Principles of Programming Languages

2014.09.08

Notes

o Total available time: 1h 30'.
¢ You may use any written material you need.

e You cannot use computers or phones during the exam.

1 Scheme

1.1 Multiple Apply (3 pts)

Define a procedure called multiple-apply which takes another procedure f, a natural number n and an item z, and
applies f n times to z, i.e. it should return f™(z).

1.2 Position of Max (4 pts)

Define a procedure called position-of-max, that takes a list [and returns the position of [which contains the
maximum value present in [. E.g. (position-of-max >(2 3 1 -2))is 1.

Note: remember that max in Scheme accepts a variable number of arguments, at least one. E.g. (max 2 3 1 -2) is
3.

1.3 Max of the Longest (6 pts)

Consider a definition of norm, where the norm of a number is the number itself, while the norm of a string is its length.
Write a procedure called max-of-the-longest, that takes a list of lists, containing either strings or numbers, and
returns the maximum norm of the elements in the longest of the lists.

E.g. (max-of-the-longest >((99 0) (2 3 "hi, there!") (3 "hi there" 1 -1 -1)))is8.

2 Haskell

2.1 Partl (8 pts)

Translate every procedure of the Scheme part into Haskell, assuming that the list of lists contains either Strings or
Ints and defining suitable data structures, if needed.
Note: max in Haskell has type Ord a => a -> a -> a.

2.2 Partll (5 pts)

Declare all the types of the functions defined in Part I.

3 Prolog (6 pts)

Define multiple-apply in Prolog, using cut if possible.

Solutions

Scheme

(define (multiple-apply fun k L)
(if (<= k 0)
L
(multiple-apply fun (- k 1) (fun L))))

(define (position-of-max L)
(let ((max (car L))
(pos 0)
p 0
(for-each (lambda (x)
(when (> x max)
(set! max x)
(set! pos p))
(set! p (+ 1 p)))
L)
pos))

(define (norm x)
(cond
((number? x) x)
((string? x) (string-length x))
(else (error "wrong type"))))

(define (max-of-the-longest L)

(apply max
(map norm
(list-ref L
(position-of-max (map length L)))))))
Haskell

multipleApply :: (Eq a, Num a) => (t ->t) ->a ->t ->t
multipleApply f O 1lst = 1st
multipleApply f k 1lst = multipleApply f (k-1) (f 1st)

positionOfMax :: (Num b, Ord a) => [a] -> b
positionOfMax lst = posHelper lst (head 1lst) 0 O
where
posHelper [] mx mp p = mp
posHelper (v:vs) mx mp p = posHelper vs
(if v>mx then v else mx)
(if v>mx then p else mp)
(p+1)

data StrNum = S String | N Int deriving (Show, Eq)
norm :: StrNum -> Int

norm (S x) = length x
norm (N x) = x

max0fTheLongest :: [[StrNum]] -> Int

max0fTheLongest lst =
let (x:xs) = (map norm (1lst !! positionOfMax (map length 1lst)))
in foldl max x xs

Prolog

multipleapply(_,0,L,L) :- !.
multipleapply(F,K,X,Y) :- K > 0, !, K1 is K-1,
multipleapply(F,K1,X,Y1), call(F,Y1,Y).

