
A UML-compatible formal language for system
architecture description

Matteo Pradella2, Matteo Rossi1, Dino Mandrioli1,2

1Dipartimento di Elettronica ed Informazione, Politecnico di Milano and
2CNR IEIIT-MI
via Ponzio 34/5,

20133 Milano, Italy
{pradella, rossi, mandrioli}@elet.polimi.it

1 Introduction

Nowadays, UML is the de facto standard for system modeling in industrial practice.
Its popularity derives from a number of factors such as simplicity, ease of use and a
certain degree of intuitiveness and flexibility in the notation, which reduce the effort
needed to be able to write UML models to a minimum. UML is evolving, and its 2.0
incarnation introduces some new constructs (e.g., component, connector, port), crucial
for describing system architectures, that were previously missing [11]. Alas, as with
the previous versions, UML lack of formality hampers its applicability to critical
systems, where precise and rigorous designs are of the utmost importance for the
correct development of the application. To overcome these deficiencies, a number of
approaches use existing formal languages to give some chosen UML constructs,
typically statecharts and sequence diagrams, a precise semantics (e.g. [8, 9]).

This work presents a new temporal logic language, ArchiTRIO (Architectural
TRIO), which combines a subset of the UML notation with a precise formal semantics
inspired from our experiences with the TRIO and TC (TRIO-CORBA) languages [2].
To better suit industrial practices, ArchiTRIO follows a lightweight approach to the
problem of formal modeling [17]; more precisely, ArchiTRIO allows developers to
use standard UML 2.0 notation to describe non-critical aspects of systems, but it also
offers a complementary formal notation, fully integrated with the UML one, to
represent those system aspects that require precise modeling. ArchiTRIO is based
upon few selected UML 2.0 constructs especially suited for describing architectures,
it gives them a formal meaning, and precisely defines their composition. It differs
from the aforementioned formal approaches to UML in that it exploits a logic-based
approach that, given a UML 2.0 composite structure diagram [14], allows one to
define the dynamic properties (including possible temporal constraints) of the system
components and their mutual interactions at a high abstraction level. ArchiTRIO adds
expressive power to UML diagrams, rather than replacing or modifying any of them;
then, a user who at first does not need full-blown ArchiTRIO can start by drawing
bare UML composite structure diagrams, and only later, when the need arises for
clarity and precision (especially for what concerns critical system temporal
constraints), introduce ArchiTRIO-specific notation.

2 Matteo Pradella, Matteo Rossi, Dino Mandrioli

Given the formal nature of the language, from an ArchiTRIO model a number of
developments are possible: an obvious one is to apply formal verification techniques
to check the correctness of the design against high level requirements (similarly to the
experience of TC [16]); in addition, to move from a high-level architectural design to
a lower level closer to implementation, we envision the possibility of translating
ArchiTRIO formulas into operational notations such as Statecharts or SDL diagrams
[1, 12, 18]. The ultimate goal of our research, in fact, is to support the full life cycle
by allowing the developer to move smoothly and safely from the high phases of
requirements analysis and specification down to final implementation and
verification. Thus, an operational version of architectural system design can be further
refined into an executable implementation possibly exploiting a (semi)automatic code
generator such as, e.g. [18].

To provide tool support to ArchiTRIO, a plugin of the TRIO-based TRIDENT
integrated development platform is currently being developed. To fully support the
above methodological approach, TRIDENT will allow the user to import “pure UML
documents” produced through any UML tool and to augment it with the appropriate
level of formality expressed in terms of ArchiTRIO.

This paper is structured as follows: Section 2 presents the ArchiTRIO approach to
system development, which combines informal UML models with precise temporal
logic formulas; Section 3 presents the ArchiTRIO language through a running
example, and briefly hints at its formal semantics; Section 4 describes the tool being
developed to support the aforementioned language and methodology; finally, Section
5 presents a selection of related works and draws some conclusions.

