
Principles of Programming Languages, 2020.02.07
Important notes
- Total available time: 2h.
- You may use any written material you need, and write in Italian, if you prefer.
- You cannot use electronic devices during the exam: every phone must be turned off and kept on your table.
- You cannot use library functions not covered in class in your code.

Exercise 1, Scheme (11 pts)

Implement this new construct: (each-until var in list until pred : body), where keywords are written in
boldface. It works like a for-each with variable var, but it can end before finishing all the elements of list
when the predicate pred on var becomes true.

E.g.

(each-until x in '(1 2 3 4)

 until (> x 3) :

 (display (* x 3))

 (display " "))

shows on the screen: 3 6 9

Exercise 2, Haskell (11 pts)

Consider a data type PriceList that represents a list of items, where each item is associated with a price,
of type Float:

data PriceList a = PriceList [(a, Float)]

1) Make PriceList an instance of Functor and Foldable.

2) Make PriceList an instance of Applicative, with the constraint that each application of a function in the
left hand side of a <*> must increment a right hand side value’s price by the price associated with the
function.

E.g. PriceList [(("nice "++), 0.5), (("good "++), 0.4)] <*>

PriceList [("pen", 4.5), ("pencil", 2.8), ("rubber", 0.8)]

is

PriceList [("nice pen",5.0),("nice pencil",3.3),("nice rubber",1.3),("good pen",4.9),

("good pencil",3.2),("good rubber",1.2)]

Exercise 3, Erlang (11 pts)

We want to create a simplified implementation of the “Reduce” part of the MapReduce paradigm. To this
end, define a process “reduce_manager” that keeps track of a pool of reducers. When it is created, it
stores a user-defined associative binary function ReduceF. It receives messages of the form {reduce,
Key, Value}, and forwards them to a different “reducer” process for each key, which is created lazily
(i.e. only when needed). Each reducer serves requests for a unique key.
Reducers keep into an accumulator variable the result of the application of ReduceF to the values they
receive. When they receive a new value, they apply ReduceF to the accumulator and the new value,
updating the former. When the reduce_manager receives the message print_results, it makes all its
reducers print their key and incremental result.

(see back)

For example, the following code (where the meaning of string:split should be clear from the context):
word_count(Text) ->
 RMPid = start_reduce_mgr(fun (X, Y) -> X + Y end),
 lists:foreach(fun (Word) -> RMPid ! {reduce, Word, 1} end, string:split(Text, " ", all)),
 RMPid ! print_results,
 ok.

causes the following print:
1> mapreduce:word_count("sopra la panca la capra campa sotto la panca la capra crepa").
sopra: 1
la: 4
panca: 2
capra: 2
campa: 1
sotto: 1
crepa: 1
ok

Solutions
Es 1
(define-syntax each-until
 (syntax-rules (in until :)
 ((_ x in L until pred : body ...)
 (let loop ((xs L))
 (unless (null? xs)
 (let ((x (car xs)))
 (unless pred
 (begin
 body ...
 (loop (cdr xs))))))))))
Es 2
pmap :: (a -> b) -> Float -> PriceList a -> PriceList b
pmap f v (PriceList prices) = PriceList $ fmap (\x -> let (a, p) = x
 in (f a, p+v)) prices
instance Functor PriceList where
 fmap f prices = pmap f 0.0 prices

instance Foldable PriceList where
 foldr f i (PriceList prices) = foldr (\x y -> let (a, p) = x
 in f a y) i prices

(PriceList x) +.+ (PriceList y) = PriceList $ x ++ y

plconcat x = foldr (+.+) (PriceList []) x

instance Applicative PriceList where
 pure x = PriceList [(x, 0.0)]
 (PriceList fs) <*> xs = plconcat (fmap (\ff -> let (f, v) = ff
 in pmap f v xs) fs)

Es 3
start_reduce_mgr(ReduceF) ->
 spawn(?MODULE, reduce_mgr, [ReduceF, #{}]).

reduce_mgr(ReduceF, Reducers) ->
 receive

print_results ->
 lists:foreach(fun ({_, RPid}) -> RPid ! print_results end, maps:to_list(Reducers));
{reduce, Key, Value} ->
 case Reducers of

#{Key := RPid} ->
 RPid ! {Key, Value},
 reduce_mgr(ReduceF, Reducers);
_ ->
 NewReducer = spawn(?MODULE, reducer, [ReduceF, Key, Value]),
 reduce_mgr(ReduceF, Reducers#{Key => NewReducer})

 end
 end.

reducer(ReduceF, Key, Result) ->
 receive

print_results ->
 io:format("~s: ~w~n", [Key, Result]);
{Key, Value} ->
 reducer(ReduceF, Key, ReduceF(Result, Value))

 end.

	­Principles of Programming Languages, 2020.02.07
	Exercise 1, Scheme (11 pts)
	Exercise 2, Haskell (11 pts)
	Exercise 3, Erlang (11 pts)

