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1  Introduction 

Nowadays, UML is the de facto standard for system modeling in industrial practice. 
Its popularity derives from a number of factors such as simplicity, ease of use and a 
certain degree of intuitiveness and flexibility in the notation, which reduce the effort 
needed to be able to write UML models to a minimum. UML is evolving, and its 2.0 
incarnation introduces some new constructs (e.g., component, connector, port), crucial 
for describing system architectures, that were previously missing [11]. Alas, as with 
the previous versions, UML lack of formality hampers its applicability to critical 
systems, where precise and rigorous designs are of the utmost importance for the 
correct development of the application. To overcome these deficiencies, a number of 
approaches use existing formal languages to give some chosen UML constructs, 
typically statecharts and sequence diagrams, a precise semantics (e.g. [8, 9]). 

This work presents a new temporal logic language, ArchiTRIO (Architectural 
TRIO), which combines a subset of the UML notation with a precise formal semantics 
inspired from our experiences with the TRIO and TC (TRIO-CORBA) languages [2]. 
To better suit industrial practices, ArchiTRIO follows a lightweight approach to the 
problem of formal modeling [17]; more precisely, ArchiTRIO allows developers to 
use standard UML 2.0 notation to describe non-critical aspects of systems, but it also 
offers a complementary formal notation, fully integrated with the UML one, to 
represent those system aspects that require precise modeling. ArchiTRIO is based 
upon few selected UML 2.0 constructs especially suited for describing architectures, 
it gives them a formal meaning, and precisely defines their composition. It differs 
from the aforementioned formal approaches to UML in that it exploits a logic-based 
approach that, given a UML 2.0 composite structure diagram [14], allows one to 
define the dynamic properties (including possible temporal constraints) of the system 
components and their mutual interactions at a high abstraction level. ArchiTRIO adds 
expressive power to UML diagrams, rather than replacing or modifying any of them; 
then, a user who at first does not need full-blown ArchiTRIO can start by drawing 
bare UML composite structure diagrams, and only later, when the need arises for 
clarity and precision (especially for what concerns critical system temporal 
constraints), introduce ArchiTRIO-specific notation. 
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Given the formal nature of the language, from an ArchiTRIO model a number of 
developments are possible: an obvious one is to apply formal verification techniques 
to check the correctness of the design against high level requirements (similarly to the 
experience of TC [16]); in addition, to move from a high-level architectural design to 
a lower level closer to implementation, we envision the possibility of translating 
ArchiTRIO formulas into operational notations such as Statecharts or SDL diagrams 
[1, 12, 18]. The ultimate goal of our research, in fact, is to support the full life cycle 
by allowing the developer to move smoothly and safely from the high phases of 
requirements analysis and specification down to final implementation and 
verification. Thus, an operational version of architectural system design can be further 
refined into an executable implementation possibly exploiting a (semi)automatic code 
generator such as, e.g. [18]. 

To provide tool support to ArchiTRIO, a plugin of the TRIO-based TRIDENT 
integrated development platform is currently being developed. To fully support the 
above methodological approach, TRIDENT will allow the user to import “pure UML 
documents”  produced through any UML tool and to augment it with the appropriate 
level of formality expressed in terms of ArchiTRIO. 

This paper is structured as follows: Section 2 presents the ArchiTRIO approach to 
system development, which combines informal UML models with precise temporal 
logic formulas; Section 3 presents the ArchiTRIO language through a running 
example, and briefly hints at its formal semantics; Section 4 describes the tool being 
developed to support the aforementioned language and methodology; finally, Section 
5 presents a selection of related works and draws some conclusions. 

2  Overview of the approach 

In this section, we will sketch our approach, along with a simple running example, an 
access control system for a building divided into areas having different security 
levels. Our methodological trip will start from the high level system description, 
written in natural language and pure UML, and will go through the architectural 
design, by means of the ArchiTRIO language. This section will stop right before 
actually presenting ArchiTRIO concepts – this will be the purpose of Section 3. 

