
Principles of Programming Languages

2015.09.22

Notes

• NAME: __________________________________

• Did you present a small project? YES / NO

• Total available time: 2h.

• You may use any written material you need.

• You cannot use computers or phones during the exam.

1 Scheme

1.1 Co-sublist (5 points)

Consider a list (x0x1 . . . xn). Its sublist from i to j is the list (xi, xi+1 . . . xj). Define the procedure co-sublist
which, given a list L and two indexes i and j, i ≤ j, returns the list of ordered elements of L that are not in
the sublist from i to j. You cannot use procedures with side effects in your code (e.g. set!).

E.g. (co-sublist ’(1 2 3 4 5 6) 1 3) should be (1 5 6).

1.2 Fancy Sublist (5 points)

Define this construct: (subl e1e2 . . . -> ei . . . ej <- ej+1 . . . en); its evalutation returns the sublist (ei . . . ej).
E.g. (subl 1 -> 2 3 4 <- 5 6) should be (2 3 4).

2 Haskell

2.1 Type definition and accessor (3 points)

Define the Bilist data-type, which is a container of two homogeneous lists. Define an accessor for Blist,
called bilist_ref, that, given an index i, returns the pair of values at position i in both lists.

E.g. bilist_ref (Bilist [1,2,3] [4,5,6]) 1 should return (2,5).

2.2 Oddeven (5 points)

Define a function, called oddeven, that is used to build a Bilist x y from a simple list. oddeven takes all
the elements at odd positions and put them in y, while all the other elements are put in x, maintaining their
order. You may assume that the given list has an even length (or 0). Write also all the types of the functions
you define.

E.g. oddeven [1,2,3,4] must be Bilist [1,3] [2,4].

1

2.3 Inverse oddeven (5 points)

Define an inverse of oddeven, e.g. inv_oddeven $ oddeven [1,2,3,4] must be [1,2,3,4]. Write also all
the types of the functions you define.

2.4 Position of maximum (5 points)

Define a function, called bilist_max, that given an input Bilist [x1, x2, . . . , xn] [y1, y2, . . . , yn], where xk +
yk, for 1 ≤ k ≤ n, is the maximum, returns k.

E.g.

> bilist_max (Bilist [3,2,-1] [2,1,7])
2

3 Prolog (5 points)

Given a pair of lists [x1, x2, . . . , xn] and [y1, y2, . . . , yn], define a deterministic predicate maxsum to obtain the
maximum value of xk + yk. The two lists are assumed to have the same length.

E.g.

?- maxsum([3,2,-1],[2,1,7],X).
X = 6.

2

Solutions

Scheme

(define (co-sublist L start end)
(let loop ((p 0)

(res ’())
(ls L))

(cond
((null? ls)
res)

((or (< p start)(> p end))
(loop (+ p 1)

(append res (list (car ls)))
(cdr ls)))

(else
(loop (+ p 1)

res
(cdr ls))))))

(define -> ’->)
(define <- ’<-)

(define (subl . args)
(let loop ((state #f)

(res ’())
(ls args))

(cond
((null? ls)
res)

((eq? (car ls) ’->)
(loop #t res (cdr ls)))

((eq? (car ls) ’<-)
(loop #f res (cdr ls)))

(state
(loop state (append res (list (car ls))) (cdr ls)))

((not state)
(loop state res (cdr ls))))))

Haskell

data Bilist a = Bilist [a] [a] deriving (Show, Eq)

bilist_ref (Bilist l r) pos = (l !! pos, r !! pos)

oddevenh :: [a] -> [a] -> [a] -> Bilist a
oddevenh [] ev od = Bilist ev od
oddevenh (x:xs) ev od = oddevenh xs od (ev++[x])

oddeven :: [a] -> Bilist a
oddeven l = oddevenh l [] []

3

inv_oddeven :: Bilist a -> [a]
inv_oddeven (Bilist l r) = foldl (++) [] $ map (\(x,y) -> [x,y]) $ zip l r

bilist_maxh (Bilist (l:ls) (r:rs)) pos curmax maxpos | l+r > curmax =
bilist_maxh (Bilist ls rs) (pos+1) (l+r) pos

bilist_maxh (Bilist (l:ls) (r:rs)) pos curmax maxpos =
bilist_maxh (Bilist ls rs) (pos+1) curmax maxpos

bilist_maxh _ _ _ maxpos = maxpos

bilist_max (Bilist (l:ls) (r:rs)) = bilist_maxh (Bilist ls rs) 1 (l+r) 0

Prolog

maxsum([X], [Y], M) :- !, M is X+Y.
maxsum([X|Xs], [Y|Ys], V) :- V is X+Y, maxsum(Xs, Ys, M), V > M, !.
maxsum([X|Xs], [Y|Ys], M) :- maxsum(Xs, Ys, M).

4

