
Principles of Programming Languages

2013.09.19

Notes

• Total available time: 1h 30’.

• You may use any written material you need.

• You cannot use computers or phones during the exam.

1 Scheme (9 points)

Define an object, using the “closures as objects” technique seen in class, that works as a simple immutable
container of integer numbers. It must offer two methods: member?, that checks if a number is contained in
the object; and subsetsum, that checks if a given number is the sum of elements contained in the object (at
most each element must be taken once).

For instance, if you define (define ob (make-object ’(3 2 7))), then (ob ’member? 9) is false, while
(ob ’subsetsum 9) is true.

Hint: you can call this procedure in your code:

(define (subsets e)

(let loop ((l e)

(out ’(())))

(if (null? l)

out

(loop (cdr l)

(append out

(map (lambda (x) (cons (car l) x)) out))))))

2 Haskell (11 points)

Define the function infixes, which takes a list g as input and returns the list of all infixes (i.e. non-empty
contiguous sublists) of g.

For instance, infixes "ciao" is the list ["o","ao","iao","ciao","a","ia","cia","i","ci","c"]

(remember that a string is a list of characters in Haskell).

3 Prolog (11 points)

Consider binary trees represented as a hierarchic lists, where each node is a list [node, subtree1, subtree2].
Leaves are just symbols. In the colored subtree problem, we take as input a tree, and put into each internal
node a number representing the number of different leaves present in its subtrees.

E.g. given this tree: [R,[X,yellow,brown],[Y,blue,yellow]] the solution is: R = 3, X = Y = 2.
Define the col_tree predicate, that solves the colored subtree problem.
Hint: the predicate union(X,Y,Z) holds if the list Z is the union of X and Y, seen as sets.

1



Solutions

Scheme

(define (make-object lst)

(let ((sum-of-subsets (map (lambda (x) (foldl + 0 x))

(subsets lst))))

(define my-member (lambda (x)

(list? (member x lst))))

(define subsetsum (lambda (val)

(list? (member val sum-of-subsets))))

(lambda (msg . args)

(apply (case msg

((member?) my-member)

((subsetsum) subsetsum)

(else (error "unknown method" msg)))

args))))

Haskell

Idea: as hinted in another exam, the infixes are the suffixes of the prefixes.

suffixes lst = suf lst []

where

suf [] res = res

suf (x:xs) res = suf xs ((x:xs) : res)

prefixes lst = pre lst []

where

pre [] res = res

pre (x:xs) [] = pre xs [[x]]

pre (x:xs) res = pre xs $ ((head res) ++ [x]) : res

-- A less efficient but one-line version:

prefixes’ l = map reverse $ suffixes $ reverse l

infixes lst = foldl (++) [] $

map suffixes (prefixes lst)

2



Prolog

The main idea is to use the second argument to keep track of all the symbols used in the subtrees.

col_tree([1, X, X], [X]) :- atomic(X), !.

col_tree([2, X, Y], [X,Y]) :- atomic(X), atomic(Y), !.

col_tree([N, Tree1, Tree2], Colors) :-

atomic(Tree1),

col_tree(Tree2, Col2), !,

union([Tree1], Col2, Colors),

length(Colors, N).

col_tree([N, Tree1, Tree2], Colors) :-

col_tree(Tree1, Col1),

atomic(Tree2), !,

union(Col1, [Tree2], Colors),

length(Colors, N).

col_tree([N, Tree1, Tree2], Colors) :-

col_tree(Tree1, Col1),

col_tree(Tree2, Col2), !,

union(Col1, Col2, Colors),

length(Colors, N).

3