Our aim is to offer a methodology and tools that, starting from standard UML, may 
include a formally sound temporal logic-based technique. Ideally, our methodology 
follows the following route: a user would start by drawing a UML diagram (at 
present, we take into account class diagrams, and leave behavioral diagrams out of the 
picture), and then refine/specialize/complete it until (s)he obtains a complete 
specification/architecture, consisting of Composite Structure diagrams and their 
ArchiTRIO semantics, possibly augmented with exclusively ArchiTRIO concepts, on 
which formal verification can be carried out. 

Let us now consider the example system. The Access Control System is used in 
one or more corporate buildings having three different security levels: low, medium, 
and high. The building may contain zero or more areas of a given security level. The 
access control is enforced through essentially two kinds of entities: a local mechanism 
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based on the concept of security gate, and a central control connected to a user 
database. 

As in current UML-based industrial practice, we start by drawing a class diagram, 
in which we depict the relations among these higher-level entities (see Figure 1). 

UserDB

+getUser:User

User

+ name : Integer
- badge : Badge
- fingerprint : Fingerprint
- retina : Retina

+checkPD:boolean

0..*

0..*

Gate
SimpleGate

out:GatePort

Gate
MediumSecurityGateout:GatePort

Gate
HighSecurirtyGate

out:GatePort

CentralControl

inL:LowSecAutProtocol

inH:HighSecAutProtocol

inM:MedSecAutProtocol

0..*

0..*

0..*

 

Fig. 1. Access Control System: the high-level class diagram. 

The diagram in Figure 1 depicts a CentralControl class, the main entity 
which enforces the prescribed security policy for user access; a UserDB, that is a 
database containing users’  sensible data and their actual security clearance; and three 
kinds of Gate classes: SimpleGate, MediumSecurityGate, and 
HighSecurityGate, in charge of managing the local access to areas with low, 
medium, and high security level, respectively.  

UML 2.0 introduces the useful concept of port, which is essentially an interface 
container. In this example ports are used to define the protocols used by the 
CentralControl, to get from, send data to, and manage gates. In Figure 1, every 
gate has a port of type GatePort, while CentralControl has three different 
ports, LowSecAutProtocol, MedSecAutProtocol, and 
HighSecAutProtocol that will be used to communicate with SimpleGates, 
MediumSecurityGates, and HighSecurityGates, respectively. 

Moving in a top-down fashion, we now define the internal class structure of the 
gates (see Figure 2). As the reader can see, the low security gate is the simplest one, 
and it is depicted on the left part of the diagram. A SimpleGate is an entity having 
one or more BadgeReaders (a subclass of IdRecognizer), managed by a local 
controller LC_SimpleGate. Communication between BadgeReader and 
LC_SimpleGate is based on the interface LocalControl, implemented by the 
latter. 

The medium security level gates are described in the central part of the diagram. A 
MediumSecurityGate is based on a more sophisticated IdRecognizer, a 
fingerprints reader (class FingerprintsReader), and has an entry sensor (class 
EntrySensor). In the typical usage scenario of a medium security gate, the user 
approaches the gate and his/her fingerprints are scanned; his/her data is then sent to 
the central control to be checked. If everything is ok, the gate remains open either for 
a short fixed time interval, or until the entry sensor actually detects the user getting in. 
This scenario could typically be described in UML by a sequence diagram, not 
reported here. Analogously to the simple gate, a medium security gate is supervised 
by a local controller, LC_MedSecGate, and communication between the local 
controller and the sensors is based on the interface LocalControl. 
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Fig. 2. Access Control System: the local-level class diagram. 

The most complex type of gate is the HighSecurityGate, on the right side of 
Figure 2: it consists of two kinds of IdRecognizers, a FingerprintsReader 
and a RetinaScanner; an EntrySensor; and a local controller 
LC_HighSecGate. Its behavior is basically analogous to the medium security level 
one, but for the retina scanner: the access control has to check both the user’s 
fingerprints and retina to open the gate. 

