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ABSTRACT
ArchiTRIO is a formal language, which complements UML
2.0 concepts with a formal, logic-based notation that al-
lows users to state system-wide properties, both static and
dynamic, including real-time constraints. This paper sum-
marizes the ArchiTRIO approach, and presents the core ele-
ments of a tool supporting it, called ArchiTRIDENT, which
is currently under development. This tool is a plugin of the
TRIO-based editing and verification TRIDENT tool suite.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifications—
Tools; D.2.2 [Software Engineering]: Design Tools and
Techniques—Object-oriented design methods; D.2.4 [Software

Engineering]: Software/Program Verification—Formal meth-

ods; D.2.11 [Software Engineering]: Software Architec-
tures—Languages
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1. INTRODUCTION
While the Unified Modeling Language (UML, [10]) has be-

come the de facto standard for software and system model-
ing in industrial practice, its applicability to critical systems,
where precise and rigorous designs are of the utmost impor-
tance, has been hampered by its lack of formality. This has
not changed with the release of the 2.0 version of the UML
specification [10]: UML 2.0 includes previously missing con-
structs (e.g., component, connector, port) that are necessary
for describing system architectures; however, it does not yet
address issues that are crucial in the development of critical
(e.g. real-time and embedded) systems, as it lacks a formal
semantics, and does not include a precise notion of time.
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ArchiTRIO [13, 12] is a language designed to instill for-
mality in a subset of the UML 2.0 notation [10]. The key
idea at the core of the development of ArchiTRIO is to com-

plement the UML notation of class and composite structure
diagrams [10] with a temporal logic-based notation. The
ArchiTRIO approach to system modeling falls essentially in
the category of lightweight formal methods [14]; more pre-
cisely, ArchiTRIO allows developers to use standard UML
2.0 notation to describe non-critical aspects of systems, but
it also offers a complementary formal notation, fully inte-
grated with the UML one, to represent the system aspects
that require precise modeling. In this approach, a user who
at first does not need full-blown ArchiTRIO can start by
drawing bare UML class diagrams, and only later, when the
need arises for clarity and precision (in particular for tem-
poral constraints), introduce ArchiTRIO-specific notation.

ArchiTRIO is based upon few selected UML 2.0 constructs
especially suited for describing architectures; it gives them
a formal meaning, and precisely defines their composition.
[13] presents the principles behind the language and suggests
guidelines for its application, while [12] deals with its formal
semantics. Both articles compare the ArchiTRIO approach
with existing ones, especially with the Object Constraint
Language (OCL, [9]), and highlight the differences and the
novelties of the former.

A tool for the creation and management of ArchiTRIO
models is currently being developed as part the TRio In-

tegrated Development EnvironmenT (TRIDENT), an open
environment based on the Eclipse platform [5]. The tool
is built around a core that includes a meta-model of Ar-
chiTRIO specifications; it is designed to be interfaced with
external UML 2.0-compliant tools, to allow for the import-
ing of existing bare UML diagrams and the dual exporting
of diagrams enriched with ArchiTRIO features.

This paper presents the state of the art of the ArchiTRIO
language and tool, and is structured as follows. Section 2
introduces a simple but significant example of real-time em-
bedded system from the automotive domain (a semi-automatic
gearbox controller). Section 3 presents the core of the tool
supporting the ArchiTRIO language, with particular focus
on the key design choices aimed at facilitating its interaction
with existing and future UML 2.0 tools. Finally, Section 4
draws the conclusions and outlines some future work in the
development of the tool.



2. THE ARCHITRIO APPROACH
In the ArchiTRIO approach to system modeling, the de-

signer starts by drawing a class diagram representing the
elements of the system. In addition, the precise internal
structure of every composite class is described through an
appropriate (UML 2.0) composite structure diagram. A par-
ticular composite element is the system itself, which is also
represented by a UML composite structure diagram. It is
at this point that the system designer can introduce Ar-
chiTRIO logic formulas, to describe constraints (especially
those on the temporal behavior of the system components)
or desired properties that must be enforced by the design.

