
Lecture Notes on
Monadic First- and Second-Order Logic on Strings<

Dino Mandrioli, Davide Martinenghi, Angelo Morzenti,
Matteo Pradella, and Matteo Rossi

Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB), Politecnico di Milano,
Piazza Leonardo Da Vinci 32, 20133 Milano, Italy

{firstname.lastname}@polimi.it

1 Introduction

From the very beginning of formal language and automata theory, the investigation of
the relations between defining a language through some kind of abstract machine and
through a logic formalism has produced challenging theoretical problems and impor-
tant applications in system design and verification. A well-known example of such an
application is the classical Hoare’s method to prove the correctness of a Pascal-like pro-
gram w.r.t. a specification stated as a pair of pre- and post-conditions expressed through
a first-order theory [6].

Such a verification problem is undecidable if the involved formalisms have the com-
putational power of Turing machines but may become decidable for less powerful for-
malisms as in the important case of Regular Languages. Originally, Büchi, Elgot, and
Trakhtenbrot [1,2,9] independently developed a Monadic Second-Order logic defining
exactly the Regular Language family, so that the decidability properties of this class of
languages could be exploited to achieve automatic verification.

Intuitively, monadic logics have some syntactic restrictions on the predicates used.
In particular, only predicates that have one argument (i.e., whose arity is 1) are al-
lowed (with the exception of the ordering relation). As usual, in the first-order case
only variables can be quantified. In the second-order, instead, monadic predicates—i.e.,
predicates with arity 1, as mentioned above—can also be quantified, thus resulting in
so-called second-order variables.

Interestingly, to capture the full class of Regular Languages by means of a monadic
logic it is necessary to exploit a second-order version of the logic, which is more pow-
erful than the simpler first-order one; it has been shown by McNaughton and Papert [7],
however, that restricting the logic to first-order allows users to define precisely the non-
counting subclass of Regular Languages—i.e., the languages which cannot “count” the
number of repeated occurrences of a given subword.1

< This version does not allow for the empty string.
1 For instance, the language {(ab)2n | n > 0} is counting. Non-counting languages, in turn, are

equivalent to other interesting subclasses of regular ones, such as, e.g., the star-free ones, i.e.
those languages that can be defined by means of regular expressions not making use of the
Kleene-* operation.

2 D. Mandrioli et al.

Such logic characterizations, however, have not been exploited in practice to achieve
automatic verification due to the intractable complexity of the necessary algorithms.
Later on, a major breakthrough in this field has been obtained thanks to the advent of
model checking, which exploits language characterization in terms of temporal logic
[3]. Temporal logic has the same expressive power as first-order logic but, being less
succint, allows for more efficient (though still exponential) verification algorithms.

These notes present the essentials of first- and second-order monadic logics with
introductory purpose and are organized as follows. In Section 2, we discuss Monadic
First-Order logic and show that it is strictly less expressive than Finite-State Automata,
in that it only captures a strict subset of Regular Languages—the non-counting ones.
We then introduce Monadic Second-Order logic in Section 3; such a logic is, syntacti-
cally, a superset of Monadic First-Order logic and captures Regular Languages exactly.
We also show how to transform an automaton into a corresponding formula and vice
versa. Finally, in Section 4 we discuss the use of logical characterizations of classes
of languages, such as those described in Sections 2 and 3, as the basis for automatic
verification techniques.

2 Monadic First-order Logic of Order on Strings

Given an input alphabet Σ, formulae of the monadic first-order logic (MFO) are built
out of the following elements:

– First-order variables, denoted as lowercase letters (written in boldface to avoid con-
fusion with strings), x, y, . . . , which are interpreted over the natural numbers N.

– Monadic predicates a(·), b(·), . . . , one for each symbol of Σ; intuitively, a(x) eval-
uates to true in a string w if, and only if, the character of w at position x is a.

– The order relation < between natural numbers.
– The usual propositional connectives and first-order quantifiers.

More precisely, letV be a finite set of first-order variables, and let Σ be an alphabet.
Well-formed formulae of the MFO logic are defined according to the following syntax:

ϕ := a(x) | x < y | ¬ϕ | ϕ ∨ ϕ | ∃x(ϕ)

where a ∈ Σ and x, y ∈ V.
The usual predefined abbreviations are introduced to denote the remaining propo-

sitional connectives, the universal quantifier, the arithmetic relations ≥,≤,=,,, >, and
sums and subtractions between first order variables and numeric constants.

We have the following definitions of propositional connectives and first-order quan-
tifiers:

ϕ1 ∧ ϕ2
def
= ¬(¬ϕ1 ∨ ¬ϕ2)

ϕ1 ⇒ ϕ2
def
= ¬ϕ1 ∨ ϕ2

ϕ1 ⇔ ϕ2
def
= (ϕ1 ⇒ ϕ2) ∧ (ϕ2 ⇒ ϕ1)

∀x(ϕ) def
= ¬∃x(¬ϕ)

Lecture Notes on Monadic First- and Second-Order Logic on Strings 3

the following definitions of relations:

x ≥ y def
= ¬(x < y)

x ≤ y def
= y ≥ x

x = y def
= x ≤ y ∧ y ≤ x

x , y def
= ¬(x = y)

x > y def
= y < x

and the following definitions of constants, of the successor of a natural number, and of
addition and subtraction of constant values:

x = 0 def
= ∀y¬(y < x)

succ(x, y) def
= x < y ∧ ¬∃z(x < z ∧ z < y)

y = x + k def
= ∃z0, . . . , zk(z0 = x ∧ succ(z0, z1) ∧ succ(z1, z2) ∧ . . . ∧ succ(zk−1, zk) ∧ y = zk)

y = x − k def
= x = y + k

where k is a constant in N. Further useful abbreviations are the follwowing ones:

