
Principles of Programming Languages

2016.02.10

Notes

• NAME: __________________________________

• Did you present a small project? YES / NO

• Total available time: 2h.

• You may use any written material you need.

• You cannot use computers or phones during the exam.

Introduction

Figure 1: Simply-linked circular list (Clist)

A simply-linked circular list (called Clist from now on) is a list in which the last node points to the first
node (see figure). It is sometimes useful to have a sentinel last node, i.e. a node that does not contain
data. The sentinel is used e.g. to check if we have traversed the whole list. An empty list contains only the
sentinel node, that points to itself.

1 Scheme

1.1 Data structure definition and constructors (7 points)

Define a data structure for Clists (hint: use struct), together with a constructor for an empty Clist, and a
variant of the cons operation for Clists, which adds a new element as the head of the previous Clist.

1.2 Map (4 points)

Define cmap, a map operation for Clists.

1



2 Haskell

2.1 Type definition and Eq (5 points)

Define a data structure for Clists with a data declaration. Make Clist an instance of Eq – beware: equality
test must always terminate.

2.2 Conversions from/to ordinary lists (6 points)

Define two functions list2clist and clist2list, that are used to convert an ordinary list to a Clist, and vice versa.
Write their types.

2.3 Map (6 points)

Define cmap, a map operation for Clists. Write its type.

3 Prolog (5 points)

Define a predicate with one argument to check if a given string is a palindrome.
E.g. palindrome("sator arepo tenet opera rotas") should return true.

2



Solutions

Scheme

(struct cnode (value next) #:mutable)
(define *end* ’---end---)

(define (cend) ; builds a sentinel node
(let ((node (cnode *end* #f)))

(set-cnode-next! node node)
node))

(define (cend? clist)
(and (cnode? clist)

(eq? (cnode-value clist) *end*)))

(define (get-end clist)
(if (cend? clist)

clist
(get-end (cnode-next clist))))

(define (ccons x node)
(if (cend? node)

(let ((out (cnode x #f)))
(set-cnode-next! out node)
(set-cnode-next! node out)
out)

(let ((the-end (get-end node))
(out (cnode x node)))

(set-cnode-next! the-end out)
out)))

(define (cmap f v)
(if (cend? v)

(cend)
(ccons (f (cnode-value v))

(cmap f (cnode-next v)))))

3



Haskell

data Clist a = Node a (Clist a) | End (Clist a)

instance (Eq a) => Eq (Clist a) where
End _ == End _ = True
(Node x next) == (Node x’ next’) = (x == x’) && next == next’
_ == _ = False

clist2list :: Clist a -> [a]
clist2list (End v) = clist2list v
clist2list (Node x next) = x : clist2list next

list2clist :: [a] -> Clist a
list2clist [] = let new = End new

in new
list2clist (x:xs) = let first = Node x $ list2clist’ xs first

in first
list2clist’ [] first = End first
list2clist’ (x:xs) first = Node x $ list2clist’ xs first

cmap :: (t -> a) -> Clist t -> Clist a
cmap f (Node x next) = let first = Node (f x) $ cmap’ f next first

in first
cmap’ f (End x) first = (End first)
cmap’ f (Node x next) first = Node (f x) $ cmap’ f next first

Prolog

pal(X) :- reverse(X,Y), X == Y.

4


