
A User’s Guide to Zot

Matteo Pradella

CNR IEIIT, Milano, Italy
pradella@elet.polimi.it

http://home.dei.polimi.it/pradella/

May 2009

CONTENTS i

Contents

1 Overview 1

2 Installation 2

3 Languages 3
3.1 PLTL . 3
3.2 TRIO . 3
3.3 Operational constructs . 4
3.4 MTL . 6
3.5 Timed Automata . 6

4 Usage 8
4.1 SAT-solvers . 8
4.2 Model Checking . 8
4.3 Completeness . 10
4.4 Satisfiability Checking . 11
4.5 Temporary data . 13

5 Architecture 14
5.1 PLTL-to-SAT encodings . 14
5.2 Main Interface . 15
5.3 Other modules and plug-ins 16

1 OVERVIEW 1

1 Overview

Zot is an agile and easily extendible bounded model checker, which can be
downloaded at http://home.dei.polimi.it/pradella/.

The tool supports different logic languages through a multi-layered ap-
proach: its core uses PLTL, and on top of it a decidable predicative fragment
of TRIO [8] is defined. An interesting feature of Zot is its ability to support
different encodings of temporal logic as SAT problems by means of plug-
ins. This approach encourages experimentation, as plug-ins are expected to
be quite simple, compact (usually around 500 lines of code), easily modifi-
able, and extendible. At the moment, a variant of the eventuality encoding
presented in [2] is supported, (approximated) dense-time MTL [5], and a
bi-infinite encoding [11], [12].

Zot offers three basic usage modalities:

1. Bounded satisfiability checking (BSC): given as input a specification
formula, the tool returns a (possibly empty) history (i.e., an execution
trace of the specified system) which satisfies the specification. An
empty history means that it is impossible to satisfy the specification.

2. Bounded model checking (BMC): given as input an operational model
of the system, the tool returns a (possibly empty) history (i.e., an
execution trace of the specified system) which satisfies it.

3. History checking and completion (HCC): The input file can also con-
tain a partial (or complete) history H. In this case, if H complies with
the specification, then a completed version of H is returned as output,
otherwise the output is empty.

The provided output histories have temporal length ≤ k, the bound
given by the user, but may represent infinite behaviors thanks to the loop
selector variables, marking the start of the periodic sections of the history.
The BSC/BMC modalities can be used to check if a property prop of the
given specification spec holds over every periodic behavior with period ≤ k.
In this case, the input file contains spec ∧ ¬prop, and, if prop indeed holds,
then the output history is empty. If this is not the case, the output history
is a counterexample, explaining why prop does not hold.

2 INSTALLATION 2

2 Installation

Zot’s core is written in Common Lisp (with ASDF packaging http://www.-
cliki.net/asdf). It can be used under Linux, Windows, or MacOS X, but
has been tested only under Linux and Windows XP, using the following
Common Lisps1:

• SBCL (http://www.sbcl.org),

• CLISP (http://clisp.cons.org),

• CMUCL (http://www.cons.org/cmucl/),

• ABCL (http://common-lisp.net/project/armedbear/),

• Clozure CL (http://www.clozure.com/clozurecl.html),

This approach makes Zot an open system, as it uses Common Lisp also as
internal scripting language of the tool, both to define complex verification
activities, and to add new constructs and languages on top of the existing
ones.

Typically, to install Zot in a Debian system (or Ubuntu), the user must
install a Common Lisp (e.g. one of the packages clisp, sbcl, cmucl,
. . .), and the common-lisp-controller package. To perform a system-
wide install of the Zot packages, just put symbolic links to its .ads files in
the /usr/share/common-lisp/systems/ directory. Note that it is possible to
avoid a system-wide installation, but in this case the user has to work inside
the main Zot directory.

Zot works with external SAT-solvers. The supported SAT-solvers are
MiniSat (default) [3], MiraXT [9], PicoSAT [1], and zChaff [10]. Zot as-
sumes that executable files called minisat, MiraXTSimp (optional), picosat
(optional), zchaff (optional), are system-wide installed.