– first(x) and last(x) identify, respectively, the first and last positions in the string:
first(x) def

= ¬∃y(y < x), obviously equivalent to x = 0;
last(x) def

= ¬∃y(y > x)

An MFO formula is interpreted over a string w ∈ Σ+,2 with respect to assignment
ν : V → U, where U = {0, . . . , |w| − 1}, which maps V to a position in string w.
The satisfaction relation (indicated, as usual, as |=) for MFO formulae is defined in the
following way:

– w, ν |= a(x) if, and only if, there are w1,w2 ∈ Σ
∗ such that w = w1aw2 and ν(x) =

|w1| hold.
– w, ν |= x < y if, and only if, ν(x) < ν(y) holds.
– w, ν |= ¬ϕ if, and only if, w, ν 6|= ϕ holds.
– w, ν |= ϕ1 ∨ ϕ2 if, and only if, at least one of w, ν |= ϕ1 and w, ν |= ϕ2 holds.
– w, ν |= ∃x(ϕ) if, and only if, w, ν′ |= ϕ holds for some ν′ such that ν′(y) = ν(y) for

all y ∈ V \ {x}.

To improve readability, we will drop ν from the notation whenever there is no risk
of ambiguity—i.e., we will write w |= ϕ to indicate that string w satisfies formula ϕ.

An MFO sentence is a closed MFO formula. Given a sentence ϕ, the language L(ϕ)
is defined as

L(ϕ) = {w ∈ Σ+ | w |= ϕ}.

We say that a language L is expressible in MFO (or definable in MFO or MFO-
definable for short) iff there exists a MFO sentence ϕ such that L = L(ϕ).

2 When specifying languages by means of logic formulae, the empty string must be excluded
because formulae refer to string positions.

4 D. Mandrioli et al.

2.1 Examples

The following MFO formula ϕL1 defines the language L1 made of all strings that start
with symbol a:

ϕL1 : ∃x(x = 0 ∧ a(x))

The following formula ϕL2 defines the language L2 made of all strings in which
every symbol a is necessarily immediately followed by a b (notice that these strings
cannot end with a symbol a).

ϕL2 : ∀x(a(x)⇒ ∃y(succ(x, y) ∧ b(y)))

The following formula ϕL3 defines the language L3 made of all strings in which the
last symbol is an a.

ϕL3 : ∃x(last(x) ∧ a(x))

The following formula ϕL4 defines the language L4 made of all strings (containing
at least 3 symbols) in which the symbol three positions from the right is an a.

ϕL4 : ∃x(a(x) ∧ ∃y(y = x + 2 ∧ last(y)))

Alternatively, language L4 is also defined by the following formula ϕ′L4
:

ϕ′L4
: ∃x(last(x) ∧ ∃y(y = x − 2 ∧ a(y)))

Finally, the following formula ϕL∅ defines the empty language (assuming that the
input alphabet Σ includes at least symbol a):

ϕL∅ : ∃x(a(x) ∧ ¬a(x))

Formula ϕL∅ is contradictory, as it states that a position exists in which symbol a both
appears and does not appear. No string w is such that w |= ϕL∅ holds, hence the formula
defines the empty language.

Every singleton language—i.e., every language consisting of one finite-length string—
is trivially expressible in MFO. Consider, for instance, language Labc = {abc} that in-
cludes only string abc. It is easily defined by the following MFO formula:

ϕLabc : ∃x∃y∃z(x = 0 ∧ y = S (x) ∧ z = S (y) ∧ last(z) ∧ a(x) ∧ b(y) ∧ c(z))

2.2 Expressiveness of MFO

The following statements trivially hold.

Proposition 1. Let L, L1, and L2 be any languages defined by MFO formulae ϕ, ϕ1 and
ϕ2, respectively:

– Language L1 ∩ L2 is defined by formula ϕ1 ∧ ϕ2—i.e., L(ϕ1 ∧ ϕ2) = L1 ∩ L2.
– Language L1 ∪ L2 is defined by formula ϕ1 ∨ ϕ2—i.e., L(ϕ1 ∨ ϕ2) = L1 ∪ L2.
– Language L̄ (the complement of L) is defined by formula ¬ϕ—i.e., L(¬ϕ) = L̄.

Lecture Notes on Monadic First- and Second-Order Logic on Strings 5

The next theorem follows from Proposition 1.

Theorem 2. The family of MFO-definable languages is closed under union, intersec-
tion, and complementation.

To further investigate the expressive power of MFO,3 we consider the MFO-definable
languages over a one-letter alphabet Σ = {a}. In this simple case the MFO predicate a(x)
is always true at any position x in any interpretation, therefore it is redundant and every
formula is equivalent to a formula that does not include any occurrence of predicate
a(·)—e.g., ∃x (a(x) ∧ y < x) is equivalent to ∃x (y < x).

