Principles of Programming Languages, 2019.07.24

Notes

- Total available time: 1h 45°.

- You may use any written material you need, and write in Italian, if you prefer.
- You cannot use electronic devices during the exam.

Exercise 1, Scheme (8 pts)

Write a functional, tail recursive implementation of a procedure that takes a list of numbers L and two values
x and y, and returns three lists: one containing all the elements that are less than both x and y, the second one
containing all the elements in the range /x,y/, the third one with all the elements bigger than both x and y. It
is not possible to use the named let construct in the implementation.

Exercise 2, Haskell (12 pts)

Consider a non-deterministic finite state automaton (NFSA) and assume that its states are values of a type
State defined in some way. An NFSA is encoded in Haskell through three functions:

1) transition :: Char — State — [State], 1.e. the transition function.

i1) end :: State — Bool, i.e. a functions stating if a state is an accepting state (True) or not.
11) start :: [State], which contains the list of starting states.

1) Define a data type suitable to encode the configuration of an NSFA.

2) Define the necessary functions (providing also all their types) that, given an automaton A4 (through
transition, end, and start) and a string s, can be used to check if 4 accepts s or not.

Exercise 3, Erlang (12 pts)

Define a master process which takes a list of nullary (or 0-arity) functions, and starts a worker process for
each of them. The master must monitor all the workers and, if one fails for some reason, must re-start it to
run the same code as before. The master ends when all the workers are done.

Note: for simplicity, you can use the library function spawn_link/1, which takes a lambda function, and
spawns and links a process running it.



Solutions

Es 1
(define (3-part L v1 v2)
(define (3-p L v1 v2 r1 r2 r3)
(if (null? L)
(list r1 r2 r3)
(let ((x (car L))
(xs (cdr L)))
(cond
((and (< x vI)(< x v2))
(3-p xs v1 v2 (cons x r1) r2 r3))
((and (>= x v1)(<= x v2))
(3-p xs vl v2 r1 (cons x r2) r3))
((and (> x vI)(> x v2))
(3-p xs vl v2 r1 r2 (cons x r3)))))))

GpLviv2 ' "0 "ON

Es 2
data Config = Config String [State] deriving (Show, Eq)

steps :: (Char -> State -> [State]) -> Config -> Bool
steps trans (Config "" confs) = not . null $ filter end confs
steps trans (Config (a:as) confs) = steps trans $ Config as (concatMap (trans a) confs)

Es 3
listlink([]1, Pids) -> Pids;
listlink([F|Fs], Pids) ->
Pid = spawn_link(F),
listlink(Fs, Pids#{Pid => F}).

master(Functions) ->
process_flag(trap_exit, true),
Workers = listlink(Functions, #{}),
master_loop(Workers, length(Functions)).

master_loop(Workers, Count) ->

receive
{'EXIT', Child, normal} ->
if
Count =:= 1 -> ok;
true -> master_loop(Workers, Count-1)
end;

{'EXIT', Child, _} ->
#{Child := Fun} = Workers,
Pid = spawn_link(Fun),
master_loop(Workers#{Pid => Fun}, Count)
end.



	­Principles of Programming Languages, 2019.07.24
	Exercise 1, Scheme (8 pts)
	Exercise 2, Haskell (12 pts)
	Exercise 3, Erlang (12 pts)


