
Principles of Programming Languages, 2019.07.24

Notes
- Total available time: 1h 45’.
- You may use any written material you need, and write in Italian, if you prefer.
- You cannot use electronic devices during the exam.

Exercise 1, Scheme (8 pts)

Write a functional, tail recursive implementation of a procedure that takes a list of numbers L and two values
x and y, and returns three lists: one containing all the elements that are less than both x and y, the second one
containing all the elements in the range [x,y], the third one with all the elements bigger than both x and y. It
is not possible to use the named let construct in the implementation.

Exercise 2, Haskell (12 pts)

Consider a non-deterministic finite state automaton (NFSA) and assume that its states are values of a type
State defined in some way. An NFSA is encoded in Haskell through three functions:

i) transition :: Char → State → [State], i.e. the transition function.

ii) end :: State → Bool, i.e. a functions stating if a state is an accepting state (True) or not.

ii) start :: [State], which contains the list of starting states.

1) Define a data type suitable to encode the configuration of an NSFA.

2) Define the necessary functions (providing also all their types) that, given an automaton A (through
transition, end, and start) and a string s, can be used to check if A accepts s or not.

Exercise 3, Erlang (12 pts)

Define a master process which takes a list of nullary (or 0-arity) functions, and starts a worker process for
each of them. The master must monitor all the workers and, if one fails for some reason, must re-start it to
run the same code as before. The master ends when all the workers are done.

Note: for simplicity, you can use the library function spawn_link/1, which takes a lambda function, and
spawns and links a process running it.

Solutions
Es 1
(define (3-part L v1 v2)
 (define (3-p L v1 v2 r1 r2 r3)
 (if (null? L)
 (list r1 r2 r3)
 (let ((x (car L))
 (xs (cdr L)))
 (cond
 ((and (< x v1)(< x v2))
 (3-p xs v1 v2 (cons x r1) r2 r3))
 ((and (>= x v1)(<= x v2))
 (3-p xs v1 v2 r1 (cons x r2) r3))
 ((and (> x v1)(> x v2))
 (3-p xs v1 v2 r1 r2 (cons x r3)))))))

 (3-p L v1 v2 '() '() '()))

Es 2
data Config = Config String [State] deriving (Show, Eq)

steps :: (Char -> State -> [State]) -> Config -> Bool
steps trans (Config "" confs) = not . null $ filter end confs
steps trans (Config (a:as) confs) = steps trans $ Config as (concatMap (trans a) confs)

Es 3
listlink([], Pids) -> Pids;
listlink([F|Fs], Pids) ->
 Pid = spawn_link(F),
 listlink(Fs, Pids#{Pid => F}).

master(Functions) ->
 process_flag(trap_exit, true),
 Workers = listlink(Functions, #{}),
 master_loop(Workers, length(Functions)).

master_loop(Workers, Count) ->
 receive
 {'EXIT', Child, normal} ->
 if
 Count =:= 1 -> ok;
 true -> master_loop(Workers, Count-1)
 end;
 {'EXIT', Child, _} ->
 #{Child := Fun} = Workers,
 Pid = spawn_link(Fun),
 master_loop(Workers#{Pid => Fun}, Count)
 end.

	­Principles of Programming Languages, 2019.07.24
	Exercise 1, Scheme (8 pts)
	Exercise 2, Haskell (12 pts)
	Exercise 3, Erlang (12 pts)