We next show that, for the simple family of the languages over a one-letter alphabet,
every language is MFO-definable if, and only if, it is finite4 or co-finite (where a co-
finite language is one whose complement is finite). As a consequence, for instance, the
simple regular language Leven = { a2n | n ≥ 0 } is not MFO-definable, which proves that
the MFO logic is strictly less expressive than finite state automata and regular grammars
and expressions.

Our proof that every language over a one-letter alphabet is expressible in MFO if,
and only if, it is finite or co-finite is organized as follows. First, we observe that if
a language is finite or co-finite, then it is expressible in MFO, as a consequence of
the fact that—as exemplified by language Labc in Section 2.1—singleton languages are
expressible in MFO and that the family of MFO-expressible languages is closed under
union and complementation. Next, we prove that if a language over a one-letter alphabet
is MFO-definable, then it is finite or co-finite. This is in turn proved in three steps:

1. we introduce a new logic called QF-MFO, a quantifier-free fragment of MFO;
2. we show that every language over a one-letter alphabet Σ = {a} is QF-MFO-

definable if, and only if, it is finite or co-finite;
3. we show that the two logics, MFO and QF-MFO, are equally expressive, as every

MFO formula ϕ has an equivalent QF-MFO formula.

To define the QF-MFO logic, we first introduce a few additional abbreviations
(where k is a constant in N):

x < y + k def
= ∃z (z = y + k ∧ x < z)

x > y + k def
= ∃z (z = y + k ∧ z < x)

x < k def
= ∃z (z = 0 ∧ x < z + k)

x > k def
= ∃z (z = 0 ∧ x > z + k)

k < last def
= ∀x (last(x)⇒ x > k)

k > last def
= ∀x (last(x)⇒ x < k)

3 In the present section we follow the line of discussion adopted in the (unedited, to the best of
our knowledge) lecture notes Automata theory - An algorithmic approach by Javier Esparza,
February 13, 2019.

4 Recall that a finite language is one whose cardinality is finite.

6 D. Mandrioli et al.

Definition 3 (QF-MFO). The formulae of QF-MFO are defined by the following syn-
tax:

ϕ := x < k | x > k | x < y + k | x > y + k | k < last | k > last | ϕ ∧ ϕ | ϕ ∨ ϕ

where x, y ∈ V and k ∈ N.

In the remainder, with some (innocuous) overloading, a constant k will denote both
the numerical value k ∈ N and the string ak.

Proposition 4. Every language L over a one-letter alphabet is QF-MFO-definable if,
and only if, it is finite or co-finite.

Proof. Only if part: Every QF-MFO sentence defines a finite or a co-finite language.
Let ϕ be a sentence of QF-MFO. Since QF-MFO is quantifier-free, the sentence ϕ

is an and-or combination of formulae of type k < last and k > last. Then, the following
cases arise.

– L(k < last) = {k + 1, k + 2, . . . } is a co-finite language (remember that num-
bers identify words, and vice versa, so that {k + 1, k + 2, . . . } is the same as
{ak+1, ak+2, . . . }).

– L(k > last) = {0, 1, . . . k} is a finite language.
– L(ϕ1 ∨ ϕ2) = L(ϕ1) ∪ L(ϕ2). If L1 = L(ϕ1) and L2 = L(ϕ2) are both finite, then

L(ϕ1 ∨ ϕ2) is also finite; if L1 and L2 are both co-finite, then the language L(ϕ1 ∨

ϕ2) = L1 ∪ L2 = L1 ∪ L2 = L1 ∩ L2 is the complement of the intersection of two
finite languages, hence it is co-finite; if one of the two languages L1 and L2 is finite
and the other is co-finite, then L(ϕ1 ∨ϕ2) is the complement of the intersection of a
finite and a co-finite language, therefore it is co-finite.

– L(ϕ1 ∧ ϕ2) = L(ϕ1)∩ L(ϕ2). If L1 = L(ϕ1) and L2 = L(ϕ2) are both finite, then their
intersection is finite; if L1 and L2 are both co-finite, then L(ϕ1 ∧ ϕ2) = L1 ∩ L2 =

L1 ∩ L2 = L1 ∪ L2 is the complement of the union of two finite languages, hence it
is co-finite; if one of the two languages L1 and L2 is finite and the other is co-finite,
then L(ϕ1 ∧ ϕ2) is the complement of the union of a finite language and a co-finite
language, hence it is finite.

If part: Every finite or co-finite language is definable by a QF-MFO sentence.
If L is finite then L = {k1, . . . kn} and

ϕL = ϕ{k1} ∨ · · · ∨ ϕ{kn} =

= (k1 − 1 < last ∧ last < k1 + 1) ∨ · · · ∨ (kn − 1 < last ∧ last < kn + 1)

If L is co-finite, then its complement L is finite, therefore it is defined by some QF-
MFO formula. Then, L is QF-MFO-definable if, for every QF-MFO sentence ϕ, there
exists a QF-MFO sentence, call it ϕ, that defines the language L, the complement of L.
Such a sentence ϕ is equal to neg(ϕ), where function neg(·) is defined inductively by
the following clauses.

– neg(k < last) = last < k ∨ (k − 1 < last ∧ last < k + 1)︸ ︷︷ ︸
last=k

Lecture Notes on Monadic First- and Second-Order Logic on Strings 7

– neg(k > last) = k < last ∨ (k − 1 < last ∧ last < k + 1)︸ ︷︷ ︸
k=last

– neg(ϕ1 ∨ ϕ2) = neg(ϕ1) ∧ neg(ϕ2)
– neg(ϕ1 ∧ ϕ2) = neg(ϕ1) ∨ neg(ϕ2)

ut

Proposition 5. Every MFO formula ϕ over a one-letter alphabet is equivalent to some
QF-MFO formula f —i.e., ϕ ≡ f .