HighSecurirtyGate

LocalControl

FR : FingerprintsReader

ES : EntrySensor

LC : LC_HighSecGate

out

RS : RetinaScanner

out:GatePort

 

Fig. 3. Composite structure diagram of a high security gate. 

To move towards the high-level system architecture, we have now to describe how 
instances of the classes sketched in the previous diagrams are actually interconnected 
and structured. As far as UML is concerned, the new composite structure diagrams, a 
welcome addition in version 2.0, are quite useful. Let us consider for instance a high 
security gate (Figure 3). 

A high security gate consists of a retina scanner (RS), a fingerprints reader (FR), an 
entry sensor (ES), and a local control (LC). Every one is an instance of the 
corresponding class; LC exchanges data with the sensors by implementing the 
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interface LocalControl, while communication with the remote central control 
happens through a replicated port of type GatePort. Details of this aspect will be 
provided in the next section.  

Building

Entrance : SimpleGate

out

CC : CentralControl

inH
inM[2]

inL[2]

Area44 : MediumSecurityGate
out

Area51 : HighSecurityGate

out

BackDoor : SimpleGate

out
AreaX : MediumSecurityGate

out

 

Fig. 4. The building structure: the high-level system architecture. 

Last, we consider the system high-level architecture (Figure 4): our example 
building is made of a central control (CC); two low security gates (Entrance and 
BackDoor); two medium security areas and their corresponding gates (AreaX and 
Area44); finally, a high security area reachable through a high security gate 
(Area51). 

This concludes a first simple architectural description of the system, based 
exclusively on UML constructs. As we said in the introduction, UML per se does not 
precisely define many of the constructs we used for describing our system here. For 
instance, in our brief description above, a precise definition of timeouts management 
and local control behavior is nowhere to be found. More generally, we would like to 
be able to precisely express a critical property and possibly to verify it. In our 
example an unwanted behavior like the following should not be possible: Alice has 
clearance to enter Area51 and authenticates herself at the gate, at the same time a 
malicious Bob is waiting for her authentication behind a corner nearby, trying to enter 
into the restricted area right behind her. On one hand it is easy to correctly model the 
local control by using behavioral diagrams (e.g. statecharts or SDL); on the other 
hand however, stating and verifying general properties, such as “ the entry sensor must 
signal a single entrance after a valid authentication, and it must occur not before k ms 
and not after k+n ms” , is almost impossible, if one uses pure UML, even taking into 
account OCL. OCL per se has limited aim and has been designed to express static 
constraints like guards and pre-/post-conditions on operations without side-effects. 
We will consider OCL and some of its proposed variants later. 

It is at this point that the designer, e.g. of a critical system, could need something 
more than plain UML, to seamlessly incorporate desired properties and system 
requirements into its architecture. So ArchiTRIO appears in the picture: the designer 
needs a solid formal description of the used concepts (e.g. class, instance, interface, 
port, operation, connection, and so on), to state something more and more precisely of 
the system, well before implementing it. 
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3  The ArchiTRIO language 

The basic ArchiTRIO concepts mirror a subset of the elements one can find in UML 
2.0. The core of the language is the class. A class defines operations and attributes, 
and can provide and require interfaces; ports are groups of required/provided 
interfaces, and can be used to define protocols. Classes can have composite structures, 
whose parts are connected by connectors. 

Next to these UML elements, however, ArchiTRIO includes also concepts derived 
from temporal logics, which allow users to precisely define the behavior of a system 
modeled with ArchiTRIO. In fact, every UML element featured in ArchiTRIO is 
given a formal semantics in terms of the temporal logic (HOT, Higher-Order TRIO 
[5]) on which ArchiTRIO is founded. This, in turn, allows one to attach a precise 
meaning to the formulas describing the dynamics of the components (taken separately 
or as a whole) of the system being modeled. 

Let us now illustrate some of the most significant syntactic features of ArchiTRIO 
through the example of system shown in Section 2. Section 3.1 will briefly hint at the 
semantics of some of the elements shown here, without pretense of being exhaustive. 