2 Overview of the approach

In this section, we will sketch our approach, along with a simple running example, an
access control system for a building divided into areas having different security
levels. Our methodological trip will start from the high level system description,
written in natural language and pure UML, and will go through the architectural
design, by means of the ArchiTRIO language. This section will stop right before
actually presenting ArchiTRIO concepts – this will be the purpose of Section 3.

Our aim is to offer a methodology and tools that, starting from standard UML, may
include a formally sound temporal logic-based technique. Ideally, our methodology
follows the following route: a user would start by drawing a UML diagram (at
present, we take into account class diagrams, and leave behavioral diagrams out of the
picture), and then refine/specialize/complete it until (s)he obtains a complete
specification/architecture, consisting of Composite Structure diagrams and their
ArchiTRIO semantics, possibly augmented with exclusively ArchiTRIO concepts, on
which formal verification can be carried out.

Let us now consider the example system. The Access Control System is used in
one or more corporate buildings having three different security levels: low, medium,
and high. The building may contain zero or more areas of a given security level. The
access control is enforced through essentially two kinds of entities: a local mechanism

A UML-compatible formal language for system architecture description 3

based on the concept of security gate, and a central control connected to a user
database.

As in current UML-based industrial practice, we start by drawing a class diagram,
in which we depict the relations among these higher-level entities (see Figure 1).

UserDB

+getUser:User

User

+ name : Integer
- badge : Badge
- fingerprint : Fingerprint
- retina : Retina

+checkPD:boolean

0..*

0..*

Gate
SimpleGate

out:GatePort

Gate
MediumSecurityGateout:GatePort

Gate
HighSecurirtyGate

out:GatePort

CentralControl

inL:LowSecAutProtocol

inH:HighSecAutProtocol

inM:MedSecAutProtocol

0..*

0..*

0..*

Fig. 1. Access Control System: the high-level class diagram.

The diagram in Figure 1 depicts a CentralControl class, the main entity
which enforces the prescribed security policy for user access; a UserDB, that is a
database containing users’ sensible data and their actual security clearance; and three
kinds of Gate classes: SimpleGate, MediumSecurityGate, and
HighSecurityGate, in charge of managing the local access to areas with low,
medium, and high security level, respectively.

UML 2.0 introduces the useful concept of port, which is essentially an interface
container. In this example ports are used to define the protocols used by the
CentralControl, to get from, send data to, and manage gates. In Figure 1, every
gate has a port of type GatePort, while CentralControl has three different
ports, LowSecAutProtocol, MedSecAutProtocol, and
HighSecAutProtocol that will be used to communicate with SimpleGates,
MediumSecurityGates, and HighSecurityGates, respectively.

Moving in a top-down fashion, we now define the internal class structure of the
gates (see Figure 2). As the reader can see, the low security gate is the simplest one,
and it is depicted on the left part of the diagram. A SimpleGate is an entity having
one or more BadgeReaders (a subclass of IdRecognizer), managed by a local
controller LC_SimpleGate. Communication between BadgeReader and
LC_SimpleGate is based on the interface LocalControl, implemented by the
latter.

The medium security level gates are described in the central part of the diagram. A
MediumSecurityGate is based on a more sophisticated IdRecognizer, a
fingerprints reader (class FingerprintsReader), and has an entry sensor (class
EntrySensor). In the typical usage scenario of a medium security gate, the user
approaches the gate and his/her fingerprints are scanned; his/her data is then sent to
the central control to be checked. If everything is ok, the gate remains open either for
a short fixed time interval, or until the entry sensor actually detects the user getting in.
This scenario could typically be described in UML by a sequence diagram, not
reported here. Analogously to the simple gate, a medium security gate is supervised
by a local controller, LC_MedSecGate, and communication between the local
controller and the sensors is based on the interface LocalControl.