Proof. The proof is by induction on the structure of ϕ.
If ϕ = x < y, then ϕ ≡ x < y + 0.
If ϕ = ¬ψ, then the inductive hypothesis can be applied and then the negation can

be removed using the De Morgan’s laws and equivalences such as, e.g., ¬(x < y + k) ≡
x ≥ y + k (where x ≥ y + k is a natural abbreviation for x > y + k − 1).

If ϕ = ϕ1 ∨ ϕ2, then the induction hypothesis is directly applied.
If ϕ = ∃xψ then, by the induction hypothesis, ψ ≡ f for some QF-MFO formula f ,

and f can be assumed to be in disjunctive normal form—i.e., f = D1 ∨ · · · ∨ Dn, and
ϕ ≡ ∃xD1 ∨ · · · ∨ ∃xDn; then, we define a set of QF-MFO formulae fi such that, for
each 1 ≤ i ≤ n, fi ≡ ∃ xDi holds. Notice that, since f is a QF-MFO formula, each fi is
such that it does not include any quantification of variable x nor, if ϕ is a sentence, any
occurrence of the same variable.

Each fi is built as follows. Formula fi is a conjunction of formulae that contains all
the conjuncts of Di that do not include any occurrence of variable x, plus the conjuncts
defined next. Consider every pair of conjuncts of Di, one conjunct being of type t1 < x,
where t1 = h or t1 = y + h and the constraint is an upper bound (i.e., h is maximal, that
is, it is the greatest value that appears in a constraint of the type y + h < x), and the
other conjunct being of type x < t2, where t2 = h or t2 = y + h and the constraint is a
lower bound (i.e., h is minimal); for every such pair we add to fi a conjunct equivalent
to t1 + 1 < t2; for instance, if the two above-described conjuncts are z − 4 < x and
x < y + 3, then the added conjunct is z < y + 6 ≡ z − 3 < y + 3. Notice that, if only the
conjunct of type t1 < x is present and the conjunct of type x < t2 is missing, then the
(trivially true) conjunct x < last + 1 must be considered—in place of the latter—as the
other element of the pair; similarly, if only the conjunct of type x < t2 is present and
the conjunct of type t1 < x is missing, then the (trivially true) conjunct −1 < x must be
considered in place of the latter.

Then, fi ≡ ∃xDi; notice that fi does not include any occurrence of variable x nor
any quantification of that variable. ut

Example 6. In the MFO formula

∃x(x < y + 3 ∧ z < x + 4 ∧ z < y + 2 ∧ y < x + 1)

we identify the pair of constraints z − 4 < x and x < y + 3, from which we get the
additional conjunct z − 3 < y + 3 ≡ z < y + 6; we also identify the pair of constraints
y−1 < x and x < y + 3, from which we get the additional conjunct y < y + 3. Therefore,
the MFO formula ∃x(x < y + 3 ∧ z < x + 4 ∧ z < y + 2 ∧ y < x + 1) is equivalent to the
QF-MFO formula

z < y + 6 ∧ y < y + 3 ∧ z < y + 2

8 D. Mandrioli et al.

ut

Example 7. We provide two examples of QF-MFO formulae equivalent to given MFO
sentences.

– The MFO formula ∃x∃y∃z (x < y ∧ y < z) defines the language { ak | k ≥ 3 }.
By repeated application of the inductive step, moving inside-out, we obtain f1 ≡
∃z (x < y ∧ y < z)︸ ︷︷ ︸

∃z D1

and the pair of constraints on the quantified variable z, y < z

and z < last + 1, from which we derive constraint y < last, so that f1 ≡ x <
y ∧ y < last holds; in the next inductive step we have f1 ≡ ∃ y(x < y ∧ y < last)︸ ︷︷ ︸

∃y D1

and the pair of constraints on the quantified variable y, x < y and y < last, from
which we derive x + 1 < last and f1 ≡ x + 1 < last; in the final inductive step we
have f1 ≡ ∃ x (x + 1 < last)︸ ︷︷ ︸

∃x D1

and the pair of constraints on the quantified variable x,

−1 < x and x < last − 1, from which we obtain 0 < last − 1 and f1 ≡ last > 1,
hence last > 1 is the QF-MFO formula equivalent to the original MFO formula
∃x∃y∃z (x < y ∧ y < z).

– The MFO formula ∃x (¬∃y (x < y) ∧ x < 4) defines the language { ak | k ≤ 4 }.
Again moving inside-out, we have f1 ≡ ∃y (x < y)︸ ︷︷ ︸

∃y D1

and the pair of constraints on the

quantified variable y, x < y and y < last+1, from which we derive x+1 < last+1 ≡
x < last and f1 ≡ x < last; at the next inductive step we apply negation and obtain
f1 ≡ ∃x (x ≥ last ∧ x < 4)︸ ︷︷ ︸

∃x D1

and the pair of constraints on the quantified variable x,

last − 1 < x and x < 4, from which we obtain f1 ≡ last < 4. Hence, last < 4 is the
QF-MFO formula equivalent to the original MFO formula ∃x (¬∃y (x < y)∧x < 4).

ut

The following theorem easily follows from Proposition 4 and Proposition 5.

