
Principles of Programming Languages
Exam of 2014.07.25

Notes

Total available time: 2h.

You may use any written material you need.

You cannot use computers or phones during the
exam.

GIVEN NAME _______________________

SURNAME _______________________

SIGNATURE _______________________

Scheme

Exercise 1.1 (4 points)
Define a procedure (called vecstrings) that accepts two parameters: a vector V and a list L of
strings. vecstrings is used to put every string s in L in V, depending on its length: s is placed at
position V[|s|], while strings too long are discarded. If more than one strings have the same length,
they are collected in a list.

Example:

(define ex '("hi" "there" "have" "an" "interesting" "day"))

(define v1 (make-vector 7 #f))

(vecstrings v1 ex) is the vector #(#f #f (“an” “hi”) “day” “have” “there” #f)

(define (vecstrings V strls)

 (let ((top (- (vector-length V) 1)))

 (for-each (lambda (s)

 (let ((sl (string-length s)))

 (when (<= sl top)

 (vector-set! V sl

 (let ((old (vector-ref V sl)))

 (cond

 ((string? old) (list s old))

 ((list? old) (cons s old))

 (else s)))))))

 strls)

 V))

Exercise 1.2 (6 points)
Define the procedure make-vecstring, which is a variant of vecstrings returning a closure over V.
Such closure has one parameter that must be a string s and works like vecstrings, by putting s in V.
When the closure is called with the parameter 'return, it must return the current value of V.

Example:

(define my-v (make-vecstring v1)) ; the definition of v1 is in Ex. 1.1

(my-v "another")

(my-v "member")

(my-v "no")

(my-v 'return) is the vector #(#f #f (“no” “an” “hi”) “day” “have” “there” “member”)

(define (make-vecstring V)

 (let ((top (- (vector-length V) 1)))

 (lambda (s)

 (if (eq? s 'return)

 V

 (let ((sl (string-length s)))

 (when (<= sl top)

 (vector-set! V sl

 (let ((old (vector-ref V sl)))

 (cond

 ((string? old) (list s old))

 ((list? old) (cons s old))

 (else s))))))))))

Haskell

Exercise 2.1 (1+2+2 points)
Consider this data definition: data Valn a = Valn a (a -> Bool)

where a is a generic type, and the function: a -> Bool is a predicate that checks the validity of the
stored value.

1) Valn cannot derive Eq or Show, why?

Because value equality for functions is undecidable; there is not a standard representation of

functions in Haskell.

2) Make Valn an instance of Eq.

instance Eq a => Eq (Valn a) where

 (Valn x f) == (Valn x' f') = (x == x') && (f x) == (f' x')

3) Make Valn an instance of Show.

instance Show a => Show (Valn a) where

 show (Valn x f) = "Valn "++ show x ++ " " ++ show (f x)

Exercise 2.2 (5 points)
Make Valn an instance of Num, considering that the predicate for two argument functions (e.g. (+))
must be the logical “and” of the two predicates; for one argument functions, say abs, the predicate
remains the same.

instance Num a => Num (Valn a) where

 (Valn a f) + (Valn b g) = Valn (a+b) (\x -> (f x) && (g x))

 (Valn a f) - (Valn b g) = Valn (a-b) (\x -> (f x) && (g x))

 (Valn a f) * (Valn b g) = Valn (a*b) (\x -> (f x) && (g x))

 negate (Valn a f) = Valn (negate a) f

 abs (Valn a f) = Valn (abs a) f

 signum (Valn x f) = Valn (signum x) f

 fromInteger i = Valn (fromInteger i) (\x -> True)

Prolog

Exercise 3.1 (5 points)
Define the remove predicate, knowing that remove(Elem, List1, List2) is true when List1, with
Elem removed, results in List2.

Example:

?- remove(3,[2,3,1,3],X).

X = [2, 1, 3] ; X = [2, 3, 1]

remove(X,[X],[]).

remove(X,[X|Xs],Xs).

remove(X,[Y|Xs],[Y|Ys]) :- remove(X,Xs,Ys).

Exercise 3.2 (3+1+2 points)
Consider this code:

proc0(L,S) :- proc1(L,S), proc2(S).

proc2([]).

proc2([_]).

proc2([X,Y|ZS]) :- X =< Y, proc2([Y|ZS]).

proc1([],[]).

proc1([X|XS],YS) :- proc1(XS,ZS), remove(X,YS,ZS).

1) For what can be proc0 used? What is it?

It is a sorting algorithm, considering all the permutations of the input list L.

2) Give reasonable names to proc0, proc1, proc2.

proc0 = permutation_sort

proc2 = sorted

proc1 = permutation

3) Is a good idea to use proc0 in a program? Why?

No, it is probably the world's possible sorting algorithm available. It is much better to use,

e.g. the quicksort implementation seen in class.

	Principles of Programming Languages
	Exercise 1.1 (4 points)
	Exercise 1.2 (6 points)
	Exercise 2.1 (1+2+2 points)
	Exercise 2.2 (5 points)
	Exercise 3.1 (5 points)
	Exercise 3.2 (3+1+2 points)