Let us illustrate the ArchiTRIO approach through a sim-
ple, although feature-wise fairly complete example. The sys-
tem to be modeled is a semi-automatic gearbox for a sports
car in which there are six speeds (plus reverse and neutral),
and the user can decide to move one speed up/down with
respect to the current one (it is of course impossible to move
up from the sixth speed and down from the first one). The
system is semi-intelligent, in that it does not allow chang-
ing to the lower gear if the current revolutions-per-minute
(RPMs) are too high (which could damage the gearbox), nor
switching to reverse while the car is moving forward. One
requirement that the system must satisfy is that speeds are
changed only if the user elected to do so.

Figure 1 shows the part of the UML class diagram de-
picting the interfaces of the elements of the system. Inter-
face GearBoxControlsI contains the operations to change
the gears (one up, one down, put in neutral, put in re-
verse); interface GearBoxI exports an attribute representing
the current gear, interfaces RPMSensorI and SpeedSensorI

also export an attribute each, which keep track of the cur-
rent RPMs and speed of the car. In addition, there is a
port, SensorsInP, which requires both sensor interfaces, and
which is used to read data from the car sensors.

Figure 1: Interfaces of the gearbox components.

The interfaces and ports of Figure 1 are supported by
the classes shown in the fragment of UML class diagram of
Figure 2. The core of the system is the Controller, which
offers an interface to allow the user (through the Console) to

input the gear commands, and controls the gearbox through
interface GearBoxI. In addition, Controller can read data
from the car sensors SpeedSensor and RPMSensor through
port sens, as shown below.

Figure 2: System elements.

The precise structure of the system (represented by class
CarSystem) is described by the UML 2.0 composite struc-
ture diagram of Figure 3. Class CarSystem is composed of
an instance each of classes Console, Controller, GearBox,
SpeedSensor and RPMSensor. The interface GearControlsI

required by the csl component of type Console is provided
by the Controller object ctrl, which in turn uses inter-
face GearBoxI from component gbox. In addition, the two
interfaces SpeedSensorI and RPMSensorI required by port
sens of object ctrl are provided by components ss and rs,
respectively.

Figure 3: Composition of the car system.

After the structure of a class has been defined through a
composite structure diagram, ArchiTRIO-specific elements
[13, 12] may be added, if necessary. In particular, logic
formulas can be introduced in classes to formally describe
their dynamics (e.g. timing constraints), the assumptions
they make on the dynamics of the objects with which they



interact, and the properties they are required to satisfy. At
its core, ArchiTRIO is a higher-order temporal logic [12],
which offers various features to represent in formulas the
elements of a UML diagram, and a wide range of temporal
operators taken from the TRIO temporal logic [1].

Let us focus on class Controller of Figure 2, in partic-
ular on the mechanism through which the car shifts down
one gear. The first property that we would like to formalize
is an upper bound on the duration of the downshifting op-
eration: more precisely, that downshifting cannot take more
than T time units (with T a system-dependent constant). In
other words, we would like to state that no more than T

time units can elapse from the moment an invocation of op-
eration down of interface GearControlsI is received by the
controller until the invocation terminates. This is captured
by the ArchiTRIO axiom gear_up_ax1, which is added to
class Controller through a separated, specific compartment
as shown in Figure 4.

Figure 4: Fragment of the Controller class.

In axiom gear_up_ax1, inv_rec (resp. end) is a built-in
logic predicate that represents the instant in which the invo-
cation (d in this case) of an operation (down) is received by
an object (resp. terminates). Formula WithinF(d.end, T)

holds if and only if d.end occurs no more that T time units
after the current instant (which is left implicit, as in TRIO
[1]). Also, by definition, ArchiTRIO formulas are implicitly
temporally closed with the Alw (always) operator [1], that
is, they are true in every instant.

Notice that an operation can terminate in one of two ways:
either successfully (without errors), or unsuccessfully (in
which case an exception is raised). Predicate end represents
when the invocation of an operation terminates, indepen-
dently of its outcome.

