
CV SUMMARY – MATTEO PRADELLA

DATE OF BIRTH MAY 31, 1971
EDUCATION
2001 PhD Degree in Computer Science, Politecnico di Milano (Chorafas Prize).
1996 Master of Science Degree in Computer Engineering, Politecnico di Milano.

CAREER
2011 – present Associate Professor, DEIB Politecnico di Milano
2001 – 2011 Tenured Researcher, IEIIT CNR, Milano
2001, 2002 Visiting Researcher at Naval Research Laboratory, Software Engineering group (code 5546),

Washington, DC.
2001 Post-Doc Researcher (Assegnista di Ricerca), Politecnico di Milano, Grant by MIUR.
2000 Visiting PhD student at Naval Research Laboratory, Software Engineering group (code 5546),

Washington, DC.
1998 – 2001 Ph.D. Student in Computer Science, Politecnico di Milano
1996 – 1997 Developer, working on the TRIO temporal logic semantic tools, in a joint project between

Politecnico di Milano and CESI.

LEAVE PERIODS
June 1997 – April 1998 Military Service

HABILITATION
Type of habilitation Country SSD (if Italian habilitation) or topic area Date of achievement
Full Professor Italy ING-INF/05 August 3, 2017

RESEARCH INTERESTS

 Formal Methods for Software Engineering: Software Verification, Temporal Logic, Model Checking.
 Formal Languages and Compilers: Operator Precedence and Input Driven Languages, Parallel Parsing,

Context-Oriented Programming Languages, 2D Languages.

LEADERSHIP IN COMPETITIVE RESEARCH PROJECTS

Project Name Time
Period

Funding
Institution

Funding
Scheme

Role of the
applicant

Budget for the
applicant’s institution

2D Grammars
for Picture
description

2008 CNR CNR RSTL
program

PI 33K€ (99K€ original
program)

RSTL was a competitive national research program introduced by CNR for basic research: of the 800
projects presented only 311 were financed (39%). My original project was for a 3 years span with a total net
contribution of 99K€. Unfortunately, after 2008 the RSTL program was canceled, and only the first year of
the accepted projects was covered.
D-ASAP 2007-8 MIUR PRIN Leader of the

CNR unit of
Milano

120K€ for CNR

AUTOVAM:
Automatic
Verification: Ad
Maiora.

2018-2019 Fondazione
Cariplo

Bando
congiunto
Regione
Lombardia -
Fondazione
Cariplo

Co-PI 125K€

Programming
trustworthy
Infrastructure
As Code in a
sEcuRE
framework
(PIACERE)

12/2020-
11/2023

EU
Commission

H2020 Leader of
Verification
Tools

592K€

LEADERSHIP IN INDUSTRIAL RESEARCH PROJECTS

Project Name Time Period Funding
Company

Role of the applicant Budget for the
applicant’s institution

Development of
R++

2016-2017 Robox SpA PI 50K€

CV – Matteo Pradella, July 2024

SCIENTIFIC PRODUCTION AND METRICS

 Scientific Productivity: 97 publications (83 entries on Scopus, 47 co-authors according to Scopus):
 Author/Co-author of 15 top ranked journal papers (including SIAM Journal on Computing, ACM

Transaction on SW Engineering, IEEE Transactions on Software Engineering, Theoretical Computer
Science, Pattern recognition).

 Author/Co-author of 60 scientific publications on peer-reviewed conferences including 4 top-level
CORE A* conferences (ICSE, ESEC/FSE, CAV).

 Publication Impact: Based on Google Scholar: h-index 24 citations 1779
Based on Scopus: h-index 17 citations 904

AWARDS AND RECOGNITIONS

2015 IBM Faculty Award for the PAPAGENO parallel parser generator
(proposer: D. Mandrioli).

2012 Google Faculty Award for the PAPAGENO parallel parser generator
(proposer: S. Crespi Reghizzi).

2007 Formal Methods Europe (FME) grant for the model checker Zot.
2001 Chorafas Foundation prize

INVITED TALKS AND SEMINARS (SELECTION OF PAST 10-YEARS)
Invited speaker @QuantLA (Quantitative Logics and Automata), Universitat Leipzig, 2016. Title: Parallel
parsing of Operator Precedence languages.