A pre-packaged all-inclusive version for Windows (WinZot, based on
Cygwin-compiled binaries and SBCL) is available from the author.

All Zot’s components are available as open source software (GPL v2).

1SBCL and CMUCL are usually the fastest implementations, for running Zot.

3 LANGUAGES 3

3 Languages

Being an open system, Zot supports different languages. At present, the
main native language is PLTL (linear temporal logic with future and past
operators). The other main layer based on PLTL is the metric temporal
logic TRIO.

Zot scripts are written in Common Lisp, so a basic knowledge of the
language is required. It is very easy to find online a lot of tutorials and
short presentations2.

3.1 PLTL

Propositional operators are written as: && (and), || (or), !! (not).

Predicates and propositional letters e.g., proposition Q is written (-P-
Q); predicate Pred(1,2) is written as (-P- Pred 1 2).

Quantifications ∃t ∈ {One, Two} : Formula(t) is written
(-E- t ’(One Two) Formula(t)). -A- is the universal quantifier.

Term comparisons and conditions are available through Common Lisp
(e.g. eql, equal, <, <=, and, or, not, . . .)

Temporal operators The following temporal operators are supported:
until, since, release, trigger, next, yesterday, zeta. The last one
is the dual of yesterday, and is used only in the mono-infinite semantics.

For the semantics of these operators, see e.g. [2] (which describes the
implementation of the mono-infinite encoding in details).

3.2 TRIO

Zot was originally born as a satisfiability checker for the TRIO metric tem-
poral logic [8].

The list of supported operators (and their correct “Zot spelling”) is the
following:

dist
futr
past
lasts lasts_ee lasts_ie lasts_ei lasts_ii
lasted lasted_ee lasted_ie lasted_ei lasted_ii
withinf withinf_ee withinf_ie withinf_ei withinf_ii
withinp withinp_ee withinp_ie withinp_ei withinp_ii
lasttime lasttime_ee lasttime_ie lasttime_ei lasttime_ii

2e.g. http://gigamonkeys.com/book/ is a good and freely available text.

3 LANGUAGES 4

nexttime nexttime_ee nexttime_ie nexttime_ei nexttime_ii
somf somf_e somf_i som
somp somp_e somp_i
alwf alwf_e alwf_i alw
alwp alwp_e alwp_i
until until_ie until_ee until_ii until_ei
since since_ie since_ee since_ii since_ei

Bounded version of since and until are written as:

(until_ie_<=_<= t1 t2 A B)
B will be true at t instants in the future with t1<=t<=t2
(until_ie_>= t1 A B)
B will be true at t instants in the future with t>=t1
since_ie_<=_<=
since_ie_>=

Caveat emptor! The default until is PLTL’s (which is usually called
until_ie in TRIO). For example, the following model satisfies (until A B)
at 0:

0 B

AAAAAAAAAAAAAAAAAAAAA

B may appear at 0.

For MTL users:

1. ♦=tA (or �=tA)) is written (futr (-P- A) t);

2. �≤tA is written (lasts (-P- A) t);

3. ♦≤tA is written (withinf (-P- A) t);

4. �=tA (or �=tA)) is written (past (-P- A) t);

5. �≤tA is written (lasted (-P- A) t);

6. �≤tA is written (withinp (-P- A) t);

with t > 0.

3.3 Operational constructs

Zot offers some simple facilities to describe operational systems.

(define-item <varname> <domain>)

3 LANGUAGES 5

is used to define variables à la Von Neumann over finite domains (e.g. coun-
ters).

(define-array <varname> <index-domain> <domain>)

is used to define mono-dimensional arrays.

Example usage:

(define-item cont (loop for i from 0 to 9 collect i))
(define-array arr (loop for i from 0 to 9 collect i)

’(on off unknown))

In the spec, the user can e.g. write (cont= 6); (arr= 6 ’off).
Caveat: both define-item and define-array have side effects. It is there-

fore wrong to “define-items” after a zot main procedure call, since successive
calls may work with spurious constraints. It is therefore recommended to
perform (clean-up) before defining items or arrays.