Theorem 8. A language over a one-letter alphabet is expressible in MFO if, and only
if, it is finite or co-finite.

Every MFO formula defines a regular language. In fact, MFO is a restriction of the
Monadic Second-Order (MSO) logic introduced in Section 3 and, as shown there, for
every MSO sentence ϕ there is a Finite-State Automaton (FSA) that accepts exactly the
language defined by ϕ—hence, a fortiori this also holds for every MFO formula. We
have therefore the following result (whose proof will be given in Section 3.1).

Statement 1 For every MFO sentence ϕ there is a FSAA such that L(ϕ) = L(A).

However, the MFO logic is strictly less expressive than Finite State Automata (also
abbreviated as FSA), as not all regular languages are expressible in MFO. Indeed, as
a consequence of Theorem 8 the regular language Leven defined above, which includes
exactly the strings over alphabet Σ = {a} having even length and therefore is neither
finite nor co-finite, is not expressible in MFO, as stated by the next corollary.

Lecture Notes on Monadic First- and Second-Order Logic on Strings 9

Corollary 9. There is no MFO sentence ϕ that defines language Leven (i.e., such that
L(ϕ) = Leven).

From Statement 1 and Corollary 9 the following result is immediate, by observing
that it is easy to define a FSAA such that L(A) = Leven.

Theorem 10. MFO is strictly less expressive than FSA.

On the other hand, the set of languages that can be defined through MFO formulae
is not closed under the so-called “Kleene star” operation, as stated by the following
theorem.

Theorem 11. The set of languages that can be defined by MFO sentences is not closed
under the ∗ operation.

Proof. To prove the claim it is enough to remark that the following MFO formula ϕLaa

defines language Laa = {aa} (i.e., the language containing only string aa):

ϕLaa : ∃x∃y(x = 0 ∧ y = x + 1 ∧ a(x) ∧ a(y) ∧ last(y))

and that Leven = L∗aa. ut

From Theorem 2 and Theorem 11, it can be shown [7] that MFO can express only
the so-called “star-free” languages—that is, those that can be obtained through union,
intersection, complementation and concatenation of finite languages.

For example, language L3 of Section 2.1 can be obtained from finite languages
L′3 = ∅ and L′′3 = {a}—containing, respectively, no string (hence, whose cardinality is
0) and only string a (hence, whose cardinality is 1)—in the following way:

L3 = (¬L′3) · L′′3 ∪ L′′3

As a further example, the language L∃a, which is made of all strings that contain at least
an a, can be defined in the following way:

L∃a = L′′3 ∪ (¬L′3) · L′′3 ∪ L′′3 · (¬L′3) ∪ (¬L′3) · L′′3 · (¬L′3)

and the language L∃!a made of all strings that contain exactly one a can be defined as
follows:

L∃!a = L′′3 ∪ (¬L∃a) · L′′3 ∪ L′′3 · (¬L∃a) ∪ (¬L∃a) · L′′3 · (¬L∃a)

3 Monadic Second-order Logic of Order on Strings

Formulae of the monadic second-order logic of order (MSO), as defined by Büchi and
others [8], are built out of the elements of the MFO logic defined in Section 2 plus, in
addition:

– Second-order variables, denoted as uppercase boldface letters, X, Y, . . . , which are
interpreted over sets of natural numbers.

10 D. Mandrioli et al.

More precisely, let Σ be an input alphabet, V1 be a set of first-order variables, and
V2 be a set of second-order (or set) variables. Well-formed formulae of MSO logic are
defined according to the following syntax:

ϕ := a(x) | X(x) | x < y | ¬ϕ | ϕ ∨ ϕ | ∃x(ϕ) | ∃X(ϕ)

where a ∈ Σ, x, y ∈ V1, and X ∈ V2.
Naturally, all abbreviations introduced in Section 2 are still valid. We also introduce

the following additional abbreviations:

x ∈ X def
= X(x)

X ⊆ Y def
= ∀x(x ∈ X ⇒ x ∈ Y)

X = Y def
= (X ⊆ Y) ∧ (Y ⊆ X)

X , Y def
= ¬(X = Y)

where x, y,X are as before, and Y ∈ V2.
An MSO formula is interpreted over a string w ∈ Σ+, with respect to assignments

ν1 : V1 → {0, . . . , |w|−1} and ν2 : V2 → P({0, . . . , |w|−1}). Notice that, like assignment
ν for MFO formulae, ν1 maps each first-order variable of V1 to a position in string w.
Assignment ν2, instead, maps each second-order variable ofV2 to a set of positions in
string w.

Then, the satisfaction relation |= for MSO formulae is defined in the following way:

– w, ν1, ν2 |= a(x) if, and only if, w = w1aw2 and |w1| = ν1(x) hold.
– w, ν1, ν2 |= X(x) if, and only if, ν1(x) ∈ ν2(X) holds.
– w, ν1, ν2 |= x < y if, and only if, ν1(x) < ν1(y) holds.
– w, ν1, ν2 |= ¬ϕ if, and only if, w, ν1, ν2 6|= ϕ holds.
– w, ν1, ν2 |= ϕ1 ∨ ϕ2 if, and only if, w, ν1, ν2 |= ϕ1 or w, ν1, ν2 |= ϕ2.
– w, ν1, ν2 |= ∃x(ϕ) if, and only if, w, ν′1, ν2 |= ϕ, for some ν′1 with ν′1(y) = ν1(y) for all

y ∈ V1 \ {x}.
– w, ν1, ν2 |= ∃X(ϕ) if, and only if, w, ν1, ν

′
2 |= ϕ, for some ν′2 with ν′2(Y) = ν2(Y) for

all Y ∈ V2 \ {X}.