4 Matteo Pradella, Matteo Rossi, Dino Mandrioli

IdRecognizer
RetinaScanner

LocalControl

LC_HighSecGate

out:GatePort

1

1

IdRecognizer
FingerprintsReader

1

1
LC_MedSecGate

out:GatePort

1

1

Gate
MediumSecurityGate

out:GatePort

Gate
HighSecurirtyGate

out:GatePort

EntrySensor

1

1

1

1

Gate
SimpleGate

out:GatePort

LC_SimpleGate

out:GatePort

IdRecognizer
BadgeReader0..*

1

1..*

Fig. 2. Access Control System: the local-level class diagram.

The most complex type of gate is the HighSecurityGate, on the right side of
Figure 2: it consists of two kinds of IdRecognizers, a FingerprintsReader
and a RetinaScanner; an EntrySensor; and a local controller
LC_HighSecGate. Its behavior is basically analogous to the medium security level
one, but for the retina scanner: the access control has to check both the user’s
fingerprints and retina to open the gate.

HighSecurirtyGate

LocalControl

FR : FingerprintsReader

ES : EntrySensor

LC : LC_HighSecGate

out

RS : RetinaScanner

out:GatePort

Fig. 3. Composite structure diagram of a high security gate.

To move towards the high-level system architecture, we have now to describe how
instances of the classes sketched in the previous diagrams are actually interconnected
and structured. As far as UML is concerned, the new composite structure diagrams, a
welcome addition in version 2.0, are quite useful. Let us consider for instance a high
security gate (Figure 3).

A high security gate consists of a retina scanner (RS), a fingerprints reader (FR), an
entry sensor (ES), and a local control (LC). Every one is an instance of the
corresponding class; LC exchanges data with the sensors by implementing the

A UML-compatible formal language for system architecture description 5

interface LocalControl, while communication with the remote central control
happens through a replicated port of type GatePort. Details of this aspect will be
provided in the next section.

Building

Entrance : SimpleGate

out

CC : CentralControl

inH
inM[2]

inL[2]

Area44 : MediumSecurityGate
out

Area51 : HighSecurityGate

out

BackDoor : SimpleGate

out
AreaX : MediumSecurityGate

out

Fig. 4. The building structure: the high-level system architecture.

Last, we consider the system high-level architecture (Figure 4): our example
building is made of a central control (CC); two low security gates (Entrance and
BackDoor); two medium security areas and their corresponding gates (AreaX and
Area44); finally, a high security area reachable through a high security gate
(Area51).

This concludes a first simple architectural description of the system, based
exclusively on UML constructs. As we said in the introduction, UML per se does not
precisely define many of the constructs we used for describing our system here. For
instance, in our brief description above, a precise definition of timeouts management
and local control behavior is nowhere to be found. More generally, we would like to
be able to precisely express a critical property and possibly to verify it. In our
example an unwanted behavior like the following should not be possible: Alice has
clearance to enter Area51 and authenticates herself at the gate, at the same time a
malicious Bob is waiting for her authentication behind a corner nearby, trying to enter
into the restricted area right behind her. On one hand it is easy to correctly model the
local control by using behavioral diagrams (e.g. statecharts or SDL); on the other
hand however, stating and verifying general properties, such as “ the entry sensor must
signal a single entrance after a valid authentication, and it must occur not before k ms
and not after k+n ms” , is almost impossible, if one uses pure UML, even taking into
account OCL. OCL per se has limited aim and has been designed to express static
constraints like guards and pre-/post-conditions on operations without side-effects.
We will consider OCL and some of its proposed variants later.

It is at this point that the designer, e.g. of a critical system, could need something
more than plain UML, to seamlessly incorporate desired properties and system
requirements into its architecture. So ArchiTRIO appears in the picture: the designer
needs a solid formal description of the used concepts (e.g. class, instance, interface,
port, operation, connection, and so on), to state something more and more precisely of
the system, well before implementing it.

6 Matteo Pradella, Matteo Rossi, Dino Mandrioli

3 The ArchiTRIO language

The basic ArchiTRIO concepts mirror a subset of the elements one can find in UML
2.0. The core of the language is the class. A class defines operations and attributes,
and can provide and require interfaces; ports are groups of required/provided
interfaces, and can be used to define protocols. Classes can have composite structures,
whose parts are connected by connectors.