TEACHING EXPERIENCE (SELECTION OF PAST 5-YEARS)
Institution
name

Course name Credits No. of students Reference
Study Course

Time period Students
Evaluation

POLIMI Principles of Programming
Languages

5 136 MCSE 2023-24 NYA

POLIMI Algoritmi e Principi
dell’Informatica

10 285 CSE 2023-24 NYA

POLIMI Prova Finale di Algoritmi e
Strutture Dati

1 340 CSE 2023-24 NA

POLIMI Principles of Programming
Languages

5 205 MCSE 2022-23 3.2/4

POLIMI Algoritmi e Principi
dell’Informatica

10 343 CSE 2022-23 3.1/4

POLIMI Prova Finale di Algoritmi e
Strutture Dati

1 424 CSE 2021-22 NA

POLIMI Principles of Programming
Languages

5 110 MCSE 2021-22 3.1/4

POLIMI Algoritmi e Principi
dell’Informatica

10 337 CSE 2021-22 3.2/4

POLIMI Prova Finale di Algoritmi e
Strutture Dati

1 344 CSE 2021-22 NA

POLIMI Principles of Programming
Languages

5 84 MCSE 2020-21 3.3/4

POLIMI Algoritmi e Principi
dell’Informatica

10 318 CSE 2020-21 3.0/4

POLIMI Prova Finale di Algoritmi e
Strutture Dati

1 363 CSE 2020-21 NA

POLIMI Principles of Programming
Languages

5 103 MCSE 2019-20 3.3/4

POLIMI Algoritmi e Principi
dell’Informatica

10 274 CSE 2019-20 3.1/4

POLIMI Prova Finale di Algoritmi e
Strutture Dati

1 286 CSE 2019-20 NA

2

CV – Matteo Pradella, July 2024

INSTITUTIONAL RESPONSIBILITIES (SELECTION OF PAST 10-YEARS)
2024 Scientific Committee Member for the university libraries, Politecnico di Milano.
2021 Commission Member for the selection of a RTDb (Senior) Researcher in Computer Science,

Politecnico di Milano.
2019 Commission Member for admittance to the PhD program in Computer Science.
2017 – 2021 Member of the PhD Board, PhD Programme in Computer Science, Politecnico di Milano.
2012 – present Supervisor for the Evaluation of Research Products in Computer Science and Engineering of

my Department.
2011 – present Associate Researcher, IEIIT, CNR.
2011 – 2017 Member of the Board of the AICT Society, the National Association of Information

Technology and Communication Engineers. I served as head of the TIAI (Internet and
Information Technologies) group

2016 Commission Member for the selection of a RTDa (Junior) Researcher in Computer Science,
University of Padova.

SUPERVISION OF MASTER, DOCTORAL STUDENTS AND POSTDOCTORAL RESEARCHERS
2010 – present Advisor/Co-advisor of 5 Doctoral Students at Politecnico di Milano.
2017 – 2021 Tutor of 11 Doctoral Students, and 3 Postdoctoral Students at Politecnico di Milano.
1998 – present Advisor/Co-advisor of 24 students in Computer Engineering, Politecnico di Milano.

ORGANIZATION OF SCIENTIFIC MEETINGS
2024 General Chair of FM’24, the 26th International Symposium on Formal Methods

https://www.fm24.polimi.it/. FM is the leading conference on Formal Methods and its CORE
ranking is A. FM’24 has 5 co-located conferences: TAP, FMICS, LOPSTR, PPDP, FACS, and 6
workshops. This year acceptance rate was 24%.

2024 General Chair of PPDP’24, the 26th International Symposium on Principles and Practice of
Declarative Programming.

2011 - 2016 Co-Chair of 6 AICT Workshops, Politecnico di Milano:
 The New Paradigm of Energy Efficiency (2011)
 Smart and Sustainable Mobility: New Paradigms (2012)
 Cloud Computing (2013)
 Big Data: Applications and Enabling Technologies (2014)
 IoT: a World of Sensors (2015)
 Accessibility of ICT Solutions for Disability in Work and Formation (2016).

COMMISSIONS OF TRUST (SELECTION OF PAST 10-YEARS)
2023 Expert project reviewer for Regular Fondecyt National Projects Competition, National

Research and Development Agency (ANID), Chile.
2018 – present Expert committee member of the European Association for Programming Languages and

Systems (EAPLS) for the Best PhD Dissertation Award (EP17, EP18, EP19, EBDA20, EAPLS21,
EAPLS22).