The graphical representation of those concepts that are common to both 
ArchiTRIO and UML is the same as in UML. However, every ArchiTRIO element 
(UML- and logic-derived ones alike) is also given a textual representation detailing its 
ArchiTRIO-specific features. For example, class LC_HighSecGate introduced in 
Figure 2 provides interface LocalControl and has a port of type GatePort; 
interface LocalControl defines two operations, incomingData and 
personEntered. The corresponding textual declaration of Figure 5 defines that, in 
addition to the aforementioned UML port and interface, class LC_HighSecGate 
includes three logic items, inGate, lastUser and gate_open. Item inGate is 
time-independent (TI, meaning that its value is constant over time), and represents 
the identifier of the Gate to which the controller belongs; item lastUser is time-
dependent (TD, that is its value depends on the time instant in which the item is 
evaluated) and models the data corresponding to the user who had either his/her 
fingerprints or his/her retina scanned; item gate_open, instead, is a state (which 
means that it is true/false in intervals of non-null duration), and models the intervals 
in which the gate is open. Notice that the temporal domain clause defines that 
temporal variables range over real values (that is, time is dense). 

class LC_HighSecGate 
temporal domain: real; 
 
provides LocalControl ... 
ports: 
  out : GatePort; ... 

items: 
  TI inGate : GateId; 
  TD lastUser : User; 
  state gate_open; 
constructors: 
  LC_HighSecGate(GateId g) : inGate = g; 
 axioms: ... 
end 

Fig. 5. Sketch of the textual declaration of class LC_HighSecGate. 

As we will show later through some examples, in addition to the logic items 
explicitly declared in the class signature, an ArchiTRIO class includes a number of 
built-in items, which model the most significant features of the UML elements of the 
class (for example the parameters of an operation, an operation invocation, etc.). 
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Then, the axioms of class LC_HighSecGate are formulas that predicate over the 
logic items (explicitly declared or built-in) of the class to define its precise behavior. 

Axiom dataRelay shown below, for example, states that when an invocation of 
operation incomingData (exported through interface LocalControl) is 
received by the controller and the value of the rawData parameter is pd, within T 
time units in the future the controller will invoke (an instance of) operation 
sendPersData (see Figure 7 for its signature) on port out, passing pd and the 
value corresponding to item inGate as parameters. 

vars: iD  : incomingData; 
      sPD : sendPersData; 
      pd  : PersonalData; 
dataRelay: 
  iD.inv_rec(pd) -> 
    ex out.sPD(WithinF(out.sPD.invoke(pd, inGate), T); 

In axiom dataRelay, iD and sPD are variables ranging over all possible 
invocations of operations incomingData and sendPersData, respectively. 
Then, ex out.sPD means that “ there exists an invocation of operation 
sendPersData (whithin the scope of port out) such that...” . inv_rec and 
invoke are built-in logic items (more precisely events, i.e. predicates that are true 
only in isolated time instants) modeling significant events of an operation invocation; 
in particular, event iD.inv_rec is true when invocation iD of operation 
incomingData is received by the local controller; similarly, event 
out.sPD.invoke is true when the controller issues invocation sPD on port out. 
WithinF is a temporal operator taken from the TRIO formal language [2] (it stands 
for within the future). Finally, pd is a variable of type PersonalData, where 
PersonalData is an ArchiTRIO class, not shown here for the sake of brevity, 
modeling either the badge, or the fingerprints, or the retina of a user. 

