
Principles of Programming Languages
Exam of 2014.07.25

Notes

Total available time: 2h. 

You may use any written material you need. 

You cannot use computers or phones during the 
exam.

GIVEN NAME _______________________

SURNAME      _______________________

SIGNATURE   _______________________

Scheme

Exercise 1.1 (4 points)
Define a procedure (called vecstrings) that accepts two parameters: a vector V and a list L of 
strings. vecstrings is used to put every string s in L in V, depending on its length: s is placed at 
position V[|s|], while strings too long are discarded. If more than one strings have the same length, 
they are collected in a list.

Example:

(define ex '("hi" "there" "have" "an" "interesting" "day"))

(define v1 (make-vector 7 #f))

(vecstrings v1 ex) is the vector #(#f #f (“an” “hi”) “day” “have” “there” #f)

(define (vecstrings V strls)

  (let ((top (- (vector-length V) 1)))

   (for-each (lambda (s)

               (let ((sl (string-length s)))

                (when (<= sl top)

                  (vector-set! V sl

                               (let ((old (vector-ref V sl)))

                                (cond 

                                  ((string? old) (list s old))

                                  ((list? old)   (cons s old))

                                  (else s)))))))

             strls)

   V))



Exercise 1.2 (6 points)
Define the procedure make-vecstring, which is a variant of vecstrings returning a closure over V. 
Such closure has one parameter that must be a string s and works like vecstrings, by putting s in V. 
When the closure is called with the parameter 'return, it must return the current value of V.

Example:

(define my-v (make-vecstring v1))   ;  the definition of v1 is in Ex. 1.1

(my-v "another")

(my-v "member")

(my-v "no")

(my-v 'return) is the vector #(#f #f (“no” “an” “hi”) “day” “have” “there” “member”)

(define (make-vecstring V)

  (let ((top (- (vector-length V) 1)))

   (lambda (s)

     (if (eq? s 'return)

       V

       (let ((sl (string-length s)))

        (when (<= sl top)

          (vector-set! V sl

                       (let ((old (vector-ref V sl)))

                        (cond 

                          ((string? old) (list s old))

                          ((list? old)   (cons s old))

                          (else s))))))))))



Haskell

Exercise 2.1 (1+2+2 points)
Consider this data definition: data Valn a = Valn a (a -> Bool)

where a is a generic type, and the function: a -> Bool is a predicate that checks the validity of the 
stored value.

1) Valn cannot derive Eq or Show, why?

Because value equality for functions is undecidable; there is not a standard representation of 

functions in Haskell.

2) Make Valn an instance of Eq.

instance Eq a => Eq (Valn a) where

  (Valn x f) == (Valn x' f') = (x == x') && (f x) == (f' x') 

3) Make Valn an instance of Show.

instance Show a => Show (Valn a) where

  show (Valn x f) = "Valn "++ show x ++ " " ++ show (f x)

Exercise 2.2 (5 points)
Make Valn an instance of Num, considering that the predicate for two argument functions (e.g. (+)) 
must be the logical “and” of the two predicates; for one argument functions, say abs, the predicate 
remains the same.

instance Num a => Num (Valn a) where

  (Valn a f) + (Valn b g) = Valn (a+b) (\x -> (f x) && (g x))

  (Valn a f) - (Valn b g) = Valn (a-b) (\x -> (f x) && (g x))

  (Valn a f) * (Valn b g) = Valn (a*b) (\x -> (f x) && (g x))



  negate (Valn a f) = Valn (negate a)  f 

  abs (Valn a f)    = Valn (abs a)     f

  signum (Valn x f) = Valn (signum x)  f

  fromInteger i = Valn (fromInteger i) (\x -> True)

Prolog

Exercise 3.1 (5 points)
Define the remove predicate, knowing that remove(Elem, List1, List2) is true when List1, with
Elem removed, results in List2.

Example:

?- remove(3,[2,3,1,3],X).

X = [2, 1, 3]  ;   X = [2, 3, 1] 

remove(X,[X],[]).

remove(X,[X|Xs],Xs).

remove(X,[Y|Xs],[Y|Ys]) :- remove(X,Xs,Ys).



Exercise 3.2 (3+1+2 points)
Consider this code:

proc0(L,S) :- proc1(L,S), proc2(S).

proc2([]).

proc2([_]).

proc2([X,Y|ZS]) :- X =< Y, proc2([Y|ZS]).

proc1([],[]).

proc1([X|XS],YS) :- proc1(XS,ZS), remove(X,YS,ZS).

1) For what can be proc0 used? What is it?

It is a sorting algorithm, considering all the permutations of the input list L.

2) Give reasonable names to proc0, proc1, proc2.

proc0 = permutation_sort

proc2 = sorted

proc1 = permutation

3) Is a good idea to use proc0 in a program? Why?

No, it is probably the world's possible sorting algorithm available. It is much better to use, 

e.g. the quicksort implementation seen in class.
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