2019 Program committee member of 13th International Conference on Language and Automata
Theory and Applications (LATA), Saint Petersburg, Russia, March 26-29, 2019.

2018 Program committee member of 12th International Conference on Language and Automata
Theory and Applications (LATA), Bar-Ilan near Tel Aviv, Israel April 9-11, 2018.

2017 Program committee member of 9th Workshop on Context-Oriented Programming (COP)
Co-located with ECOOP 2017, Sun 18-Fri 23 June 2017, Barcelona, Spain

2015 Independent Expert for the International PhD School in Formal Languages and Applications,
URV, Tarragona

2014 Program committee member of 4PAD/PDP 2014 22nd Euromicro International Conference on
Parallel, Distributed and network-based Processing, Special Session on Formal Approaches to
Parallel and Distributed Systems.

TECHNOLOGY TRANSFER
DEVELOPMENT OF OPEN-SOURCE TOOLS
Zot (since 2006) is an open-source extendable bounded model/satisfiability checker. I designed and implemented

Zot and maintained it for several years. Zot supports operational, descriptive, or hybrid models. Its plug-in
based architecture permits both mono- and bi-infinite discrete temporal domains, and supports dense-
time-based formalisms. Zot is used as a verification engine in several research activities and funded
projects of our department; also, it was used for years in the course on Formal Methods in Concurrent and
Distributed Systems.
Link: https://github.com/fm-polimi/zot

PAPAGENO (since 2013) I collaborated in the design and development of the open-source tool PAPAGENO,
3

https://www.fm24.polimi.it/
https://github.com/fm-polimi/zot

CV – Matteo Pradella, July 2024

an efficient Parallel Parser Generator based on Operator Precedence Languages. We developed very
efficient parallel parsers for JSON, Lua, JavaScript with it, and we are currently investigating its
applicability for parallel querying on very large structured documents (e.g. XML). Its development in
recent years has always been through temporary researchers and students of mine assisted by A. Barenghi.
Links: https://github.com/PAPAGENO-devels/papageno,
https://github.com/simoneguidi94/gopapageno

POMC (since 2020) an open-source model checker for Operator Precedence Languages (OPL), based on a first-
order complete temporal logic called POTL. Besides OPL, it naturally supports Visibly Pushdown
languages, but can also check "non-visibly" properties of programs, e.g. related to exceptions, transactions
or continuations. Still in a prototypal stage, it already exhibits very promising performance on real-world
cases, and it will be presented at Computer Aided Verification (CAV) 2021, the most important conference
on automatic verification. POMC is developed with the aid of Michele Chiari, a former PhD student of
mine, and two MS students.
Link: https://github.com/michiari/POMC

COLLABORATION WITH INDUSTRY
My interests, teaching and research on programming languages are a natural aspect of dissemination and
collaboration with the industry.

Leonardo SpA I recently started a collaboration with Leonardo Helicopters together with Prof. Maria Prandini.
The objective of this collaboration is to define a structured requirement specification, validation and
verification framework to support the development of rotorcraft Flight Control Systems (FCS) in line with
certification regulation and applicable standards. This collaboration will start with a PNRR PhD grant, starting
in November 2022.

Robox SpA I have a collaboration started in 2016 for the development of their next-generation programming
language for motion control, called R++. As reported before, I was the head of the Robox-financed research
project that lead to the design and implementation of R++. R++ is closed-source and considered one of the most
important assets of the firm.
My former student L. Nardo works at Robox and is in charge of the R++ compiler. At present one of my
students of Principles of Programming Languages is developing a joint Master thesis on a number of linguistic
extensions to R++.

Industrial Training I taught a number of courses on programming paradigms in various companies reported
here.
In particular, in 2019 I designed a 20-day course with Cefriel for Nokia, on Machine Learning & Deep Learning
SW Development for Big Data Platforms, where I covered programming languages and paradigm.