As another example of ArchiTRIO formula, let us focus on axiom 
gate_open_Def below, which defines precisely when the controller leaves the 
gate open, thus allowing a user to enter. gate_open_Def states that, in the current 
instant, the gate is open if and only if there is another instant, within the past Topen 
time units (where Topen is a system-dependent constant), in which the controller 
received an invocation oG of operation openGate from port out, and no invocation 
of operation personEntered has been received since (see [2] for the precise 
definition of temporal operators Since and WithinP). 

vars: pE : personEntered; 
      oG : openGate; 
gate_open_Def: 
  gate_open <-> 
    Since(not ex pE(pE.inv_rec), ex out.oG(out.oG.inv_rec)) & 
    WithinP(ex out.oG(out.oG.inv_rec), Topen); 

Notice that as a consequence of axiom gate_open_Def the gate cannot stay 
open longer than Topen time units if the openGate command is not refreshed (i.e. 
received anew from the central controller); in fact if, after Topen time units from the 
last openGate, no person has yet entered (i.e. a personEntered command has 
not been received), subformula WithinP(ex out.oG(out.oG.inv_rec), 
Topen) does not hold any more, thus gate_open becomes false (i.e. the gate 
closes). 
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Let us now focus on the concept of port in ArchiTRIO. Syntactically, a port is just 
a collection of provided and required interfaces. From a semantic point of view, 
instead, a port can be used to define a protocol, intended as a combination of 
invocations of operations that can be received (from a provided interface) or issued 
(to a required interface). Then, an ArchiTRIO port can contain axioms defining the 
corresponding protocol in terms of the involved operation invocations . 

Consider, for example, port HighSecAutProtocol mentioned in Figure 1. It 
provides interface AccessControl, and requires one instance of interface 
FromAccessControl (the details of the operations defined by the two interfaces 
can be found in Figure 7). 

interface AccessControl 
operations: 
 User sendPersData(in PersonalData rawData, 
                   in GateId gate) 
      raises UserNonExistentException; 
 enterPerson(in User user, 
             in GateId gate) 
      raises UserNonExistentException; 
end 

interface FromAccessControl 
operations: 
 openGate(); 
end 

Fig. 6. Declaration of interfaces AccessControl and FromAccessControl. 

The port defines the authentication protocol for gates that require that a user 
authenticates him/herself through both a fingerprint and a retina scan. More precisely, 
the two scans can occur in any order, but always within a maximum delay one from 
the other for the authenciation to be successful (i.e. for the controller to allow the user 
to enter by opening the gate through an openGate command). 

Figure 8 shows axiom openGate_SC of port HighSecAutProtocol defining 
a sufficient condition for the openGate command to be sent to the gate through 
interface FromAccessControl. Formula openGate_SC states that if there are 
two invocations (sPD1 and sPD2) of operation sendPersData of interface 
AccessControl (ac) that are completed successfully within a maximum delay of 
Tprot time units one from the other, and such that 

� the gate input parameter is the same for both and  
� the rawData input parameter has type Fingerprints for one of them and 

Retina for the other, 
then operation openGate is invoked on interface FromAccessControl (fac) 

no later than T time units after the instant in which the second invocation (represented 
in the formula by sPD1) ended. 

vars: sPD1, sPD2 : sendPersData; 
      oG : openGate; 
openGate_SC: 
  ac.sPD1.reply(u) & ac.sPD1.rawData = rd1 & ac.sPD1.gate = g & 
  ex ac.sPD2(WithinP(ac.sPD2.reply(u) & 
                     ac.sPD2.rawData = rd2 & ac.sPD2.gate = g, 
                  Tprot)) & 
  (type(rd1, Fingerprints) -> type(rd2, Retina)) & 
  (type(rd2, Fingerprints) -> type(rd1, Retina)) 
  -> 
  WithinF(ex fac.oG(fac.oG.invoke), T); 
  ... 
end 

Fig. 7. Axiom openGate_SC of port HighSecAutProtocol. 



A UML-compatible formal language for system architecture description      9 

Finally, the textual declaration of a composite ArchiTRIO class defines the 
elements composing each instance of the class, and how they are connected with each 
other (e.g. which part provides the interface required by another part, and so on). 

