Principles of Programming Languages

2015.09.10

Notes

e NAME:
Did you present a small project? YES / NO

Total available time: 1h 30'.

You may use any written material you need.

You cannot use computers or phones during the exam.

1 Scheme

Consider the following procedure:

(define (re-map f L cond?)
(let loop ((res *())
(cur L))
(if (null? cur)
res
(letx ((k #f£)
(v (call/cc
(lambda (cont)
(set! k cont)
(f (car cur))))))
(if (cond? v)
(cons k v)
(loop (append res (list v))
(cdr cur)))))))

1.1 Description (5 points)

Give a brief explanation of what re-map does, providing also a simple but meaningful example of its use
and return value, different from the one of the next question.

1.2 Example usage (5 points)

Let us consider to use re-map at the REPL with the following command:

> (define V
(re-map (lambda (x) (+ x 1))
’(01 -4 3 -65)
negative?))

Give a sequence of related commands such that the result of the last command is the list (1 2 3 4 5 6).

2 Haskell

2.1 Class definition (3 points)

Define a class called Blup, for a generic type T having two parameters = and y, providing two operations
called fisto and fosto. fistotakes a value belonging to 7" and returns a value of type Maybe x, while fosto
takes a value belonging to 7" and returns a value of type Maybe y.

2.2 Instance | (4 points)

Define the sum type Blargh with two parameters of types a and b. It has three data constructor: either Bip
with two parameters of types respectively a and b, or Bop with only one parameter of type a, or Bup with no
parameters.

Make Blargh an instance of class Blup, where fisto is used to access to data of type a, and fosto to
data of type b.

2.3 Instance Il (4 points)

Define the sum type Blar f with two parameters of types a and b. It has two data constructor: either La and
a list of elements of type a, or Lb and a list of elements of type b.

Make Blarf an instance of class Blup, where fisto is used to access to the head of the list of elements
of type a, and fosto to the head of the list of elements of type b.

2.4 Smap (6 points)

1. Define a function smap that takes an infinite list L of Int, a function f from Int to Int, an operation OP
over Int, and a threshold T'. smap performs a map of f on L, while keeping an accumulator K (with
starting value 0), which is updated at each step as old AccumulatorValue OP f(currentElementO fL).
smap stops when the value of K reaches T and returns a list of all the computed values of the map.
E.g. smap (~2) (+) [1,2..] 100 isthelist[1,4,9,16,25,36,49].

2. Write smap’s type.

3 Prolog (5 points)

Define a “triparting” predicate that, given a list L and two pivot values, returns three lists such that the first
contains all the values of L less than both pivots, the second contains values between the pivots (including
the extremes), the last contains all the remaining values.

Solutions

Scheme

The procedure re-map is a map with a predicate condition (parameter cond?). If the condition holds for the
current computed value v of the map, re-map returns a pair holding the continuation and v. It is possible to
continue its computation, by providing a substitute value to the returned continuation, and calling it. Hence,
we can obtain the requested list by performing:

> ((car V) (abs (cdr V))) ; we could just use 3
> ((car V) (abs (cdr V))) ; idem with 5
>V

Haskell

class Blup a where
fisto :: (a b ¢) -> Maybe b
fosto :: (a b ¢) -> Maybe c

data Blargh a b = Bip a b | Bop a | Bup deriving (Show, Eq)
instance Blup Blargh where

fisto (Bip a b) = Just a

fisto (Bop a) = Just a

fisto Bup = Nothing

fosto (Bip a b) = Just b
fosto _ = Nothing

data Blarf a b = La [a] | Lb [b] deriving (Show, Eq)

instance Blup Blarf where
fisto (La (x:xs)) = Just x
fisto _ = Nothing
fosto (Lb (x:xs)) = Just x
fosto _ = Nothing

smap :: (Int -> Int) -> (Int -> Int -> Int) -> [Int] -> Int -> [Int]
smap f op list end = smapp f op list 0 [] end

smapp f op (x:xs) acc res end | acc >= end = res
smapp £ op (x:xs) acc res end = smapp f op xs (op acc v) (res ++ [v]) end
where v = f x

Prolog
It is a simple variant of Quicksort’s partition as seen in class. Must be called with P1 < P2.

tripart([X|L],P1,P2,[X|L1],L2,L3) :- X < P1, X < P2, !, tripart(L,P1,P2,L1,1L2,L3).
tripart([X|L],P1,P2,L1,[X|L2],L3) :- X >= P1, X =< P2, !, tripart(L,P1,P2,L1,L2,L3).
tripart([X|L],P1,P2,L1,L2,[X|L3]) :- X > P1, X > P2, !, tripart(L,P1,P2,L1,L2,L3).

tripart([],_,_,[],0],01).