Typically, to define an operational model means to constraint operational
variables and arrays. This can be done either by using simple next-time
formulae, i.e. containing only the next temporal operator, or by using the
two dual constructs and-case and or-case [13].

To give the reader an idea of their semantics, here is an automatic trans-
lation made by Zot on two simple examples.

(and-case (x ’(1 2) y ’(3 4))
((-P- P x) (-P- Q x))
((-P- R y) (-P- R1 y))
(else (-P- R2 x)))

expands to

(-A- X ’(1 2)
(-A- Y ’(3 4)
(&& (-> (-P- R Y) (-P- R1 Y)) (-> (-P- P X) (-P- Q X))
(-> (&& (!! (-P- R Y)) (!! (-P- P X))) (-P- R2 X)))))

and

(or-case (x ’(1 2) y ’(3 4))
((-P- P x) (-P- Q x))
((-P- R y) (-P- R1 y))
(else (-P- R2 x)))

expands to

(-E- X ’(1 2)
(-E- Y ’(3 4)
(|| (&& (-P- R Y) (-P- R1 Y)) (&& (-P- P X) (-P- Q X))
(&& (!! (-P- R Y)) (!! (-P- P X)) (-P- R2 X)))))

3 LANGUAGES 6

3.4 MTL

There is an experimental plug-in (called ap-zot for using a variant of dense-
time MTL through approximation (see [5], and [4]).

Here is a list of the time operator defined in ap-zot.

until-b until-b-v until-b-^
since-b since-b-v since-b-^
release-b release-b-^ release-b-v
trigger-b trigger-b-^ trigger-b-v

until-b-inf until-b-v-inf until-b-^-inf
since-b-inf since-b-v-inf since-b-^-inf
release-b-inf release-b-^-inf release-b-v-inf
trigger-b-inf trigger-b-^-inf trigger-b-v-inf

diamond diamond-inf
diamond-p diamond-inf-p
box box-inf
box-p box-inf-p

The plug-in offers the following operations

normalize
basicize
compute-granularity
over-approximation
under-approximation
nth-divisor

To compute over- and under-approximations, an axiom must be prepared
through the two functions basicize and normalize
(e.g. with (setf ax1 (normalize (basicize ax1)))).

The two functions over-approximation and under-approximation are used
to compute the approximated formulae, while compute-granularity is used
to set the ρ parameter (see [5] for details).

The interested reader may find a complete example in coffee.lisp.

3.5 Timed Automata

Timed Automata (TA) are supported through a very experimental plug-in
called ta-zot (see [6], [7]), which is based on the approximations offered by
ap-zot.

First, here is a list of the added operators, and approximations proce-
dures:

3 LANGUAGES 7

white-tri
white-tri/3
black-tri
black-tri/3

timed-automaton-under-formula
timed-automaton-over-formula

timed-automata-under-formula
timed-automata-over-formula

Here is the main data structure used to represent TA’s, together with
its interface:

(defstruct timed-automaton
alphabet
states
initial-states
clocks)

(defgeneric add-trans (autom from to lamb constr))
(defgeneric add-label (autom state list-of-symbols))
(defgeneric alpha (autom state))
(defgeneric get-trans-from-states (autom from to))
(defgeneric all-connected-pairs (autom))
(defgeneric all-unconnected-pairs (autom))
(defgeneric get-all-trans (autom))
(defgeneric get-trans-from-clock-reset (autom clock))

The interested reader may find a complete example in

trans_prot.lisp.

4 USAGE 8

4 Usage

4.1 SAT-solvers

The supported SAT-solvers are MiniSat [3] (which is used by default), Mi-
raXT [9], and zChaff [10].

To use the zChaff SAT-solver, the user has to set the *zot-solver* pa-
rameter. For example:

(setq sat-interface:*zot-solver* :zchaff)

MiraXT is a multi-threaded solver, so to use it we also have to choose
the maximum number of threads that it will use:

(setf sat-interface:*zot-solver* :miraxt)
(setf sat-interface:*n-threads* 3)

4.2 Model Checking

To perform Bounded Model Checking, the user must provide the model
through as argument :transitions. Important: every variable used must be
declared implicitly by e.g. an initialization formula as the second argument
of Zot.