Next to these UML elements, however, ArchiTRIO includes also concepts derived
from temporal logics, which allow users to precisely define the behavior of a system
modeled with ArchiTRIO. In fact, every UML element featured in ArchiTRIO is
given a formal semantics in terms of the temporal logic (HOT, Higher-Order TRIO
[5]) on which ArchiTRIO is founded. This, in turn, allows one to attach a precise
meaning to the formulas describing the dynamics of the components (taken separately
or as a whole) of the system being modeled.

Let us now illustrate some of the most significant syntactic features of ArchiTRIO
through the example of system shown in Section 2. Section 3.1 will briefly hint at the
semantics of some of the elements shown here, without pretense of being exhaustive.

The graphical representation of those concepts that are common to both
ArchiTRIO and UML is the same as in UML. However, every ArchiTRIO element
(UML- and logic-derived ones alike) is also given a textual representation detailing its
ArchiTRIO-specific features. For example, class LC_HighSecGate introduced in
Figure 2 provides interface LocalControl and has a port of type GatePort;
interface LocalControl defines two operations, incomingData and
personEntered. The corresponding textual declaration of Figure 5 defines that, in
addition to the aforementioned UML port and interface, class LC_HighSecGate
includes three logic items, inGate, lastUser and gate_open. Item inGate is
time-independent (TI, meaning that its value is constant over time), and represents
the identifier of the Gate to which the controller belongs; item lastUser is time-
dependent (TD, that is its value depends on the time instant in which the item is
evaluated) and models the data corresponding to the user who had either his/her
fingerprints or his/her retina scanned; item gate_open, instead, is a state (which
means that it is true/false in intervals of non-null duration), and models the intervals
in which the gate is open. Notice that the temporal domain clause defines that
temporal variables range over real values (that is, time is dense).

class LC_HighSecGate
temporal domain: real;

provides LocalControl ...
ports:
 out : GatePort; ...

items:
 TI inGate : GateId;
 TD lastUser : User;
 state gate_open;
constructors:
 LC_HighSecGate(GateId g) : inGate = g;
 axioms: ...
end

Fig. 5. Sketch of the textual declaration of class LC_HighSecGate.

As we will show later through some examples, in addition to the logic items
explicitly declared in the class signature, an ArchiTRIO class includes a number of
built-in items, which model the most significant features of the UML elements of the
class (for example the parameters of an operation, an operation invocation, etc.).

A UML-compatible formal language for system architecture description 7

Then, the axioms of class LC_HighSecGate are formulas that predicate over the
logic items (explicitly declared or built-in) of the class to define its precise behavior.

Axiom dataRelay shown below, for example, states that when an invocation of
operation incomingData (exported through interface LocalControl) is
received by the controller and the value of the rawData parameter is pd, within T
time units in the future the controller will invoke (an instance of) operation
sendPersData (see Figure 7 for its signature) on port out, passing pd and the
value corresponding to item inGate as parameters.

vars: iD : incomingData;
 sPD : sendPersData;
 pd : PersonalData;
dataRelay:
 iD.inv_rec(pd) ->
 ex out.sPD(WithinF(out.sPD.invoke(pd, inGate), T);

In axiom dataRelay, iD and sPD are variables ranging over all possible
invocations of operations incomingData and sendPersData, respectively.
Then, ex out.sPD means that “ there exists an invocation of operation
sendPersData (whithin the scope of port out) such that...” . inv_rec and
invoke are built-in logic items (more precisely events, i.e. predicates that are true
only in isolated time instants) modeling significant events of an operation invocation;
in particular, event iD.inv_rec is true when invocation iD of operation
incomingData is received by the local controller; similarly, event
out.sPD.invoke is true when the controller issues invocation sPD on port out.
WithinF is a temporal operator taken from the TRIO formal language [2] (it stands
for within the future). Finally, pd is a variable of type PersonalData, where
PersonalData is an ArchiTRIO class, not shown here for the sake of brevity,
modeling either the badge, or the fingerprints, or the retina of a user.

