
Principles of Programming Languages, 2012.07.06
Notes:
- Total available time: 2h
- You may use any written material you need
- You cannot use computers, phones or laptops during the exam

Exercise 1
a) Define an iterator for lists in Scheme, such that calling it returns an element. When there are no more elements, it returns
symbol <<end>>.

E.g.
(define il (make-iter '(1 2)))
(il) returns 1
(il) returns 2
(il) returns <<end>>

b) Define an analogous iterator for vectors.
c) Define a new construct "for/in" which iterates on lists or vectors.

E.g.
(for x in '(1 2 3) (display x)) shows 123
(for x in '#(c a s a) (display x)(display ".")) shows c.a.s.a.

Exercise 2
Consider the operation revmap which reverses a list and then performs a map:
i.e. revmap (*2) [1,2,3] is [6,4,1]
a) Define a Prolog implementation of revmap traversing the list only once. (HINT: use as many parameters as needed)
b) Define a pure and strict Haskell implementation of revmap, possibly with linear time complexity (assuming that the
mapped function has constant time complexity) and traversing the list only once.

Exercise 3
You are currently working on the Padi project, a graphical interface for entry-level users. The performance team has
observed several major slowdowns in some applications using Padi. It seems that the problem is due to some memory leaks
related to the usage of classes ScrollBar and TextPane.
In order to identify the problem, it is needed to track memory allocation and de- allocation of instances of those classes. You
have to modify the C++ sources of Padi in order to:

• every time an instance of ScrollBar or TextPane is allocated on the heap, the address and the size of the allocate
block is be printed on standard error

• every time a memory block holding an instance of ScrollBar or TextPane is freed, a message reporting the freed
address is be printed on standard error

• design and API allowing to print the current status of the heap, that is the list of each memory block - with the
associated size - holding instances of ScrollBar and TextPane on the heap

The same problem also arises with instances of class Button. Can your solution be exploited to track all memory allocation
and de-allocation of instances of Button?

Solutions

Ex 1

a)
(define (iter-list lst)
 (let ((cur lst))
 (lambda ()
 (if (null? cur)
 '<<end>>
 (let ((v (car cur)))
 (set! cur (cdr cur))
 v)))))

b)
(define (iter-vector vec)
 (let ((cur 0)
 (top (vector-length vec)))
 (lambda ()
 (if (= cur top)
 '<<end>>
 (let ((v (vector-ref vec cur)))
 (set! cur (+ cur 1))
 v)))))

c)
(define (iter-for block data iter)
 (let ((iterandum (iter data)))
 (let loop ((x (iterandum)))
 (if (not (eq? x '<<end>>))
 (begin
 (block x)
 (loop (iterandum)))))))

(define (iter-dispatch data)
 (cond ((vector? data) iter-vector)
 ((list? data) iter-list)
 (else (assertion-violation #f "Unknown type" data))))

(define-syntax for
 (syntax-rules (in)
 ((_ var in data expr ...)
 (iter-for (lambda (var) expr ...)
 data (iter-dispatch data)))))

Ex 2
a)
revmap(F,[X|Y],Z,W) :- call(F, X, X1), revmap(F,Y,[X1|Z],W).
revmap(_,[],X,X).

b)
revmap f = foldl' (\x -> \y -> (f y) : x) []

Ex 3
#include <iostream>
#include <map>
#include <cstdlib>

namespace plp {

class Trackable {
public:
 static void *operator new(size_t size) {
 void *addr = std::malloc(size);
 std::cerr << "Allocation: Addr = " << addr << " Size = " << size << std::endl;
 allocated[addr] = size;
 return addr;
 }
 static void operator delete(void *addr) {
 std::cerr << "Deallocate: Addr = " << addr << std::endl;
 allocated.erase(addr);
 std::free(addr);
 }
public:
 static void dump() {
 std::cerr << "### Memory Map ###" << std::endl;
 for(std::map<void *, size_t>::iterator i = allocated.begin(),
 e = allocated.end();
 i != e;
 ++i)
 std::cerr << " Address = " << i->first << " Size = " << i->second
 << std::endl;
 }

private:
 static std::map<void *, size_t> allocated;
};

class ScrollBar : public Trackable { };
class TextPane : public Trackable { };
} // End namespace plp.

using namespace plp;

std::map<void *, size_t> plp::Trackable::allocated;

int main(int argc, char *argv[]) {
 ScrollBar *bar;
 TextPane *text;
 bar = new ScrollBar();
 text = new TextPane();
 Trackable::dump();
 delete bar;
 delete text;
 text = new TextPane();
 Trackable::dump();
 delete text;
}

	Principles of Programming Languages, 2012.07.06
	Exercise 1
	Exercise 2
	Exercise 3