Here is a simple example: mutex3 (a simple mutual exclusion protocol
with three processes).

The first part is used to load the mono-infinite plug-in, and defines the
used variables. The first line loads the mono-infinite plug-in, called eezot.
(bezot is the bi-infinite one.)

(asdf:operate ’asdf:load-op ’eezot)
(use-package :trio-utils)

(defvar state-d ’(N T C))
(defvar turn-d ’(1 2 3))

(define-array state turn-d state-d)
(define-item turn turn-d)

(defconstant decl ; optional declarations, just for checking usage
(append
(loop for x in state-d append

(loop for y in turn-d collect (state= y x)))
(loop for x in turn-d collect (turn= x))))

Then, we define the system initialization and transitions:

4 USAGE 9

(defvar init ; system initialization (at 0)
(&& (-A- x turn-d (state= x ’N))

(turn= 1)))

(defvar trans ; list of model constraints
(list
(-A- p turn-d

(or-case (x state-d)
((state= p ’N)
(next (state= p ’T)))

((&& (state= p ’T)
(|| (-A- p1 turn-d (-> (not (equal p p1))

(state= p1 ’N)))
(turn= p)))

(next (state= p ’C)))

((state= p ’C)
(next (state= p ’N)))

(else
(&& (state= p x)

(next (state= p x))))))

(or-case (x turn-d) ; -- schedule --

((&& (state= 1 ’N) (state= 2 ’T) (state= 3 ’N))
(next (turn= 2)))
((&& (state= 1 ’T) (state= 1 ’N) (state= 3 ’N))
(next (turn= 1)))
((&& (state= 1 ’N) (state= 1 ’N) (state= 3 ’T))
(next (turn= 3)))

; --- random choice policy ---
((&& (state= 1 ’T)(state= 2 ’T))
(next (|| (turn= 1)(turn= 2))))
((&& (state= 1 ’T)(state= 3 ’T))
(next (|| (turn= 1)(turn= 3))))
((&& (state= 2 ’T)(state= 3 ’T))
(next (|| (turn= 2)(turn= 3))))

(else
(&& (turn= x) (next (turn= x)))))))

4 USAGE 10

As the reader may see, the transitions are defined as a list of constraints,
which must hold on every instant of the time domain.

We then write a simple property we wish to check on the system:

(defvar spec
(alw
(&&

(-> (turn= 1) (somf (|| (turn= 2)(turn= 3))))
(-> (turn= 2) (somf (|| (turn= 1)(turn= 3))))
(-> (turn= 3) (somf (|| (turn= 1)(turn= 2)))))))

The main procedure is called zot, and has two arguments: the time
bound and the formula to be satisfied (plus some optional switches, e.g.
:transitions, :declarations, :loop-free).

To check if spec-0 holds for a time bound of 30, we perform:

(eezot:zot 30 ; time bound
(&& (yesterday init) ; initialization (init must hold at 0)

(!! spec)) ; (negated) property
:transitions trans ; list of model constraints
:declarations decl ; (optional) declarations
)

UNSAT means that the desired property holds. If the output is SAT, then
spec does not hold and Zot returns a counter-example.

4.3 Completeness

A switch of the zot procedure (:loop-free, nil by default) is used to check
completeness. In the previous example, we can check completeness by per-
forming:

(eezot:zot 30 ; time bound
(yesterday init) ; initialization (init must hold at 0)
:transitions trans ; list of model constraints
:declarations decl ; (optional) declarations
:loop-free t ; check completeness
)

UNSAT means that the completeness bound is reached.

The zot procedure returns t if the spec is satisfiable, nil otherwise. So,
it is possible to write a loop to actually find the completeness bound, e.g.:

4 USAGE 11

(format t "Found: ~s~%"
(loop for bound from 2 unless

(eezot:zot bound
(yesterday init)
:transitions trans
:declarations decl
:loop-free t
)

return bound))

4.4 Satisfiability Checking

Let us now consider a simple example to show how satisfiability checking
can be performed with Zot.