As another example of ArchiTRIO formula, let us focus on axiom
gate_open_Def below, which defines precisely when the controller leaves the
gate open, thus allowing a user to enter. gate_open_Def states that, in the current
instant, the gate is open if and only if there is another instant, within the past Topen
time units (where Topen is a system-dependent constant), in which the controller
received an invocation oG of operation openGate from port out, and no invocation
of operation personEntered has been received since (see [2] for the precise
definition of temporal operators Since and WithinP).

vars: pE : personEntered;
 oG : openGate;
gate_open_Def:
 gate_open <->
 Since(not ex pE(pE.inv_rec), ex out.oG(out.oG.inv_rec)) &
 WithinP(ex out.oG(out.oG.inv_rec), Topen);

Notice that as a consequence of axiom gate_open_Def the gate cannot stay
open longer than Topen time units if the openGate command is not refreshed (i.e.
received anew from the central controller); in fact if, after Topen time units from the
last openGate, no person has yet entered (i.e. a personEntered command has
not been received), subformula WithinP(ex out.oG(out.oG.inv_rec),
Topen) does not hold any more, thus gate_open becomes false (i.e. the gate
closes).

8 Matteo Pradella, Matteo Rossi, Dino Mandrioli

Let us now focus on the concept of port in ArchiTRIO. Syntactically, a port is just
a collection of provided and required interfaces. From a semantic point of view,
instead, a port can be used to define a protocol, intended as a combination of
invocations of operations that can be received (from a provided interface) or issued
(to a required interface). Then, an ArchiTRIO port can contain axioms defining the
corresponding protocol in terms of the involved operation invocations .

Consider, for example, port HighSecAutProtocol mentioned in Figure 1. It
provides interface AccessControl, and requires one instance of interface
FromAccessControl (the details of the operations defined by the two interfaces
can be found in Figure 7).

interface AccessControl
operations:
 User sendPersData(in PersonalData rawData,
 in GateId gate)
 raises UserNonExistentException;
 enterPerson(in User user,
 in GateId gate)
 raises UserNonExistentException;
end

interface FromAccessControl
operations:
 openGate();
end

Fig. 6. Declaration of interfaces AccessControl and FromAccessControl.

The port defines the authentication protocol for gates that require that a user
authenticates him/herself through both a fingerprint and a retina scan. More precisely,
the two scans can occur in any order, but always within a maximum delay one from
the other for the authenciation to be successful (i.e. for the controller to allow the user
to enter by opening the gate through an openGate command).

Figure 8 shows axiom openGate_SC of port HighSecAutProtocol defining
a sufficient condition for the openGate command to be sent to the gate through
interface FromAccessControl. Formula openGate_SC states that if there are
two invocations (sPD1 and sPD2) of operation sendPersData of interface
AccessControl (ac) that are completed successfully within a maximum delay of
Tprot time units one from the other, and such that

� the gate input parameter is the same for both and
� the rawData input parameter has type Fingerprints for one of them and

Retina for the other,
then operation openGate is invoked on interface FromAccessControl (fac)

no later than T time units after the instant in which the second invocation (represented
in the formula by sPD1) ended.

vars: sPD1, sPD2 : sendPersData;
 oG : openGate;
openGate_SC:
 ac.sPD1.reply(u) & ac.sPD1.rawData = rd1 & ac.sPD1.gate = g &
 ex ac.sPD2(WithinP(ac.sPD2.reply(u) &
 ac.sPD2.rawData = rd2 & ac.sPD2.gate = g,
 Tprot)) &
 (type(rd1, Fingerprints) -> type(rd2, Retina)) &
 (type(rd2, Fingerprints) -> type(rd1, Retina))
 ->
 WithinF(ex fac.oG(fac.oG.invoke), T);
 ...
end

Fig. 7. Axiom openGate_SC of port HighSecAutProtocol.