To improve readability, we will drop ν1, ν2 from the notation whenever there is no
risk of ambiguity, and write w |= ϕ to indicate that string w satisfies MSO formula ϕ.

The definitions of MSO sentence and of language L(ϕ) defined by sentence ϕ are as
for the MFO logic.

Example 12. The following MSO formula ϕeven defines language Leven introduced in
Section 2.2.

ϕeven : ∃P

∀x

(x = 0⇒ ¬P(x))
∧

∀y(y = x + 1⇒ (¬P(x)⇔ P(y)))
∧

a(x)
∧

(last(x)⇒ P(x))

Lecture Notes on Monadic First- and Second-Order Logic on Strings 11

Formula ϕeven introduces a second-order variable P that identifies exactly all even po-
sitions in string w. More precisely, the first position of w (which is conventionally 0),
is not even, and indeed the first conjunct in formula ϕeven states that P(x) does not hold
when x is 0. In addition, the second conjunct in ϕeven states that the next position after
x (i.e., position y such that y = x + 1 holds), if it exists, is even (i.e., P(y) holds there) if,
and only if, position x is odd; hence, since the first position is odd, the second position
is even, the third is odd, the fourth is even, and so on. The third conjunct states that, in
every position x, a(x) holds (i.e., a appears in every position). Finally the last conjunct
states that the last position in the string must be even. ut

3.1 Expressiveness of MSO

Since every MFO formula is also an MSO formula, from the fact that MSO formula
ϕeven introduced in Example 12 defines language Leven, which, by Proposition 9, cannot
be defined by an MFO formula, we have the following straightforward result.

Theorem 13. The MSO logic is strictly more expressive than the MFO logic.

Indeed, the original seminal result by Büchi and others is that, unlike the MFO logic,
MSO indeed has the same expressive power as FSAs, as captured by the following
theorem.

Theorem 14. A language L is regular if, and only if, there exists a sentence ϕ in the
MSO logic such that L = L(ϕ).

Before proving Theorem 14, we remark that, since for every FSA there is an equiv-
alent MSO formula—and vice versa—MSO enjoys all closure properties of FSAs, as
captured by the following corollary.

Corollary 15. The set of languages that can be defined by MSO formulae is closed
under union, intersection, complementation, and Kleene star.

The proof of Theorem 14 is constructive, i.e., it provides an algorithmic procedure
that, for a given FSA A, builds an equivalent MSO sentence ϕA, and vice versa. Next,
we offer an intuitive explanation of the construction, referring the reader to, e.g., [8] for
a complete and detailed proof.

From FSA to MSO logic

The key idea of the construction consists in using, for each state q of FSAA, a second-
order variable Xq, whose value is the set of positions of all the characters that A may
read in a transition starting from state q.

Without loss of generality, we assume that A’s set of states Q is {0, 1, . . . ,m}, for
some m, where 0 denotes the initial state. Then, we encode the definition of the FSAA
recognizing L (i.e, such that L = L(A)) as the conjunction of several clauses, each one
capturing a part of the definition ofA:

12 D. Mandrioli et al.

– We introduce a formula capturing the transition relation δ of A, which includes a
disjunct for each transition δ(qi, a) = q j of the automaton:
∀x, y

(
y = x + 1⇒

∨
δ(qi,a)=q j

(
x ∈ Xi ∧ a(x) ∧ y ∈ X j

))
.

– The fact that the machine starts in state 0 is captured by formula
∀x(x = 0⇒ x ∈ X0).

– Since the automaton cannot be in two different states i, j at the same time, for each
pair of distinct second-order variables Xi and X j we introduce formula
¬∃y(y ∈ Xi ∧ y ∈ X j).

– Acceptance by the automaton—i.e. δ(qi, a) ∈ F—is formalized by formula
∀x

(
last(x)⇒

∨
δ(qi,a)∈F (x ∈ Xi ∧ a(x))

)
.

Finally, MSO formula ϕA corresponding to automatonA is the following sentence

ϕA : ∃X0, X1, . . . Xm(ϕ)

where ϕ is the conjunction of all the above clauses.

It is not difficult to show that the set of strings satisfying formula ϕA is exactly L.

Example 16. Consider the FSA Aex shown in Figure 1. The corresponding MSO for-

q0 q1

q2

c

a

c

a

b

a

Fig. 1: Finite-State AutomatonAex.