The first line loads the bi-inifinite plug-in.

(asdf:operate ’asdf:load-op ’bezot)
(use-package :trio-utils)

We then define the timed lamp spec:

(defconstant delta 5)

; Alphabet
; on: the "on" button is pressed
; off: the "off" button is pressed
; L: the light is on

(defconstant init
(&& (!! (|| (-P- on)(-P- off)(-P- L)))))

(defconstant the-lamp
(alw (&&

(<->
(-P- L)
(|| (yesterday (-P- on))

(-E- x (loop for i from 2 to delta collect i)
(&& (past (-P- on) x)

(!! (withinP_ee (-P- off) x))))))
(!! (&& (-P- on) (-P- off))))))

To obtain a history compatible with the spec, we perform:

(bezot:zot 10
(&& init the-lamp))

4 USAGE 12

This is an example history generated by Zot, where **LOOP**, and
POOL are the loop selector variables (**POOL** towards the past,
LOOP towards the future):

------ time 0 ------

------ time 1 ------
LOOP
ON

------ time 2 ------
ON
L

------ time 3 ------
ON
L

------ time 4 ------
OFF
L

------ time 5 ------
OFF

------ time 6 ------
OFF

------ time 7 ------
OFF

------ time 8 ------
OFF

------ time 9 ------
POOL
OFF

------ time 10 ------

------ end ------

4 USAGE 13

4.5 Temporary data

Zot uses four files to save temporary data during the verification activity:

1) output.cnf.txt
2) output.sat.txt
3) output.hist.txt

(1) contains the resulting boolean formula of the system (in the stan-
dard DIMACS CNF format); (2) is the output of the SAT-solver; (3) is the
resulting trace of the system (e.g. a TRIO history).

5 ARCHITECTURE 14

5 Architecture

Zot’s architecture is based on a PLTL-to-SAT core, which interacts with
the “outside world” through a TRIO-based interface and different plug-ins.
The core itself is structured as a plug-in, so that different encodings can be
defined and used.

More recently (May 2009), we added two plugins to Zot, natively sup-
porting metric operators (like lasts, withinf). These native metric plugins
are called meezot (mono-infinite), and mbezot. Their usage is exactly the
same as eezot and bezot.

5.1 PLTL-to-SAT encodings

As said before, Zot’s core is based on encoding PLTL into SAT. At present
two main encodings are available in the standard distribution: eezot, which
is a standard eventuality-based encoding on a mono-infinite time domain
(N, see e.g. [2]), and the bi-infinite one, bezot [11] on Z.

The two encodings are packaged (as asdf systems) in the following files:

eezot.lisp eezot.asd
bezot.lisp bezot.asd

The file kripke.lisp contains the basic data structure and the definition
of the generics.3

(defclass kripke ()
(; time bound i.e. [0..k]
(the-k :accessor kripke-k)

; number of used prop. variables
(numvar :accessor kripke-numvar)

; formula -> integer data structure (hash-table)
(the-list :accessor kripke-list)

; integer -> formula data structure (hash-table)
(the-back :accessor kripke-back)

; list of propositional letters
(sf-prop :accessor kripke-prop)

; list of used boolean subformulae
(sf-bool :accessor kripke-bool)

3kripke does not actually contain a Kripke structure - names of data structures and
generics come from previous, forsaken incarnations of the tool-set.

5 ARCHITECTURE 15

; list of used future-tense subf.
(sf-futr :accessor kripke-futr)

; list of used past-tense subf.
(sf-past :accessor kripke-past)

; n. of props used in the encoding
(max-prop :accessor kripke-maximum)

; resulting SAT formula
(the-formula :accessor kripke-formula)))

There is also an old variant of eezot, called ezot, which supports virtual
unrollings (as presented in [2], usually called δ), so its data structure is
extended through inheritance. The user may change the default behavior
(i.e. δ = 0), by setting ezot:*FIXED-DELTA* to nil, which tells eezot to
actually compute δ, or (s)he may change to set it to a fixed meaningful
value.