A UML-compatible formal language for system architecture description 9

Finally, the textual declaration of a composite ArchiTRIO class defines the
elements composing each instance of the class, and how they are connected with each
other (e.g. which part provides the interface required by another part, and so on).

3.1 ArchiTRIO semantics (hints)

From a semantic point of view, ArchiTRIO is founded on a higher-order temporal
logic, Higher-Order TRIO (HOT for short [5]). The choice of a higher-order logic was
dictated by the need to allow an easy representation of mechanisms such as the
passing of parameters of complex types (to be precise, of parameters that can be
ArchiTRIO/UML objects).

In HOT terms, a class is a type. An object in HOT is an instance of a class, that is a
value of a type. ArchiTRIO is based on the same concepts: an ArchiTRIO class is a
HOT class, so it defines a type; an ArchiTRIO object is an instance of the class.

An ArchiTRIO operation also corresponds to a HOT class. All operations share a
core group of features (built-in items and behavior), which is modeled by a HOT class
Operation. This class introduces the logic items modeling the relevant features of
an operation invocation (e.g. the invoke, inv_rec and reply events presented
above), and the axioms defining the behavior that is common to all invocations.

A specific operation (e.g. incomingData) is also defined as a class. For
example, a class incomingData defines the semantics for the corresponding
operation. Class incomingData is a subtype of class Operation: in short, if a
class S is a subtype of a class P then S inherits all the elements of P, and all axioms of
P are still valid in S. Every instance i of class incomingData (i.e. every value of
type incomingData) is an invocation of the corresponding operation.

An ArchiTRIO interface is just a HOT class exporting operations. A class
providing an interface, from a semantic point of view, is a subtype of that interface.
An ArchiTRIO class requiring an interface I is a HOT generic (i.e. parametric) class
with respect to a parameter of type I. A connection between a provided and a
required interface (like the one between modules LC and RS of Figure 3, for example)
corresponds, semantically, to a parameter instantiation (in the case of Figure 3, the
parameter of type LocalControl of module RS is instantiated with object LC).

Finally, since a port is a collection of provided and required interfaces (plus a set of
axioms), an ArchiTRIO class that has a port of type P, which provides interfaces
PI1...PIn and requires interfaces RI1...RIm, also provides and requires the same
interfaces. In addition, a class that has a port P includes the axioms of P.

4 Tool support

Our experience of several decades with the TRIO language brought the construction
of a long series of prototypical tools, every one with a different slight variant of the
language, and different verification or editing capabilities. From this situation the
decision of a couple of years ago, to build up an industrial-strength integrated tool for
supporting our methodologies and languages.

10 Matteo Pradella, Matteo Rossi, Dino Mandrioli

TRIDENT (short for TRio Integrated Development EnvironmeNT) is a tool for the
development and analysis of time-critical systems based on the TRIO formal
language. TRIDENT is implemented on the Eclipse platform [3], and is currently
being developed jointly by Politecnico di Milano and CEFRIEL.

As typical with Eclipse-based tools, TRIDENT is plugin-based, so it is by itself an
open and evolving product. The environment is still in a prototypical stage, so many
of the intended features are still incomplete.

Some of the most notable present features of the tool are the ability of editing
complex TRIO specifications and histories (i.e. execution traces that may be used as
test cases), and check their mutual compatibility.

More recently, a plugin for supporting model-checking of TRIO specifications has
been implemented [13]. This plugin, also called TRIO-PROMELA, is based on the
well-known model-checker SPIN, and uses a novel translation technique based on
alternating automata. We intend to use this very same technique for model-checking
modular and mixed logic/operational specifications (e.g. having components written
in some automata-based notation, say for example SDL), but this feature is not yet
implemented.

As far as ArchiTRIO is concerned, currently there is an advanced-stage
prototypical plugin, which supports class and composite structure diagrams editing,
and some of the basic ArchiTRIO characteristics. In addition, a prototype plugin
capable of partially transforming XMI files into TRIDENT objects has been
developed and should be available in the TRIDENT distribution in a short time.