Company Course name Length No. of
students

Year

Nokia Functional Programming in Python and
Scala

16 hours ~10 2020

SM-Optics New Programming Languages 16 hours ~10 2019
MOXOFF Functional and Monadic Programming in

Scala
8 hours ~10 2019

SM-Optics New Programming Languages 16 hours ~10 2018
CESI SpA The Python Programming Language 18 hours ~10 2008

4

https://github.com/michiari/POMC
https://github.com/simoneguidi94/gopapageno
https://github.com/PAPAGENO-devels/papageno

CV – Matteo Pradella, July 2024

TWELVE MOST RELEVANT PUBLICATIONS

1. D. Mandrioli, M. Pradella, S. Crespi Reghizzi, Aperiodicity, Star-freeness, and First-order Definability of Operator
Precedence Languages, Logical Methods in Computer Science, Volume 19, Issue 4 (2023)

CORE ranking: A.

2. M. Chiari, D. Mandrioli, F. Pontiggia, M. Pradella, A Model Checker for Operator Precedence Languages, ACM

Transactions on Programming Languages and Systems, Vol. 45, No. 3, Article 19 (2023)
CORE ranking: A*.

3. Michele Chiari, Dino Mandrioli, Matteo Pradella: A First-Order Complete Temporal Logic for Structured Context-
Free Languages, Logical Methods in Computer Science, Volume 18, Issue 3, pp. 11:1-11:49 (2022)

CORE ranking: A.

4. Michele Chiari, Dino Mandrioli, Matteo Pradella: Operator precedence temporal logic and model checking,

Theoretical Computer Science, vol 848, pp. 47–81 (2020)
CORE ranking: A.

5. Stefano Crespi Reghizzi, Matteo Pradella: Beyond operator-precedence grammars and languages, Journal of
Computer and System Sciences (JCSS), 113 18–41 (2020)

CORE ranking: A*.

6. Violetta Lonati, Dino Mandrioli, Federica Panella, Matteo Pradella: Operator Precedence Languages: Their

Automata-Theoretic and Logic Characterization. SIAM J. Comput. 44(4): 1026-1088 (2015)
CORE ranking: A*.

7. Matteo Pradella, Angelo Morzenti, Pierluigi San Pietro: Bounded satisfiability checking of metric temporal logic
specifications. ACM Transactions on Software Engineering and Methodology 22(3): 20:1-20:54 (2013)

CORE ranking: A*.

8. Guido Salvaneschi, Carlo Ghezzi, Matteo Pradella: An Analysis of Language-Level Support for Self-Adaptive Soft-

ware. ACM Transactions on Autonomous and Adaptive Systems 8(2): 7:1-7:29 (2013)
CORE ranking: B.

9. Guido Salvaneschi, Carlo Ghezzi, Matteo Pradella: Context-oriented programming: A software engineering
perspective. Journal of Systems and Software 85(8): 1801-1817 (2012)

CORE ranking: A.

10. Matteo Pradella, Stefano Crespi-Reghizzi: A SAT-based parser and completer for pictures specified by tiling.

Pattern Recognition 41(2): 555-566 (2008)
CORE ranking: A*.

11. Stefano Crespi Reghizzi, Matteo Pradella: Tile rewriting grammars and picture languages. Theoretical Computer
Science 340(1): 257-272 (2005)

CORE ranking: A.

12. Alberto Coen-Porisini, Matteo Pradella, Matteo Rossi, Dino Mandrioli: A formal approach for designing CORBA-

based applications. ACM Transactions on Software Engineering and Methodology 12(2): 107-151 (2003)
CORE ranking: A*.

5

CV – Matteo Pradella, July 2024

RESEARCH STATEMENT
ON-GOING RESEARCH DIRECTIONS AND RECENT ACHIEVEMENTS

Since the start of my scientific activity, my main interest has been on basic, long-term research in
formal verification of software. Verification is a fundamental step in every engineering process: after
designing and possibly building a new artifact it is mandatory to verify whether it complies with the
desired standard (safety, efficiency, etc.). Traditional engineering has a well-established history of
verification methodologies which span from the analysis of mathematical models of the designed
product to the experimental test in the field.
Not so with the verification of software artifacts. Software in fact exhibits distinguishing features that
make it hard to apply verification techniques that are effective in other fields of engineering. In most
practical cases, software verification consists just in supplying some test cases and checking whether
the system behaves as expected at least in those cases. Such approach, however, suffers from obvious
weaknesses and is at the origin of the “Software Crisis”, a term introduced in the late ‘60s to express
that large software projects are often unreliable, out of budget, out of schedule, and is still largely
present in the literature of the field. The lack of software reliability is even more critical nowadays when
software is so invasive and pervasive that practically every moment of our life depends on it,
whether we are on a self-driving car or visiting a web site.