3.1 ArchiTRIO semantics (hints) 

From a semantic point of view, ArchiTRIO is founded on a higher-order temporal 
logic, Higher-Order TRIO (HOT for short [5]). The choice of a higher-order logic was 
dictated by the need to allow an easy representation of mechanisms such as the 
passing of parameters of complex types (to be precise, of parameters that can be 
ArchiTRIO/UML objects). 

In HOT terms, a class is a type. An object in HOT is an instance of a class, that is a 
value of a type. ArchiTRIO is based on the same concepts: an ArchiTRIO class is a 
HOT class, so it defines a type; an ArchiTRIO object is an instance of the class. 

An ArchiTRIO operation also corresponds to a HOT class. All operations share a 
core group of features (built-in items and behavior), which is modeled by a HOT class 
Operation. This class introduces the logic items modeling the relevant features of 
an operation invocation (e.g. the invoke, inv_rec and reply events presented 
above), and the axioms defining the behavior that is common to all invocations. 

A specific operation (e.g. incomingData) is also defined as a class. For 
example, a class incomingData defines the semantics for the corresponding 
operation. Class incomingData is a subtype of class Operation: in short, if a 
class S is a subtype of a class P then S inherits all the elements of P, and all axioms of 
P are still valid in S. Every instance i of class incomingData (i.e. every value of 
type incomingData) is an invocation of the corresponding operation. 

An ArchiTRIO interface is just a HOT class exporting operations. A class 
providing an interface, from a semantic point of view, is a subtype of that interface. 
An ArchiTRIO class requiring an interface I is a HOT generic (i.e. parametric) class 
with respect to a parameter of type I. A connection between a provided and a 
required interface (like the one between modules LC and RS of Figure 3, for example) 
corresponds, semantically, to a parameter instantiation (in the case of Figure 3, the 
parameter of type LocalControl of module RS is instantiated with object LC). 

Finally, since a port is a collection of provided and required interfaces (plus a set of 
axioms), an ArchiTRIO class that has a port of type P, which provides interfaces 
PI1...PIn and requires interfaces RI1...RIm, also provides and requires the same 
interfaces. In addition, a class that has a port P includes the axioms of P. 

4  Tool support 

Our experience of several decades with the TRIO language brought the construction 
of a long series of prototypical tools, every one with a different slight variant of the 
language, and different verification or editing capabilities. From this situation the 
decision of a couple of years ago, to build up an industrial-strength integrated tool for 
supporting our methodologies and languages. 
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TRIDENT (short for TRio Integrated Development EnvironmeNT) is a tool for the 
development and analysis of time-critical systems based on the TRIO formal 
language. TRIDENT is implemented on the Eclipse platform [3], and is currently 
being developed jointly by Politecnico di Milano and CEFRIEL. 

As typical with Eclipse-based tools, TRIDENT is plugin-based, so it is by itself an 
open and evolving product. The environment is still in a prototypical stage, so many 
of the intended features are still incomplete.  

Some of the most notable present features of the tool are the ability of editing 
complex TRIO specifications and histories (i.e. execution traces that may be used as 
test cases), and check their mutual compatibility.  

More recently, a plugin for supporting model-checking of TRIO specifications has 
been implemented [13]. This plugin, also called TRIO-PROMELA, is based on the 
well-known model-checker SPIN, and uses a novel translation technique based on 
alternating automata. We intend to use this very same technique for model-checking 
modular and mixed logic/operational specifications (e.g. having components written 
in some automata-based notation, say for example SDL), but this feature is not yet 
implemented. 

As far as ArchiTRIO is concerned, currently there is an advanced-stage 
prototypical plugin, which supports class and composite structure diagrams editing, 
and some of the basic ArchiTRIO characteristics. In addition, a prototype plugin 
capable of partially transforming XMI files into TRIDENT objects has been 
developed and should be available in the TRIDENT distribution in a short time. 

5  Related works and conclusions 

In this paper we presented a formal language, ArchiTRIO, suitable for describing 
system architectures. It combines a subset of the UML 2.0 graphical notation with a 
higher-order temporal logic, which allows users to precisely express both the 
structural (static) and the behavioral properties of the modeled system. ArchiTRIO is 
designed to let users draw models in a subset of the usual UML notation (to be 
precise, using class diagrams and the new composite structure diagrams) and then, if 
and when necessary, add precise details about the behavior of the target system using 
a temporal logic-based formalism. 