5 Related works and conclusions

In this paper we presented a formal language, ArchiTRIO, suitable for describing
system architectures. It combines a subset of the UML 2.0 graphical notation with a
higher-order temporal logic, which allows users to precisely express both the
structural (static) and the behavioral properties of the modeled system. ArchiTRIO is
designed to let users draw models in a subset of the usual UML notation (to be
precise, using class diagrams and the new composite structure diagrams) and then, if
and when necessary, add precise details about the behavior of the target system using
a temporal logic-based formalism.

ArchiTRIO combines UML and formal languages to provide a powerful means to
model system architecture and, as a consequence, is related to a number of works that
have appeared in the literature in recent years. Let us briefly analyze how our work on
ArchiTRIO differs from previous ones.

[11] shows how UML pre-2.0, if taken by itself, lacks concepts that are necessary
for modeling system architectures, and proceeds to introduce profiles for a pair of
Architecture Description Languages (ADLs) to cover for these deficiencies. The
approach of [11] presumes that users will then use these profiles, and the ADL-
specific concepts they define, to model architectures. The ArchiTRIO approach,
instead, does not introduce any new graphical notation to UML 2.0: the user who does
not need the full expressiveness of ArchiTRIO can still use the plain UML notation
and ignore the underlying logic altogether; the user in need of rigor and precision, on

A UML-compatible formal language for system architecture description 11

the other hand, can seamlessly introduce formal definitions of the behavior of the
system in his/her model, without altering the original UML description.

How to add formality to existing UML is a widely acknowledged problem. In this
regard, a number of works in the literature have proposed an approach based on
translating UML behavioral diagrams (especially statecharts and sequence diagrams)
into an existing formalism (see, [8] or [10], and many others not listed here for the
sake of brevity), or, alternatively, into an ad-hoc model [9]. With ArchiTRIO there is
no translation into any other language; on the contrary, it is a formal language
integrated into the UML 2.0 notation, which allows one to precisely describe both the
structure and the behavior of a system, of its components and their interactions, with
particular attention to their temporal constraints.

Indeed, UML already has an associated logic language, the Object Constraint
Language (OCL), for which temporal extensions have been proposed [4]. However,
OCL, and RT-OCL in particular, is a language with limited scope, as its intended use
is mostly for expressing constraints on behavioral diagrams such as statecharts. On
the contrary, the ArchiTRIO approach is a comprehensive one, which aims at
supporting the whole system specification and design process by modeling all aspects
of a system architecture, both structural and behavioral.

Finally, [7] presents an approach to the analysis of system architectures based on a
subset of UML 2.0 concepts and a formal semantics for time-annotated statecharts.
Again, with respect to this work, the scope of ArchiTRIO is wider, as it is intended
for use in the whole system design phase, from modeling to verification. In fact, one
could see the techniques presented in [7], and associated notations, as a target model,
to be obtained through a suitable method from an ArchiTRIO design to perform
subsequent verification.

This work opens the way to a variety of future developments. First and foremost,
we will complete the development of the tool sketched in Section 4, which we plan to
release for free use by both academic and industrial communities.

Secondly, we will investigate verification techniques (to be supported by the tool-
set mentioned above) to complement the modeling features presented in this paper. In
this regard, the semantics of ArchiTRIO in terms of HOT suggests a fairly
straightforward encoding of ArchiTRIO classes into the higher-order logic of a
theorem prover such as PVS, along the lines already followed for the TRIO language
[6]. Other approaches will also be explored, for example translating ArchiTRIO
classes into automata-based formalisms (like, e.g., those used in [7]) to exploit model
checking techniques.