Lecture Notes on Monadic First- and Second-Order Logic on Strings 13

mula ϕAex built according to the rules described above is the following:

ϕAex : ∃X0,X1,X2

∀x, y

y = x + 1⇒

x ∈ X0 ∧ c(x) ∧ y ∈ X0 ∨

x ∈ X0 ∧ b(x) ∧ y ∈ X1 ∨

x ∈ X0 ∧ a(x) ∧ y ∈ X2 ∨

x ∈ X1 ∧ a(x) ∧ y ∈ X2 ∨

x ∈ X2 ∧ c(x) ∧ y ∈ X0 ∨

x ∈ X2 ∧ a(x) ∧ y ∈ X2

∧

∀x(x = 0⇒ x ∈ X0)
∧

¬∃y(y ∈ X0 ∧ y ∈ X1) ∧
¬∃y(y ∈ X0 ∧ y ∈ X2) ∧
¬∃y(y ∈ X1 ∧ y ∈ X2)
∧

∀x

last(x)⇒

(X0(x) ∧ a(x))
∨

(X1(x) ∧ a(x))
∨

(X2(x) ∧ a(x))

where the first clause captures the transition relation of the automaton; the second clause
formalizes its initial state; the next three conjuncts state the mutual exclusion of states;
and the last clause captures the acceptance condition. ut

From MSO logic to FSA

The construction in the opposite direction has been proposed in various versions in
the literature. Here we summarize its main steps along the lines of [8]. First, the MSO
sentence is translated into a standard form that uses only second-order variables (no
first-order variables are allowed), the ⊆ predicate, and variables Wa, for each a ∈ Σ,
denoting the set of all the positions of the word containing the character a. Moreover,
we use Succ, which has the same meaning as succ, has second-order variable arguments
that are singletons. This simpler (yet equivalent) logic is defined by the following syn-
tax:

ϕ := X ⊆Wa | X ⊆ Y | Succ(X,Y) | ¬ϕ | ϕ ∨ ϕ | ∃X(ϕ).

As before, we also use the standard abbreviations for, e.g., ∧, ∀, =. To translate first-
order variables to second-order variables we need to state that a (second-order) variable
is a singleton. Hence we introduce the abbreviation:

Sing(X) def
= ∃Y(Y ⊆ X ∧ Y , X ∧ ¬∃Z(Z ⊆ X ∧ Z , Y ∧ Z , X))

Then, in the transformation below, Succ(X,Y) is always conjoined with Sing(X) ∧
Sing(Y) and the resulting formula is therefore false whenever X or Y are not singletons.
The following step entails the inductive construction of the equivalent automaton. This
is built by associating a single automaton to each elementary subformula and by com-
posing them according to the structure of the global formula. This inductive approach

14 D. Mandrioli et al.

requires to use open formulas, i.e., formulas where free variables occur. For technical
reasons, with such formulas we are going to consider words on the alphabet Σ × {0, 1}k,
where k is the number of free variables; in the subsequent steps of the transformation
from MSO logic to FSA, the alphabet will revert to Σ. Hence, if X1, X2, . . . Xk are the
free variables used in the formula, a value of 1 in the, say, j-th component means that
the considered position belongs to X j (that is, the second-order variable X j represents a
first-order variable whose value is the considered position); 0 means the opposite. For
instance, if w = (b, 1, 0)(a, 0, 0)(a, 0, 1), then w |= X2 ⊆ Wa, w |= X1 ⊆ Wb, with X1
and X2 singletons representing (first-order variables and hence) positions in string w
respectively equal to 0 and 2.

Formula transformation

1. First order variables are translated in the following way: ∃x(ϕ(x)) becomes
∃X(Sing(X)∧ϕ′(X)), where ϕ′ is the translation of ϕ, and X is a fresh new variable
not occurring elsewhere.

2. Subformulas having the form a(x), succ(x, y) are translated into X ⊆Wa, Succ(X,Y),
respectively.

3. The other parts are unchanged.

Inductive construction of the automaton We assume for simplicity that Σ = {a, b},
and that k = 2, i.e. two variables are used in the formula. Moreover, in the transition
labels of the automata we use the shortcut symbol ◦ to mean all possible values.

q0

(◦, 0, 0)

(◦, 0, 1)

(◦, 1, 1) q0

(◦, 0, ◦)

(a, 1, ◦)

q0 q1 q2

(◦, 0, 0)

(◦, 1, 0) (◦, 0, 1)

(◦, 0, 0)

(a) (b) (c)

Fig. 2: Automata for the construction from MSO logic to FSA.

– The formula X1 ⊆ X2 is translated into an automaton that checks that there are
1’s for the X1 component only in positions where there are also 1’s for the X2
component (Figure 2 (a)).

– The formula X1 ⊆Wa is analogous: the automaton checks that positions marked by
1 in the X1 component must have symbol a (Figure 2 (b)).

– The formula Succ(X1, X2) considers two singletons, and checks that the 1 for com-
ponent X1 is immediately followed by a 1 for component X2 (Figure 2 (c)).

– Formulas inductively built with ¬ and ∨ are covered by the closure of regular lan-
guages w.r.t. complement and union, respectively.

Lecture Notes on Monadic First- and Second-Order Logic on Strings 15

– For a formula of type ∃X(ϕ), we use the closure under alphabet projection; for
instance, we may start with an automaton with input alphabet Σ × {0, 1}2, for
the formula ϕ(X1, X2) and we may need to define an automaton for the formula
∃X1(ϕ(X1, X2)). But in this case the alphabet is Σ × {0, 1}, where the last compo-
nent represents the only free remaining variable, i.e. X2.
The automatonA∃ is built by starting from the one for ϕ(X1, X2), and changing the
transition labels from (a, 0, 0) and (a, 1, 0) to (a, 0); (a, 0, 1) and (a, 1, 1) to (a, 1),
and analogously for those with b. The idea is that this last automaton nondeter-
ministically “guesses” the quantified component (i.e. X1) when reading its input,
and the resulting word w ∈ (Σ × {0, 1}2)∗ is such that w |= ϕ(X1, X2). Thus, A∃
recognizes ∃X1(ϕ(X1, X2)).