Let us now analyze a second aspect of the downshifting
mechanism: if the user (through the Console object) re-
quests a downshift when the RPMs of the engine (as mod-
eled by attribute rpms of the RPM sensor) are over a certain
threshold W_TH, the request is rejected and an exception of

type GearException is raised, since a downshift would fur-
ther increase the RPMs, thus putting additional strain on
the engine. This is expressed by axiom gear_up_ax2 of Fig-
ure 4. Futr is a temporal operator similar to Dist, except
that it requires the time distance (t) to be positive, while
reply (resp. raise) is a built-in predicate that represents
the instant in which the invocation of an operation termi-
nates successfully (resp. with an exception). In addition,
reply(r) (resp. raise(gE)) is a shortcut for stating that
when the invocation ends, the returned value (resp. excep-
tion raised) is r (resp. gE). Finally, get_rpms is a built-in
operation that is automatically introduced in ArchiTRIO
when attribute rpms is defined, and returns the current value
of the attribute.

The axioms of the objects composing the system should
guarantee a number of properties of interest of the system.
These properties can be captured through ArchiTRIO the-

orems, i.e. formulas that should be formally provable from
the components’ axioms. For example, a global property
of the system of Figure 3 could be that a gear cannot be
changed to the upper one unless the user issues the ap-
propriate command. Such a property is expressed by the-
orem gear_up_CN of Figure 5. In this formula, invoke is
a built-in predicate that represents when the invocation of
an operation is issued by the client, while sg.inv_rec(g1)

is a shortcut for expressing that the invocation sg of op-
eration set_gear is received and has g1 as a parameter.
Also, UpToNow(gbox.gear.value = g1-1) is true if and only
if there is a past interval ending in the current instant, in
which the value of attribute gear was g1-1, while WithinP

is the past-time counterpart of the WithinF operator used
above.

Figure 5: Fragment of the CarSystem class.

All the ArchiTRIO elements presented in this Section have
been given a formal semantics, which can be used to carry
out formal analysis of the system architecture (e.g. a mathe-
matical proof of theorem gear_up_CN of Figure 5). However,
it is not the goal of this paper to present the formal seman-
tics of ArchiTRIO; the interested reader can refer to [12].

Let us conclude this section with a short note of com-
parison between ArchiTRIO and OCL [9] (the interested
reader can find further comments in [13] and [12]). While
there are some similarities between the two languages (Ar-
chiTRIO axioms are essentially constraints on the dynamics
of UML/ArchiTRIO classes, as Figures 4–5 could suggest),
they are very different in scope and expressive power. They



differ in expressive power, since OCL does not include a defi-
nition of time. They differ in scope, in that OCL constraints
express only operation pre/post-conditions and class invari-
ants, while ArchiTRIO formulas can express a wider range of
properties, such as complex interactions among system com-
ponents. In fact, none of the formulas of Figures 4–5 can be
expressed in OCL, and even if one took into account tempo-
ral extensions such as the one proposed in [4], still it would
be impossible to formalize properties such as gear_up_ax1

and gear_up_CN.

3. ARCHITRIDENT
The tool for the creation and management of ArchiTRIO

models is part of the TRIDENT tool suite. TRIDENT is
an environment for the development and analysis of time-
critical systems based on the TRIO formal language. It
is implemented on the Eclipse platform [5], and is being
developed jointly by Politecnico di Milano and CEFRIEL.

As typical with Eclipse-based tools, TRIDENT is plugin-
based, so it is by itself an open and evolving product. The
environment is still in a prototypical stage, so many of the
intended features are still incomplete. Figure 6 depicts both
the original TRIO-based tools (on the right side), and the
HOT-based tools (on the left side). HOT [6] stands for
Higher-Order TRIO, the extension of TRIO on top of which
ArchiTRIO is defined [12].

Figure 6: Overview of the TRIDENT environment.