My approach to the research on software verification has always been “two-pronged”:
1) Basic theory on notations, languages, automata, logics.
2) Design and development of tools.

My strong belief is that the availability of good, industrial-strength tools will be a natural “gateway
drug” for the adoption of formal methods in industry. Of course, Point 1) is a natural pre-requisite
for having Point 2). For this reason, I spent years studying and proposing theories, e.g. on various
variants of modal and temporal logics, automata models, and specification languages, that in several
cases brought the development of tools.
To cite here the foremost:

 My research activity on the various variants of TRIO metric temporal logic was the necessary
step that led to the design and development of the Zot bounded model checker (2007-2014),
still actively developed and used by colleagues in my group.

 The more recent activity on Operator Precedence languages, based on the definition of an
automaton model, and characterization through logics, both monadic second order (MSO)
and temporal, and an extended version of regular expressions, was a necessary stepping
stone for developing the recent POMC model checker (2021).

Operator Precedence languages (OPL) were defined by Robert Floyd in the ‘60s for deterministic
parsing. In recent years, we “re-discovered” them as they are much more expressive than a very
successful family of languages, the one of Nested Words (NW) (also known as Visibly-Pushdown or
Input-Driven languages). R. Alur, one of the most renowned researchers in model checking,
proposed Nested Words for verification of software, since they easily and naturally model programs
and enjoy a lot of the properties that make Regular Languages the natural basis of model checking
verification. This spurred a thriving stream of research that spreads to this day.
In the last decade we were able to prove that:

1) OPL are much more expressive than NW. Indeed, while NW are limited to parenthesis-like
languages such as XML, HTML, and Lisp, OPL do not suffer from this limitation and can
easily describe syntactically more complex programming and data languages, such as JSON,
JavaScript, Lua, HTML5; more interestingly, as far as software verification is concerned, OPL
can be naturally used to model behavior of e.g. exceptions, continuations, transactions, etc.

2) OPL enjoy the same closure properties of NW, retaining also basically the same theoretical
complexities.

One of the critical aspects of the research on Nested Words is that it is for the most part only
theoretical. Various kinds of interesting logics, models and verification algorithms for NW were
proposed through the years, with very few applicative accomplishments. On the other hand, after
spending years in defining and refining the necessary theory, models, logics and algorithms, we
were finally able to design and implement a complete model checker for OPL, called POMC
(Precedence-Oriented Model Checking) and based on the first-order complete temporal logic POTL
(Precedence-Oriented Temporal Logic). This tool can of course be directly used on less expressive
notation, most notably Nested Words. The tool is still a prototype; nonetheless we were able to

6

CV – Matteo Pradella, July 2024

obtain good performance on quite extensive benchmarks, and a paper on was presented at CAV’21
(Computer Aided Verification), the most important conference on automatic verification.

SHORT- TO MID-TERM RESEARCH DIRECTIONS

Besides the many interesting “theoretical tiles” we still need to find to complete the suggestive
mosaic of Operator Precedence languages, the natural short- to mid-term direction of my research is
on applications.

 Having a model checker suitable for software verification, it is only natural to think to apply
it. We want to adapt and extend POMC to support de facto standard formats for verifications,
such as Boolean programs, and of course to support real programming languages, e.g.
through abstractions.

 Natural applications based on such kind of model checker are obvious, from security to
safety-critical systems, so this could be a good point for collaborations with people working
in the fields of security and embedded systems.

 OPLs, unlike more general DCFLs, enjoy the local parsability property. This means that a
document can be parsed deterministically by starting its analysis in any position with no need
to make a nondeterministic guess on the parser’s state, which would expose to the risk of
backtrack with the obvious consequences in terms of complexity. This property opens the
door to parallelizing the analysis of OPLs in quite an effective way. PAPAGENO, a parser
generator based on this principle has been realized and applied to various programming and
data representation languages with experimental results that fully confirmed the theoretical
expectations in terms of speed-up. The local parsability property naturally supports also
incremental parsing in a simpler way than previous algorithms for general deterministic
context-free languages.