We refer the reader to the available literature for a full proof of equivalence between
the logic formula and the constructed automaton. Here we illustrate the rationale of the
above construction through the following example.

Example 17. Consider the language L = {a, b}∗aa{a, b}∗: it consists of the strings satis-
fying the formula:
ϕL = ∃x∃y(succ(x, y) ∧ a(x) ∧ a(y)).

As seen before, first we translate this formula into a version using only second-order
variables: ϕ′L = ∃X,Y(Sing(X) ∧ Sing(Y) ∧ Succ(X,Y) ∧ X ⊆Wa ∧ Y ⊆Wa).

The automata for Sing(X) and Sing(Y) are depicted in Figure 3; they could also be
obtained by expanding the definition of Sing and then projecting the quantified vari-
ables.

q0 q1

(◦, 0, ◦)

(◦, 1, ◦)

(◦, 0, ◦)

q′0 q′1

(◦, ◦, 0)

(◦, ◦, 1)

(◦, ◦, 0)

Fig. 3: Automata for Sing(X) and Sing(Y).

By intersecting the automata for Sing(X), Sing(Y), and Succ(X,Y), by means of
the customary construction of the cartesian product automaton (the details of the con-
struction are not shown), we obtain an automaton that is identical to the one we defined
for translating formula Succ(X1, X2), where here X takes the role of X1 and Y of X2.
Intersecting it with those for X ⊆ Wa and Y ⊆ Wa produces the automaton of Figure 4.

Finally, by projecting on the quantified variables X and Y we obtain the automaton
for L, given in Figure 5. ut

4 Discussion

The logical characterization of a class of languages, together with the decidability of
the associated containment problem (i.e., checking whether a language is a subset of

16 D. Mandrioli et al.

q′′0 q′′1 q′′2

(a, 0, 0)

(b, 0, 0)

(a, 1, 0) (a, 0, 1)

(a, 0, 0)

(b, 0, 0)

Fig. 4: Automaton for the conjunction of Sing(X), Sing(Y), Succ(X,Y), X ⊆ Wa, Y ⊆
Wa .

q′′0 q′′1 q′′2

a, b

a a

a, b

Fig. 5: Automaton for L = {a, b}∗aa{a, b}∗.

another language in that class), is the main door towards automatic verification tech-
niques. Suppose that a logic formalism L is recursively equivalent to an automaton
family A; then, one can use a formula ϕL of L to specify the requirements of a given
system and an abstract machineA in A to implement the desired system: the correctness
of the design defined by A w.r.t. to the requirements stated by ϕL is therefore formal-
ized as L(A) ⊆ L(ϕL), i.e., all behaviors realized by the machine are also satisfying the
requirements. This is just the case with FSAs and MSO logic for Regular Languages.

Unfortunately, known theoretical lower bounds state that the decision of the above
containment problem is PSPACE-complete and therefore intractable in general. The
recent striking success of model-checking [3], however, has produced many refined
results that explain how and when practical tools can produce results of “acceptable
complexity” – although the term “acceptable” is context-dependent, since in some cases
even running times of the order of hours or weeks can be considered acceptable. In a
nutshell, normally—and roughly—we trade a lower expressive power of the adopted
logic, typically linear temporal logic, for a complexity that is “only exponential” in
the size of the logic formulas, whereas the worst case complexity for MSO logic can be
even a non-elementary function [4].5 In any case, our interest in these notes is not on the
complexity issues, but it is focused on the equivalence between automata recognizers
and MSO logics, which leads to the decidability of the above fundamental containment
problem.

References

1. J. R. Büchi. Weak Second-Order Arithmetic and Finite Automata. Mathematical Logic Quar-
terly, 6(1-6):66–92, 1960.

5 There are, however, a few noticeable cases of tools that run satisfactorily at least in some
particular cases of properties expressed in MSO logic [5].

Lecture Notes on Monadic First- and Second-Order Logic on Strings 17

2. C. C. Elgot. Decision problems of finite automata design and related arithmetics. Trans. Am.
Math. Soc., 98(1):21–52, 1961.

3. E. A. Emerson. Temporal and modal logic. In Handbook of Theoretical Computer Science,
Volume B: Formal Models and Sematics (B), pages 995–1072. 1990.

4. M. Frick and M. Grohe. The complexity of first-order and monadic second-order logic revis-
ited. Ann. Pure Appl. Logic, 130(1-3):3–31, 2004.

5. J. Henriksen, J. Jensen, M. Jørgensen, N. Klarlund, B. Paige, T. Rauhe, and A. Sandholm.
Mona: Monadic second-order logic in practice. In Tools and Algorithms for the Construction
and Analysis of Systems, First International Workshop, TACAS ’95, LNCS 1019, 1995.

6. C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM, 12(10):576–
580, 1969.

7. R. McNaughton and S. Papert. Counter-Free Automata. Research Monograph. The M.I.T.
Press, 1971.

8. W. Thomas. Handbook of theoretical computer science (vol. B). chapter Automata on infinite
objects, pages 133–191. MIT Press, Cambridge, MA, USA, 1990.

9. B. A. Trakhtenbrot. Finite automata and logic of monadic predicates (in Russian). Doklady
Akademii Nauk SSR, 140:326–329, 1961.

	Lecture Notes onMonadic First- and Second-Order Logic on Strings