Some of the most notable present features of the TRIO-
based tools are the ability of editing complex TRIO specifi-
cations and histories (i.e. execution traces that may be used
as test cases), and check their mutual compatibility. More
recently, a plugin for supporting model-checking of TRIO
specifications has been implemented [11].

As far as ArchiTRIO is concerned, currently there is an
advanced-stage prototypical plugin (called ArchiTRIDENT),
which is the focus of the present paper. This plugin is ideally
based upon three main layers: 1) a subset of UML 2.0 dia-
grams (at present class and composite structure diagrams);
2) the ArchiTRIO layer, which provides semantics to 1) and
possibly defines additional complex properties and behav-
iors; 3) the HOT layer, not yet implemented, which defines
the semantics of 2).

Following the spirit of Eclipse, ArchiTRIDENT is de-
signed for extensibility, so that the resulting tool is an in-
tegration of specialized components, working on a common
data model. The plugin is characterized by a high level
of modularity, easily supporting the evolution of the com-
ponents and the integration with external applications (in
particular UML 2.0-compliant editors and formal verifica-

tion tools).
In the rest of this section we present the structure of the

ArchiTRIDENT plugin and the elements of which it con-
sists. First, we give an overview of the tool; then, we intro-
duce the metamodel on which ArchiTRIDENT is founded,
and the modules managing it; finally, we discuss the visual
tools facilitating model creation and modification.

3.1 Architecture
The ArchiTRIDENT plugin is structured as a set of com-

ponents, each of which is used to support a particular phase
of the modeling process and management activities on spec-
ifications.

Figure 7: The components of the ArchiTRIDENT

plugin.

The modules that are part of the ArchiTRIDENT plu-
gin are sketched in Figure 7. At the core of the tool is a
manager of ArchiTRIO models, which are serialized in the
ArchiTRIO interchange format. The model manager sup-
ports the creation and modification of models and interacts
with other components providing editing, viewing and model
validation capabilities. In addition, the plugin is designed
to include adapters for the integration with external ver-
ification tools and with UML 2.0-compatible applications.
In particular, the ArchiTRIDENT plugin can be expanded
with an array of adapters for the import/export of UML
diagrams from/to external UML editors.

3.2 Metamodel
ArchiTRIDENT is conceptually built around the ArchiTRIO

metamodel. Since ArchiTRIO shares concepts with UML
2.0 [12], its metamodel is essentially an extension of a sub-
set of the UML one, in which ArchiTRIO-specific elements
(such as axioms, theorems, etc.) are introduced.

The ArchiTRIO metamodel is defined through an XML
Schema [3], to facilitate future integrations with external
UML 2.0 tools through XMI-based adapters. This choice
appears quite convenient, for both XML Schema provides
support for model validation through the definition of the
constraints a model must meet, and a number of tools are



available off-the-shelf to carry out the validation task.
As mentioned above, one of the advantages of having an

XML-based interchange format is that it allows for better in-
tegration with XMI-supporting external tools. An extended
XMI format can be easily defined adding ArchiTRIO-specific
tags to existing XMI [8] documents (while keeping the rest
of the structure of the documents intact), much like we do to
ordinary UML classes descriptions (as in Figure 4). These
enriched XMI descriptions may be managed by both pure
UML tools, and ArchiTRIO-enabled tools (with only the lat-
ter taking into account all the tags). Because of the similari-
ties in content and structure of the two formats, ArchiTRIO
serialized models can be easily translated into extended XMI
documents and vice-versa. A pre-requisite of this vision is
the existence of an XMI standard widely supported by UML
tools. Unfortunately, such is not the case at present, and the
UML tools that support (often only partially) the 2.0 ver-
sion of the language do not export in standard XMI format,
but, rather, in proprietary, often incomplete variations. We
plan to develop adapters for interaction and diagram im-
port/export with tools that export in a standard, fully UML
2.0-compatible XMI format when these will be available.