 By combining the automata-theoretic approach of POMC with PAPAGENO, it is natural to go
not only toward runtime verification, but also to work on parallel querying on complex tree-
structured data (possibly streaming). This activity could be developed with people working
on big data and data-base.

As far as theory is concerned, we recently proved a major result in the theory of formal languages, by
extending to all structured context-free languages (OP but also Nested Words) the seminal result
proved in 1971 by McNaughton and Papert which states that, for regular languages, star-free
languages, first-order definable languages and aperiodic languages are equivalent. In many years
there were various scientific works in the literature for bringing this seminal result to tree-like
structures, but were all partial.

TEACHING STATEMENT
SHORT- TO MID-TERM TEACHING PLAN

My main teaching activities are on two courses, one at the under-graduate level and one at graduate
level:

1) Algorithms and Principles of Computer Science.
2) Principles of Programming Languages.

Algorithms and Principles of Computer Science
I collaborated to the definition and creation of the course on Algorithms and Principles of Computer
Science, originally a merge of the former Theoretical Computer Science and Algorithms and Data
Structures (Informatica 3). The main object of the course is to cover the basic parts of theoretical
computer science, in particular formal models and languages, e.g. automata, Turing machines, logic;
computability theory; basic complexity theory; basic and standard data structures and algorithms.
This course did not change much in many years; recently we added a more practical part, i.e. the
Project on Algorithms and Data Structures. The approach we decided to follow is based on an
automatic contest, where we define a project for the current year, and the students apply their code
to an evaluation web-site that is continuously running for a few months. The evaluation is totally
automatic and based on a set of tests, one group that is publicly available, and the other that is
private, with some strict requirements for both memory and time. The final grade depends on how
many of the tests are passed, and the student has a feedback in real-time.
I believe that this more practical part of the course is a strength that we could use also for other parts
as well. For instance, one of the projects was to implement a non-deterministic Turing machine

7

CV – Matteo Pradella, July 2024

simulator, and I strongly believe that the actual implementation of such theoretical models gave the
students precious insights on the abstract but fundamental concept of non-determinism.
Also, I think that this course is the natural place for preparing students for the participation in
international contests such as the International Collegiate Programming Contest (ICPC), for which I
served for some years as coach of some of the PoliMi teams. Contests can be an important spur for
learning, so I envision that we could create some internal contests also for this course, adapting the
techniques we developed for the project evaluation.

Principles of Programming Languages
I designed the graduate course on Principles of Programming languages since its inception in 2011.
The main scope of the course is to offer a broad overview of the most important programming
paradigms. The course presents the salient features in the landscape of programming languages, by
analyzing similarities and differences, traditional and recent approaches and paradigms. I show
significant fragments of some important programming languages, given as examples of those
paradigms considered in class. The course aims to provide the means to better understand the
essence of defining concepts of programming languages, so to allow critical choice about the level of
abstraction, and consequently the language necessary to implement a particular system. Also, the
student must attain a good mental flexibility before of an aspect, i.e. the choice of a language, that is
constantly changing in computer science and software.
The main programming paradigms covered start for procedural for the basic concepts, to re-visit the
fundamental ideas of object orientation, studied in depth in previous courses, e.g. with respect to
class-less or prototype-based object systems. Other important approaches covered are meta-
programming techniques, functional programming, monadic programming, and concurrent
programming.
In the last years, I shifted the interest from some of the classical programming paradigms, e.g. the
logic one of Prolog, toward Erlang’s reactive and concurrency-oriented one. Nevertheless, I think it is
important to always keep track of the roots, from which the covered concepts originate.
My first plan is to keep up with current trends in programming, to cover some new promising
approaches; to name a few:

 Dependent typing (e.g. Agda, Idris).
 Safe compile-time techniques for memory safety (Rust, Zig).

For the time being, the course approach is quite traditional: class and exercises with a standard open-
book exam where I ask the students to write small programs in different programming languages.
On the other hand, I strongly encourage experimentation with the compilers, both in class and at
home.
I think that it is natural for this course to experiment with small projects and contests. In particular, I
think that in a few years this approach could encompass small contests modeled like the Computer
Language Benchmarks Game, where different language implementations are compared on a number of
standard benchmarks.

8