The call generic translates a formula/proposition and a time instant into
an integer (the SAT-solver proposition); self must be an instance of kripke
(or of a subclass).

(defgeneric call (self obj the-time &rest other-stuff))

The back-call generic is used to translate an integer in [0..k] into the cor-
responding subformula; self must be an instance of kripke (or of a subclass).

(defgeneric back-call (self x))
(defgeneric back-call-time (self x))

5.2 Main Interface

There are two interfaces:

sat-interface.lisp

the first one is with the SAT-solver, and it is used to send the output of the
PLTL encoding to it; then, to parse its output and get a counter-example,
if any.

The other one,

trio-utils.lisp

is the basic interface with the user, and is based on TRIO (see Section 3.2)
augmented with the operational constructs covered in Section 3.3.

5 ARCHITECTURE 16

5.3 Other modules and plug-ins

At present just ap-zot and ta-zot are available. Please refer to Sections 3.4,
3.5, and the related papers.

The two plug-ins are implemented and packaged (as asdf systems) in

ap-zot.lisp ap-zot.asd
ta-zot.lisp ta-zot.asd

ta-zot is based on ap-zot, which uses TRIO as underlying language (through
the trio-utils interface).

Acknowledgments

I thank the following people: Stefano Riboni for his work on the CNF trans-
lator; Davide Casiraghi for the metric plugins (meezot and mbezot).

REFERENCES 17

References

[1] A. Biere. PicoSAT essentials. Journal on Satisfiability, Boolean Mod-
eling and Computation (JSAT), 4:75–97, 2008.

[2] A. Biere, K. Heljanko, T. Junttila, T. Latvala, and V. Schuppan. Lin-
ear encodings of bounded LTL model checking. Logical Methods in
Computer Science, 2(5):1–64, 2006.

[3] N. Eén and N. Sörensson. An extensible SAT-solver. In SAT Confer-
ence, volume 2919 of LNCS, pages 502–518. Springer-Verlag, 2003.

[4] C. A. Furia, M. Pradella, and M. Rossi. Dense-time MTL verifica-
tion through sampling. Technical Report 2007.37, DEI, Politecnico di
Milano, April 2007.

[5] C. A. Furia, M. Pradella, and M. Rossi. Dense-time MTL verification
through sampling. In Proceedings of FM’08, volume 5014 of LNCS,
2008.

[6] C. A. Furia, M. Pradella, and M. Rossi. Practical automated par-
tial verification of multi-paradigm real-time models. Technical Report
arXiv.org 804.4383, April 2008.

[7] C. A. Furia, M. Pradella, and M. Rossi. Practical automated partial
verification of multi-paradigm real-time models. In 10th International
Conference on Formal Engineering Methods (ICFEM), October 2008.

[8] C. Ghezzi, D. Mandrioli, and A. Morzenti. TRIO: A logic language for
executable specifications of real-time systems. Journal of Systems and
Software, 12(2):107–123, 1990.

[9] M. Lewis, T. Schubert, and B. Becker. Multithreaded SAT solving. In
12th Asia and South Pacific Design Automation Conference, 2007.

[10] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik.
Chaff: engineering an efficient SAT solver. In DAC ’01: Proceedings of
the 38th Conf. on Design automation, pages 530–535, New York, NY,
USA, 2001. ACM Press.

[11] M. Pradella, A. Morzenti, and P. San Pietro. The symmetry of the
past and of the future: Bi-infinite time in the verification of temporal
properties. In Proc. of The 6th joint meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering ESEC/FSE, Dubrovnik, Croatia,
September 2007.

REFERENCES 18

[12] M. Pradella, A. Morzenti, and P. San Pietro. Benchmarking model-
and satisfiability-checking on bi-infinite time. In 5th International Col-
loquium on Theoretical Aspects of Computing (ICTAC 2008), Istanbul,
Turkey, September 2008.

[13] M. Pradella, A. Morzenti, and P. San Pietro. Refining real-time sys-
tem specifications through bounded model- and satisfiability-checking.
In 23rd IEEE/ACM International Conference on Automated Software
Engineering (ASE 2008), L’Aquila, Italy, September 2008.