The core Java classes representing the elements of the
metamodel in the ArchiTRIDENT plugin are automatically
generated from the Schema describing the ArchiTRIO meta-
model, through a template-based code-generation approach.
The code generation tool (XMLSpy by Altova [7]) automat-
ically produces the code for parsing/unparsing the serialized
models accordingly to the structure defined by the Schema
and the custom code defined by the Java source code tem-
plates written in SPL (Spy Programming Language [7]). A
Java class has been defined for each element of the meta-
model. Each class provides methods to access the properties
of an element instance.

Parsing the XMI serialized model generates a Document
Object Model (DOM, [2]) tree that can be directly mapped
to the XML document, and a hierarchical structure storing
the elements of the model represented as Java objects, where
every object corresponds to a node of the tree.

Figure 8: ArchiTRIO model structure.

Then, an ArchiTRIO model is essentially composed of the
three levels shown in Figure 8. The XML document is at
the first level; a representation of the DOM tree correspond-
ing to the previously introduced XML document is at the
second level; finally, the third level consists of a hierarchi-
cal structure of instances of Java classes representing the
elements of the ArchiTRIO model.

ArchiTRIDENT provides features (parsers and inspec-
tors), to check the consistency of a model (an important

activity often overlooked in commercial UML tools). The
validation process is composed of two main phases. During
the first one a parser verifies that the serialized ArchiTRIO
XML model is well formed and valid against the ArchiTRIO
metamodel XML Schema. In this way structural errors and
some constraint violations can be found. During the second
phase of the validation process, dedicated inspectors check
the well-formedness of the various elements defined in the
model, such as ArchiTRIO formulas. A different checker is
possibly defined for each kind of element of the metamodel.

3.3 Visual tools
The plugin provides multi-page editors and wizards to al-

low users to create and manipulate models and browse their
different parts. For example, Figure 9 shows part of the
Controller class of the car system presented in Figures 1–5.

Visual editors offer three different views on the elements
of the model. The first one gives a schematic representa-
tion of the element structure, while the other two show a
detailed textual serialization of the current element in Ar-
chiTRIO XML interchange format and in ArchiTRIO source
code format [13], respectively.

ArchiTRIDENT offers a set of wizards, which add cre-
ation functionalities to the multi-page editors. For example,
Figure 9 shows the use of a wizard for the creation of axiom
gear_up_ax1 of class Controller.

ArchiTRIDENT’s visual tools (such as the wizards) inter-
act with core module to ensure the consistence of the model
under construction.

4. DEVELOPMENT STATUS AND FUTURE
WORKS

The ArchiTRIDENT plugin supports the ArchiTRIO mod-
eling process, from the creation of the interfaces/classes to
the introduction of the axioms describing the objects’ behav-
ior. The development has focused so far on the definition of
the structure of the plugin and of the extension mechanisms
for the integration of external tools.

While the core of ArchiTRIDENT has reached a good
level of stability, parts of the tool have yet to be completed,
in particular the model validation modules.

At present, ArchiTRIDENT lacks a graphical editor, one
that would allow designers to create the diagrams of Fig-
ures 1–3. Such an editor, though, would be unnecessary
if reliable (commercial or otherwise) UML tools fully com-
pliant with the 2.0 standard (and capable of exporting in
a fully-standard XMI format) were available. In fact, we
plan to develop adapters for communication with such tools
through XMI files when these will be available. We envision
a scenario in which a designer uses a UML 2.0 tool to define
the structural aspects of a model (i.e. Figures 1–3), and
then passes to the ArchiTRIDENT plugin to add dynamic
constraints and to check the model’s validity (Figures 4–5).

Finally, we plan to validate our approach by applying it
to industrial-strength case studies from two classes of sys-
tems: embedded systems (with particular reference to the
automotive domain) and Flexible Manufacturing Systems.
In both cases, the target users will be system engineers fa-
miliar with the UML notation, but with little or no experi-
ence in the use of formal methods: we will work with them
to create fully formal ArchiTRIO models from their initial,
semi-formal UML diagrams.



Figure 9: ArchiTRIDENT view of class Controller of Figure 4.
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