15 12 14 12 3 26517 94712 1043610 1050300
30 15 12 14 12 9 28917 150520 1500430 1507120
30 20 17 9 7 12 30127 153297 1433200 1438990
30 20 13 9 7 3 26343 130961 1462620 1471300
30 9 7 20 17 3 27001 92459 1025200 1031770
40 20 17 19 17 6 42397 191167 1826740 1835220
40 20 17 19 17 9 > 210 MB
40 30 27 9 7 3 41117 115597 1138780 1145450
40 30 27 9 7 9 44117 175057 1569050 1575720

Table 3. Verification - modular case

18

5. Conclusions and directions of future research

We presented a novel application of model checking through SPIN as a means for verifying purely
descriptive specifications written in TRIO. The approach is based on the translation of TRIO formulae
into Promela programs guided by an equivalence between TRIO and 2-way alternating modulo
counting automata. The set of TRIO axioms is partitioned into the specification part, i.e., axioms
describing assumptions on the systems being checked, and the property part, that must be proven to
hold under such assumptions; then the SPIN model checker is employed to prove the validity of the
implication specification→property. Since a TRIO specification does not include any operational
model that accounts for the behavior to be checked against the property, an additional Promela
component must be combined with the result of the translation of TRIO specification, to generate the
values for variables occurring in the TRIO specification. This generative component of the Promela
programs is the major source of complexity in the verification process, which is addressed at a
linguistic level by exploiting the modular structure of TRIO specifications, and at an
applicative/methodological level by limiting the combinatorial generation to the logical variables that
are completely independent of any other value.

The results of our experimentation are quite encouraging, as we were able to verify properties of
the Railway Crossing Problem for values of the temporal constants in the TRIO axioms that make the
verification totally unfeasible with tools such as LTL2BA or Wring.

The translation of TRIO formulae into Promela programs was performed manually for the case
study, but we are confident that it can be easily automated. This is apparent for what concerns the
translation of the various TRIO constructs relying on their correspondence with 2-way alternating
modulo counting automata; the optimizations based on the modular structure can also be automated if
the TRIO specification is provided in modular form, while those based on restricting generation to
input variables can be applied mechanically by taking into account the direction of the arrows
representing items in the interface of specification modules (in any case the information on which are
the input to the system under study is rather clear starting from the early phases of requirements
analysis).

We have defined a verification procedure in a scenario where both the system under design and the
desired property to be proven are expressed as TRIO axioms. A fortiori, our approach can be applied
in the case when the system under design is described by means of an operational model such as a
Promela program or any state-transition system that can be translated into Promela. In fact, in this case
the verification procedure would be more efficient, as the principal source of complexity, namely the
combinatorial generation of values for logical variables, would be avoided. From this viewpoint, our
approach is more effective than other methods that construct a never claim from an LTL specification,
because the Promela code produced from the TRIO formulae grows in size linearly with the size of
the TRIO formula, while other approaches suffer from an “exponential blow up” of the state space: for
instance, LTL2BA produces Promela code that coincides, in fact, with the Büchi automaton. Under
this respect, we can therefore claim that our approach better exploits the potential of SPIN and
Promela for verification.

Another application of the ideas presented here, that conceptually is a mere by-product of the
verification method but has a relevant potential for construction of verification tools, is the generation
of execution traces and of functional test cases starting from a purely descriptive specification given in

19

TRIO. We expect the computational complexity of generating a simulation to be orders of magnitude
smaller than the one of property proving, thus permitting the implementation of industrial-strength
tools supporting validation of specifications and specification-based functional testing.

6. References

1. E. Allen Emerson. Temporal and Modal Logic. Handbook of Theoretical Computer Science, Volume B:

Formal Models and Sematics 1990, J. van Leeuwen, ed., North-Holland Pub. Co./MIT Press, Pages 995-

1072.

2. P. Gastin, D. Oddoux, Fast LTL to Büchi Automata Translation, Proceedings of CAV'01, Lecture Notes in

Computer Science 2102, p. 53-65, 2001.

3. C. Heitmeyer and D. Mandrioli, editors. Formal Methods for Real-Time Computing, volume 5 of Trends in

Software. Wiley, 1996.

4. O. Kupferman, M. Vardi, Weak Alternating Automata Are Not That Weak, Proceedings of the Fifth Israel

Symposium on Theory of Computing and Systems, ISTCS'97, 1997

5. O. Kupferman, N. Piterman, M. Vardi, Extended Temporal Logic Revisited, CONCUR'01, 2001.

6. A. Morzenti, P. San Pietro, Object-Oriented Logic Specifications of Time Critical Systems, ACM Trans. on

Softw. Engin. and Meth., vol.3, n.1, Jan.1994, pp. 56-98.

7. A. Morzenti, D. Mandrioli, C. Ghezzi, A Model Parametric Real-Time Logic, ACM Trans. on Programming

Languages and Systems 14, 4 (October 1992), 521-573.

8. N. Piterman, M. Vardi, From Bidirectionality to Alternation, MFCS'01, 2001.

9. M. Vardi, A Temporal Fixpoint Calculus, POPL'88, 1988.

10. M. Vardi, An automata-theoretic approach to linear temporal logic, Banff'94, 1994.

11. F. Somenzi and R. Bloem, Efficient Büchi automata from LTL Formulae, CAV'00, pp.248-263, 2000

12. A. Chandra, D. Kozen, and L. Stockmeyer, Alternation. Journal of the Association for Computing

Machinery 28, 1 (January 1981), 114-133.

13. C.Ghezzi, D.Mandrioli, A.Morzenti, TRIO, a logic language for executable specifications of real time

systems, The Journal of Systems and Software, Elsevier Science Publishing, vol.12, no.2, pp. 107-123, May

1990.

14. M.Felder, A.Morzenti, Validating real-time systems by history-checking TRIO specifications, ACM

TOSEM-Transactions On Software Engineering and Methodologies, vol.3, n.4, October 1994.

15. D.Mandrioli, S.Morasca, A.Morzenti, Generating Test Cases for Real-Time Systems from Logic

Specifications, ACM TOCS-Transactions On Computer Systems, Vol. 13, No. 4, November 1995. pp.365-

398.

16. A. Gargantini, A.Morzenti, Automated Deductive Requirements Analysis of Critical Systems, ACM TOSEM

- Transactions On Software Engineering and Methodologies, Vol. 10, no. 3, July 2001, pp. 225-307.

17. FAST-ESPRIT Project No. 25581 – Synthesis of the evaluation of the FAST toolset Experimentation, FAST

Report D7.5.1, The FAST Consortium, November 2000.

18. G. Holzmann, The Model Checker SPIN, IEEE Transactions on Software Engineering, Vol. 23, 5, May

1997.

19. Wolfgang Thomas: Automata Theory on Trees and Partial Orders. TAPSOFT, 1997.

20. Mandrioli D., Morzenti A., Pezzè M., San Pietro P. Silva S., A Petri Net and Logic Approach to the

Specification and Verification of Real Time Systems, in [3].

http://www.informatik.uni-trier.de/%7Eley/db/conf/tapsoft/tapsoft97.html#Thomas97

	A decidable subset of TRIO
	Modular TRIO specifications