Finally, we plan on developing a method that allows one to move from the purely
logic notation of ArchiTRIO to an operational formalism closer to implementation
such as SDL [12] (as mentioned in Section 4, techniques to translate TRIO temporal
operators into Promela communicating processes have already been explored in [13],
and many concepts of Promela can also be found in SDL). This would open up the
possibility of using existing tools (e.g. [18]) to perform automatic generation of code
that complies with the properties and the behavior precisely defined by an ArchiTRIO
model (and, in particular, by the axioms contained in its classes).

12 Matteo Pradella, Matteo Rossi, Dino Mandrioli

References

1. Sergio Cigoli, Philippe Leblanc, Salvatore Malaponti, Dino Mandrioli, Marco Mazzucchelli,
Angelo Morzenti, Paola Spoletini: An Experiment in Applying UML2.0 to the Development
of an Industrial Critical Application, Proceedings of the UML'03 workshop on Critical
Systems Development with UML, San Francisco, CA, October 21 2003.

2. Coen-Porisini A., Pradella M., Rossi M., Mandrioli D., A Formal Approach for Designing
CORBA based Applications, ACM TOSEM, vol. 12, n. 2 (2003) 107–151

3. Eclipse Foundation, http://www.eclipse.org
4. Flake, S., Mueller, W. Formal Semantics of Static and Temporal State-Oriented OCL

Constraints, Software and Systems Modeling, vol. 2, n. 3, Springer (2003) 164–186.
5. Furia, C. A., Mandrioli, D., Morzenti, A., Pradella, M., Rossi, M., San Pietro, P., Higher-

Order TRIO, Technical Report 2004.28, Dipartimento di Elettronica ed Informazione,
Politecnico di Milano (2004).

6. Gargantini, A., Morzenti, A., Automated Deductive Requirements Analysis of Critical
Systems, ACM TOSEM, vol. 3, no. 3, (2001) 225–307.

7. Giese, H., Tichy, M., Burmester, S., Flake, S., Towards the compositional verification of
real-time UML designs, Proc. of ESEC/FSE 2003, Helsinki (2003) 38–47

8. Lavazza, L., Quaroni, G. Venturelli, M., Combining UML and formal notations for
modelling real-time systems, Proc. of ESEC/FSE 2001, Vienna (2001) 196–206

9. Li, X., Liu, Z., Jifeng, H., A Formal Semantics of UML Sequence Diagram, Proceedings of
the 2004 Australian Software Engineering Conference, (2004) 168–177

10. McUmber, W. E., Cheng, B. H. C., A general framework for formalizing UML with formal
languages, Proceedings of the 23rd ICSE, (2001) 433–442

11. Medvidovic, N., Rosenblum, D. S., Redmiles, D. F., Robbins, J. E. Modeling Software
Architectures in the Unified Modeling Language, ACM TOSEM, vol. 11, no. 1, (2002) 2–57

12. Mitschele-Theil, A., System Engineering with SDL – Developing Peerformance-Critical
Communication Systems, John Wiley (2001)

13. Morzenti, A., Pradella, M., San Pietro, P., Spoletini, P., Model-checking TRIO
specifications in SPIN, 12th Int. FM Symposium, LNCS 2805, Pisa (2003) 542–561

14. Object Management Group, UML 2.0 Superstructre Specification, Technical Report, OMG,
ptc/03-08-02 (2003).

15. Object Management Group, UML 2.0 OCL Specification, Technical Report, OMG, ptc/03-
10-14 (2003).

16. Rossi M., Mandrioli D., A Formal Approach for Modeling and Verification of RTCORBA-
based Applications, ISSTA, Boston (2004) 263–273

17. Saiedian, H., Bowen, J. P., Butler, R. W., Dill, D. L., Glass, R. L., Gries, D., Hall, A.,
Hinchey, M. G., Holloway, C. M., Jackson, D., Jones, C. B., Luts, M. J., Parna, D. L.,
Rushby, J., Wing, J., Zave, P. An Invitation to Formal Methods. IEEE Computer, vol. 29,
no. 4, (1996) 16–30

18. Telelogic Tau Generation2 Tools, http://www.telelogic.com/products/tau/tg2.cfm

