
Principles of Programming Languages

2014.09.08

Notes

• Total available time: 1h 30’.

• You may use any written material you need.

• You cannot use computers or phones during the exam.

1 Scheme

1.1 Multiple Apply (3 pts)

Define a procedure called multiple-apply which takes another procedure f , a natural number n and an item x, and
applies f n times to x, i.e. it should return fn(x).

1.2 Position of Max (4 pts)

Define a procedure called position-of-max, that takes a list l and returns the position of l which contains the
maximum value present in l. E.g. (position-of-max ’(2 3 1 -2)) is 1.
Note: remember that max in Scheme accepts a variable number of arguments, at least one. E.g. (max 2 3 1 -2) is
3.

1.3 Max of the Longest (6 pts)

Consider a definition of norm, where the norm of a number is the number itself, while the norm of a string is its length.
Write a procedure called max-of-the-longest, that takes a list of lists, containing either strings or numbers, and
returns the maximum norm of the elements in the longest of the lists.
E.g. (max-of-the-longest ’((99 0) (2 3 "hi, there!") (3 "hi there" 1 -1 -1))) is 8.

2 Haskell

2.1 Part I (8 pts)

Translate every procedure of the Scheme part into Haskell, assuming that the list of lists contains either Strings or
Ints and defining suitable data structures, if needed.
Note: max in Haskell has type Ord a => a -> a -> a.

2.2 Part II (5 pts)

Declare all the types of the functions defined in Part I.

3 Prolog (6 pts)

Define multiple-apply in Prolog, using cut if possible.

1



Solutions

Scheme

(define (multiple-apply fun k L)
(if (<= k 0)

L
(multiple-apply fun (- k 1) (fun L))))

(define (position-of-max L)
(let ((max (car L))

(pos 0)
(p 0))

(for-each (lambda (x)
(when (> x max)

(set! max x)
(set! pos p))

(set! p (+ 1 p)))
L)

pos))

(define (norm x)
(cond
((number? x) x)
((string? x) (string-length x))
(else (error "wrong type"))))

(define (max-of-the-longest L)
(apply max

(map norm
(list-ref L

(position-of-max (map length L)))))))

Haskell

multipleApply :: (Eq a, Num a) => (t -> t) -> a -> t -> t
multipleApply f 0 lst = lst
multipleApply f k lst = multipleApply f (k-1) (f lst)

positionOfMax :: (Num b, Ord a) => [a] -> b
positionOfMax lst = posHelper lst (head lst) 0 0

where
posHelper [] mx mp p = mp
posHelper (v:vs) mx mp p = posHelper vs

(if v>mx then v else mx)
(if v>mx then p else mp)
(p+1)

data StrNum = S String | N Int deriving (Show, Eq)

norm :: StrNum -> Int
norm (S x) = length x
norm (N x) = x

2



maxOfTheLongest :: [[StrNum]] -> Int
maxOfTheLongest lst =

let (x:xs) = (map norm (lst !! positionOfMax (map length lst)))
in foldl max x xs

Prolog

multipleapply(_,0,L,L) :- !.
multipleapply(F,K,X,Y) :- K > 0, !, K1 is K-1,

multipleapply(F,K1,X,Y1), call(F,Y1,Y).

3