ArchiTRIO combines UML and formal languages to provide a powerful means to 
model system architecture and, as a consequence, is related to a number of works that 
have appeared in the literature in recent years. Let us briefly analyze how our work on 
ArchiTRIO differs from previous ones. 

[11] shows how UML pre-2.0, if taken by itself, lacks concepts that are necessary 
for modeling system architectures, and proceeds to introduce profiles for a pair of 
Architecture Description Languages (ADLs) to cover for these deficiencies. The 
approach of [11] presumes that users will then use these profiles, and the ADL-
specific concepts they define, to model architectures. The ArchiTRIO approach, 
instead, does not introduce any new graphical notation to UML 2.0: the user who does 
not need the full expressiveness of ArchiTRIO can still use the plain UML notation 
and ignore the underlying logic altogether; the user in need of rigor and precision, on 
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the other hand, can seamlessly introduce formal definitions of the behavior of the 
system in his/her model, without altering the original UML description. 

How to add formality to existing UML is a widely acknowledged problem. In this 
regard, a number of works in the literature have proposed an approach based on 
translating UML behavioral diagrams (especially statecharts and sequence diagrams) 
into an existing formalism (see, [8] or [10], and many others not listed here for the 
sake of brevity), or, alternatively, into an ad-hoc model [9]. With ArchiTRIO there is 
no translation into any other language; on the contrary, it is a formal language 
integrated into the UML 2.0 notation, which allows one to precisely describe both the 
structure and the behavior of a system, of its components and their interactions, with 
particular attention to their temporal constraints. 

Indeed, UML already has an associated logic language, the Object Constraint 
Language (OCL), for which temporal extensions have been proposed [4]. However, 
OCL, and RT-OCL in particular, is a language with limited scope, as its intended use 
is mostly for expressing constraints on behavioral diagrams such as statecharts. On 
the contrary, the ArchiTRIO approach is a comprehensive one, which aims at 
supporting the whole system specification and design process by modeling all aspects 
of a system architecture, both structural and behavioral. 

Finally, [7] presents an approach to the analysis of system architectures based on a 
subset of UML 2.0 concepts and a formal semantics for time-annotated statecharts. 
Again, with respect to this work, the scope of ArchiTRIO is wider, as it is intended 
for use in the whole system design phase, from modeling to verification. In fact, one 
could see the techniques presented in [7], and associated notations, as a target model, 
to be obtained through a suitable method from an ArchiTRIO design to perform 
subsequent verification. 

This work opens the way to a variety of future developments. First and foremost, 
we will complete the development of the tool sketched in Section 4, which we plan to 
release for free use by both academic and industrial communities. 

Secondly, we will investigate verification techniques (to be supported by the tool-
set mentioned above) to complement the modeling features presented in this paper. In 
this regard, the semantics of ArchiTRIO in terms of HOT suggests a fairly 
straightforward encoding of ArchiTRIO classes into the higher-order logic of a 
theorem prover such as PVS, along the lines already followed for the TRIO language 
[6]. Other approaches will also be explored, for example translating ArchiTRIO 
classes into automata-based formalisms (like, e.g., those used in [7]) to exploit model 
checking techniques. 

Finally, we plan on developing a method that allows one to move from the purely 
logic notation of ArchiTRIO to an operational formalism closer to implementation 
such as SDL [12] (as mentioned in Section 4, techniques to translate TRIO temporal 
operators into Promela communicating processes have already been explored in [13], 
and many concepts of Promela can also be found in SDL). This would open up the 
possibility of using existing tools (e.g. [18]) to perform automatic generation of code 
that complies with the properties and the behavior precisely defined by an ArchiTRIO 
model (and, in particular, by the axioms contained in its classes). 
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